Symmetric Key Generation with using of Pythagorean Triple and Polygonal Numbers

Dr THIRUCHINAPALLI SRINIVAS^{1,*}, PASUNOORI SRINIVASULU²

- 1.Department of FME, Associate Professor, Audi Sankara Deemed to be University, Gudur bypass, Gudur, Tirupati. Email Id: drtsrinivas80@gmail.com
- Assistant Professor, Department of Mathematics, Rajiv Gandhi University of Knowledge Technologies-BASAR. Email Id: rtma170352@rgukt.ac.in

Abstract:

Key generation and Secure is critical to the security of a Cryptosystem. In fact, key generation and key exchange is the most challenging part of cryptography. In this paper, a scheme for symmetric key generation based on Polygonal numbers and Pythagorean triples has been presented. i.e, focus on generating symmetric keys with using of k-gonal numbers P(k, n) is $\frac{n}{2}[(k-3)(n-1)+(n+1)]$ for k>2, $n\geq 0$ and to Generate a Pythagorean Triple

 (x_1, x_2, x_3) for each x_1 , there exists at least one x_2 and at least one x_3 , with

$$\mathbf{x}_2 = \left| \mathbf{a} \mathbf{x}_1^2 - \frac{1}{4\mathbf{a}} \right| \text{ , } \mathbf{x}_3 = \left| \mathbf{a} \mathbf{x}_1^2 + \frac{1}{4\mathbf{a}} \right| \text{ , where } \mathbf{a} = \begin{cases} \left\{ \frac{1}{2p}, p \text{ is a factor of } x_1^2, if \ x_1 \text{ is an odd} \right. \\ \left\{ \frac{1}{4p}, p \text{ is a factor of } \left(\frac{x_1}{2} \right)^2, if \ x_1 \text{ is an even} \right\}. \end{cases}$$

Also, introduce to define additive (+) and multiplicative (*) operations on Sets of k-gonal numbers as follows;

$$p(k,m)+p(k,n)=p(k,m+n)-(k-2)mn$$
 for some integers $k>2,n\geq 0$.
$$p(k,m)*p(k,n)=p(k,mn)+\frac{(k-4)(k-2)mn}{4}(m-1)(n-1)$$

for some integers k > 2, $n \ge 0$ $m \ge 0$.

Keywords: Polygonal number, Triangular numbers, Residues, Non- Residues, k-gonal numbers.

Introduction:

Key generation and Secure is critical to the security of a Cryptosystem. In fact key generation and key exchange is the most challenging part of cryptography. In this paper, a scheme for symmetric key generation based on Polygonal numbers has been presented. The proposed

scheme incorporates a Key Distribution center (KDC) for user authentication and secure exchange of secret information to generate keys. The KDC operation involves a request from a user for initiation. The KDC authenticates authenticate and secure exchange of secret information to generate keys. The KDC authenticates the initiator. If the authentication is successful, KDC generates and sends an encrypted timestamp to both the initiator and responder. The proposed system is based on a novel mechanism to determine Polygonal numbers to generate keys. The formula uses factors of x to generate y and z such that x, y, z satisfy the Pythagorean theorem.

Case1: The following notation has been used to Pythagorean triple calculation

x- input to calculate Pythagorean triple

 p_1 - First prime factor of x, p_2 - Second Prime factor of x

y and z – Key Pair, Suppose, If x is odd then $y = \frac{|x^2 - p_1^2|}{2p_1}$ and $z = \frac{|x^2 + p_1^2|}{2p_1}$ the final key is computed by XORing y and z. i.e. $p = y \oplus z$.

Case 2: The following notation has been used to k-gonal calculation

x- choose some non- negative integers k, m, n as input to calculate polygonal number y and z – Key Pair with using of addition and multiplication binary operation on a Set of Polygonal numbers,

$$y = p(k, m) + p(k, n) = p(k, m + n) - (k - 2)mn$$

for some integers k > 2, $n \ge 0$, $m \ge 0$ and

$$z = p(k,m) * p(k,n) = p(k,mn) + \frac{(k-4)(k-2)mn}{4}(m-1)(n-1)$$

for some integers k > 2, $n \ge 0$, $m \ge 0$

In the proposed system, three parties are involved in key exchange process. i.e

Key distribution center (KDC), source (A) and destination (B). If A wants to communicate with B using symmetric key encryption, a session must be created between them. A secret session key shared between and B is required for encryption of data in this session.

Main work:

In this paper, the total work is classified into Three parts:

Part-A: Introduce to define additive and multiplicative operations on Sets of Polygonal numbers.

Part-B: Introduce to generate Pythagorean Triple.

Part-A:

Introduce to study Additive and Multiplicative operations on Set of k-gonal numbers

Now, I can go to introduce to some inherent properties of Sets of Polygonal numbers. Now we can go to generate sets of numbers of square, pentagonal, Hexagonal, Heptagonal, and octagonal with using of Triangular number p(3, n-1). Also, by applying recursive results of Triangular numbers, generated k-gonal numbers are $\frac{n}{2}[(k-3)(n-1)+(n+1)]$ for some integers k > 2, $n \ge 0$.

We obtain following Polygonal numbers by replacing k as 3, 4, 5, 6, 7, 8.

For some positive integer n, the Triangular number is $\frac{n(n+1)}{2}$ (if k=3);

the square number is $n^2(if k = 4)$;

the Pentagonal number is $\frac{n(3n-1)}{2}$ (if k=5);

the Hexagonal number is n(2n-1) (if k=6);

the Heptagonal number is $\frac{n(5n-3)}{2}(if\ k=7)$; and

the octagonal number is n(3n-2)(if k=8).

Also, The formation of triangular numbers is 1,1+2,1+2+3,...etc. The formation of square numbers is 1,1+3,1+3+5,.....etc. It implies, successive addition of Arithmetic Progression the formation of Pentagonal numbers 1,1+4,1+4+7,....etc. it follows that k-gonal numbers

have having common difference k-2.

In particular, concerning addition (+), Binary operation of addition on Set of Polygonal numbers as follows

p(k,m)+p(k,n)=p(k,m+n)-(k-2)mn for some integers k>2, $n\geq 0$, $m\geq 0$. Also, concerning multiplication (*), Binary operation of multiplication on Set of Polygonal numbers as follows

$$p(k,m)*p(k,n)=p(k,mn)+rac{(k-4)(k-2)mn}{4}(m-1)(n-1)$$
 for some integers $k>2$, $n\geq 0$, $m\geq 0$.

Also, verified these properties are well defined for following Sets of Polygonal numbers by replacing k values for 3,4,5,6,7 and 8.

From Reference [1], Binary operations on a set of Triangular numbers are well defined That is $T_m + T_n = T_{m+n} - mn$, $T_m * T_n = T_{mn} - \frac{mn}{4} (n-1)(m-1)$. Now I can go to extend this property to all k-gonal numbers as follows:

Case 1: Now we can introduce an additive ('+') operation on a set of Triangular numbers as follows p(3,m) + p(3,n) = p(3,m+n) - mn

Table 1: Verification of additive operation on a Set of Triangular numbers:

m	n	p(3,m)	p(3,n)	p(3, m)	mn	p(3,m)	p(3,m+n)-mn
				+ n)		+p(3,n)	
1	2	1	3	6	2	4	4
2	3	3	6	15	6	9	9
4	5	10	15	45	20	25	25

Now we can introduce a multiplicative (**) operation on a Set of Triangular numbers as follows, for some positive integers a, b

$$p(3,m) * p(3,n) = p(3,mn) - \frac{mn}{4}(m-1)(n-1).$$

Table 2: Verification of multiplicative operation on a Set of Triangular numbers:

m	n	p(3, m)	p(3,n)	$\frac{mn}{4}(m-1)$ $(n-1)$	<i>p</i> (3, <i>mn</i>)	$p(3,mn)$ $-\frac{mn}{4}(m-1)$ $(n-1)$	p(3,m) * $p(3,n)$
2	3	3	6	3	21	21-3 =18	18
3	4	6	10	18	78	78-18 = 60	60
4	5	10	15	60	210	210-60 = 150	150
5	6	15	21	150	465	465-150 = 315	315

Now we can extend this methodology to remaining all other polygonal numbers.

Case 2: Now we can go to define two types of Operations on a Set of Square numbers as follows

 $S_n=n^2$, $S_m=m^2$ then addition (+) and multiplication (*) operation are defined as follows $S_n+S_m=S_{m+n}-2mn$ and $S_n*S_m=S_{mn}$.

Proof: Consider
$$S_{m+n}-2mn=(n+m)^2-2mn=n^2+m^2=S_m+S_n$$
. Hence $S_n+S_m=S_{m+n}-2mn$.

Table 3: Verification of additive operation on a Set of square numbers:

n	m	S_n	S_m	S_{n+m}	$S_{n+m}-2mn$	$S_n + S_m$
1	2	1	4	9	5	5
2	3	4	9	25	13	13
4	5	16	25	81	41	41

Again consider
$$S_n * S_m = n^2 \cdot m^2 = (nm)^2 = S_{nm}$$
. Hence $S_n * S_m = S_{nm}$.

Table 4: Verification of multiplicative binary operation on a Set of square numbers

n	m	S_n	S_m	S_{nm}	$S_n * S_m$
1	2	1	4	4	4
2	3	4	9	36	36
4	5	16	25	400	400

Under these operations, we can verify easily algebraic structure of $(S_n, *)$ is becomes as a Monoid, since this Nonempty Set is satisfying Closure axiom, Associate and Existence of Identity element is 1 concerning multiplication. Also, '*' is a binary operation on S_n . i.e Closure Axiom: $S_a * S_b = S_{ab} \in S_n$, for all $S_a \in S_n$, $S_b \in S_n$.

Associative axiom:
$$(S_a * S_b) * S_c = S_a * (S_b * S_c) = S_{abc}$$

Existence of identity: identity element $S_1 = 1 \in S_n$, such that $S_n * S_1 = S_1 * S_n = S_n$.

Hence $(S_{n},*)$ is becomes a Monoid.

Case 3: Now we can go to define two types of Operations on a Set of Pentagonal numbers as follows

$$P_n = p(5,n) = \frac{n(3n-1)}{2}$$
, $P_m = p(5,m) = \frac{m(3m-1)}{2}$ then additive (+), multiplicative (*) operations are defined as follows $P_n + P_m = P_{n+m} - 3mn$, $P_n * P_m = P_{nm} + \frac{3mn}{4}$ $(n-1)(m-1)$

Proof: Consider
$$P_{n+m} - 3mn = \frac{(n+m)(3(n+m)-1)}{2} - 3mn = \frac{3(n+m)^2 - (n+m) - 6mn}{2}$$
$$= \frac{n(3n-1)}{2} + \frac{m(3m-1)}{2} = P_n + P_m. \text{ Hence } P_n + P_m = P_{n+m} - 3mn$$

Table 5 : Verification of	additive operati	ion on a Set o	of Pentagonal	numbers:
----------------------------------	------------------	----------------	---------------	----------

n	m	P_n	P_m	P_{n+m}	$P_{n+m}-3mn$	$P_n + P_m = P_{n+m} - 3mn$
1	2	1	5	12	6	6
2	3	5	12	35	17	17
4	5	22	35	117	57	57

Again consider,
$$P_n * P_m - P_{nm} = \frac{n(3n-1)}{2} \frac{m(3m-1)}{2} - \frac{nm(3nm-1)}{2}$$
$$= \frac{nm}{2} \left[\frac{9nm-3n-3m+1}{2} - \frac{3nm-1}{1} \right] = \frac{3mn}{4} (n-1)(m-1)$$

Hence
$$P_n * P_m = P_{nm} + \frac{3mn}{4} (n-1)(m-1)$$
.

Table 6: Verification of multiplicative operation on a Set of pentagonal numbers:

n	m	P_n	P_m	$P_{nm} + \frac{3mn}{4} (n-1) (m-1)$	$P_n * P_m$
1	2	1	5	5	5
2	3	5	12	60	60
4	5	22	35	770	770

It follows that the above binary operations are well-defined.

Case 4: Now we can go to define two types of Operation on a Set of Hexagonal numbers as follows

 $Hx_n = n(2n-1)$, $Hx_m = m(2m-1)$ then additive (+), multiplicative (*) operations are defined as follows

$$Hx_n + Hx_m = Hx_{n+m} - 4mn$$
 and $Hx_n * Hx_m = Hx_{nm} + 2mn(m-1)(n-1)$.

Proof: Consider $Hx_n + Hx_m - Hx_{n+m}$

$$= n(2n-1) + m(2m-1) - (n+m)(2(n+m)-1) = -4mn$$
Hence $Hx_n + Hx_m = Hx_{n+m} - 4mn$.

Table 7: Verification of additive binary operation on a Set of Hexagonal numbers:

n	m	Hx_n	Hx_m	Hx_{n+m}	$Hx_{n+m} - 4mn$	$Hx_n + Hx_m$.
1	2	1	6	15	7	7
2	3	6	15	45	21	21
4	5	28	45	153	73	73

Again consider $Hx_n * Hx_m - Hx_{nm}$

$$= n(2n-1) m(2m-1) - mn(2mn-1)$$

$$= mn [(2n-1) (2m-1) - (2mn-1)] = 2mn(m-1)(n-1)$$
Hence $Hx_n * Hx_m = Hx_{nm} + 2mn(m-1)(n-1)$

Table 8: Verification of multiplicative operation on a Set of Hexagonal numbers:

n	m	Hx_n	Hx_m	$Hx_{nm} + 2mn(m-1)$	$Hx_n * Hx_m$
				(n - 1)	
1	2	1	6	6	6
2	3	6	15	90	90
4	5	28	45	1260	1260

Case 5: Now we can go to define two types of Operations on a Set of Heptagonal numbers as follows

 $Hp_n = \frac{n(5n-3)}{2}$, $Hp_m = \frac{m(5m-3)}{2}$ then additive (+), multiplicative (*) operations are defined as follows

$$Hp_n + Hp_m = Hp_{n+m} - 5mn$$
 and $Hp_n * Hp_m = Hp_{nm} + \frac{15mn}{4}(n-1)(m-1)$.
Proof: Consider $Hp_n + Hp_m - Hp_{n+m} = \frac{n(5n-3)}{2} + \frac{m(5m-3)}{2} - \frac{(n+m)(5(n+m)-3)}{2} = -5mn$
Hence $Hp_n + Hp_m = Hp_{n+m} - 5mn$

Table 9: Verification of additive operation on a Set of Heptagonal numbers:

n	m	Hp_n	Hp_m	Hp_{n+m}	$Hp_{n+m} - 5mn$	$Hp_n + Hp_m$.
1	2	1	7	18	8	8
2	3	7	18	55	25	25
4	5	34	55	189	89	89

Again consider

$$\begin{aligned} Hp_n*Hp_m - Hp_{nm} &= \frac{n(5n-3)}{2} \frac{m(5m-3)}{2} - \frac{mn(5mn-3)}{2} \\ &= \frac{nm}{2} \left[\frac{25nm-15n-15m+9}{2} - \frac{5nm-3}{1} \right] \\ &= \frac{15mn}{4} (n-1)(m-1) \\ \text{Hence } Hp_n*Hp_m &= Hp_{nm} + \frac{15mn}{4} (n-1)(m-1) \end{aligned}$$

Table 10: Verificat	tion of multiplicati	ve operation on a	a Set of Heptagona	l numbers
---------------------	----------------------	-------------------	--------------------	-----------

n	m	Hp_n	Hp_m	Hp_{nm}	$Hp_{nm} + \frac{15mn}{4}(n-1)(m-1)$	$Hp_n * Hp_m$
1	2	1	7	7	7	7
2	3	7	18	81	126	126
4	5	34	55	970	1870	1870

Case 6: Now we can go to define two types of Operations on a Set of Octagonal numbers as follows $O_n = n(3n-2)$, $O_m = m(3m-2)$ then additive (+), multiplicative (*) operations are defined as follows

$$O_n + O_m = O_{n+m} - 6mn$$
 and $O_n * O_m = O_{nm} + 6mn(m-1)(n-1)$

Proof: Consider
$$O_n + O_m - O_{n+m} = n(3n-2) + m(3m-2) - (n+m)(3(n+m) - 2) = -6mn$$
.

Hence $O_n + O_m = O_{n+m} - 6mn$.

Table 11: Verification of additive operation on a Set of Octagonal numbers :

n	m	O_n	O_m	O_{n+m}	$O_{n+m}-6mn$	$O_n + O_m = O_{n+m} - 6mn$
1	2	1	8	21	9	9
2	3	8	21	65	29	29
4	5	40	65	225	105	105

Again consider $O_n * O_m - O_{nm} = n(3n-2)m(3m-2) - nm(3nm-2)$

$$= mn [(3n-2) (3m-2) - (3mn-2)] = 6mn(m-1)(n-1)$$

Hence $O_n * O_m = O_{nm} + 6mn(m-1)(n-1)$.

Table 12: Verification of multiplicative operation on a Set of Octagonal numbers:

n	m	O_n	O_m	O_{nm}	$O_{nm} + 6mn(m-1)$	$O_n * O_m$	
					(n - 1)	$= O_{nm} + 6mn(m-1)(n-1)$	
1	2	1	8	8	8	8	
2	3	8	21	96	168	168	
4	5	40	65	1160	2600	2600	

Hence, by observation,

$$p(k,m) + p(k,n) = p(k,m+n) - (k-2)mn$$
 for some integer $k > 2$.

Also, concerning multiplication (*), $p(k,m) * p(k,n) = p(k,mn) + \frac{(k-4)(k-2)mn}{4}(m-1)$

1)(n-1) for some integer k > 2.

Case 7: summation of any two different k-gonal is $p(k_1, n) + p(k_2, n) = n(n + 1) + n(n + 1)$

$$\frac{n(n-1)}{2}[(k_1+k_2)-6].$$

Proof: we know that $p(k,n) = \frac{n}{2}[(k-3)(n-1) + (n+1)]$ for k > 2.

Consider

$$p(k_1,n) + p(k_2,n) = \frac{n}{2}[(k_1-3)(n-1) + (n+1)] + \frac{n}{2}[(k_2-3)(n-1) + (n+1)]$$

$$= n(n+1) + \frac{n(n-1)}{2}[(k_1+k_2) - 6] = 2T_n + [(k_1+k_2) - 6]T_{n-1}.$$

E. g: Verify above result by taking some values of n, k_1 , k_2 .

Let $k_1 = 4$, $k_2 = 5$ and n = 4. Hence $T_4 = 10$, $T_3 = 6$, $S_4 = 16$ and $P_4 = 22$ implies $S_4 + P_4 = 38$.

Also,
$$n(n+1) + \frac{n(n-1)}{2}[(k_1 + k_2) - 6] = 20 + 18 = 38.$$

Also,
$$2T_n + [(k_1 + k_2) - 6]T_{n-1} = 20 + 18 = 38$$

Part-B: Introduce to generate Pythagorean Triple.

Case1: to Generate a Pythagorean Triple (x_1, x_2, x_3) for each x_1 , there exists at least one x_2 and at least one x_3 , with $x_2 = \left| ax_1^2 - \frac{1}{4a} \right|$, $x_3 = \left| ax_1^2 + \frac{1}{4a} \right|$,

where
$$\mathbf{a} = \left\{ \begin{cases} \frac{1}{2p}, p \text{ is a factor of } x_1^2, if \ x_1 \text{ is an odd} \\ \left\{ \frac{1}{4p}, p \text{ is a factor of } \left(\frac{x_1}{2} \right)^2, if \ x_1 \text{ is an even} \right\} \end{cases}$$

Case 1.1: If x_1 is an odd

Consider $x_2 = \left| ax_1^2 - \frac{1}{4a} \right|$ since p is a factor of x_1^2 .

Therefore $x_1^2 = np$ where n is an integer

$$x_2 = \left| \frac{np}{2p} - \frac{1}{4\left(\frac{1}{2p}\right)} \right| = \left| \frac{n-p}{2} \right|$$
, both *n* and *p* odd numbers $\frac{n-p}{2}$ become an integer.

Similarly, $x_3 = \left| ax_1^2 + \frac{1}{4a} \right|$ since p is a factor of x_1^2 . Therefore

 $x_1^2 = np$ where *n* is an integer.

$$x_3 = \left| \frac{np}{2p} + \frac{1}{4\left(\frac{1}{2p}\right)} \right| = \left| \frac{n+p}{2} \right|$$
, both n and p odd numbers $\frac{n+p}{2}$ become an integer.

Hence (x_1, x_2, x_3) becomes a Pythagorean Triple.

Table 13: Some results are represented below:

x_1	Choose p (Factor of x_1^2)	$n = \frac{x_1^2}{p}$	$x_2 = \left ax_1^2 - \frac{1}{4a} \right $ $= \frac{n-p}{2}$	$x_3 = \left ax_1^2 + \frac{1}{4a} \right $ $= \frac{n+p}{2}$	(x_1, x_2, x_3)
3	1	9	4	5	(3,4,5)
15	1	225	112	113	(15,112,113)
15	3	75	36	39	(15,36,39)

Case 1.2: If x_1 is an even.

Consider $x_2 = \left| ax_1^2 - \frac{1}{4a} \right|$ since p is a factor of $\left(\frac{x_1}{2} \right)^2$.

There fore $x_1^2 = 4np$ where n is an integer. $x_2 = \left| \frac{4np}{4p} - \frac{1}{4\left(\frac{1}{4p}\right)} \right| = |n-p|$, both n and p are

integers, hence x_2 is also an integer. Similarly, $x_3 = \left| ax_1^2 + \frac{1}{4a} \right|$ since p is a factor of $\left(\frac{x_1}{2} \right)^2$.

Therefore $x_1^2 = 4np$ where n is an integer

$$x_3 = \left| \frac{np}{4p} + \frac{1}{4\left(\frac{1}{4p}\right)} \right| = |n+p|$$
, both n and p are integers, hence x_3 is also an integer.

Hence (x_1, x_2, x_3) becomes a Pythagorean Triple.

Table 14: Some results are represented below:

x_1	Choose p (Factor of $\left(\frac{x_1}{2}\right)^2$)	$n = \frac{x_1^2}{4p}$	$x_2 = \left ax_1^2 - \frac{1}{4a} \right $ $= n - p$	$x_3 = \left ax_1^2 + \frac{1}{4a} \right $ $= n + p$	(x_1, x_2, x_3)
4	1	4	3	5	(4,3,5)
6	3	3	0	6	(6,0,6)
6	1	9	8	10	(6,8,10)
8	1	16	15	17	(8,15,17)
8	2	8	6	10	(8,6,10)

Theorem 1: Generalisation of k-gonal numbers with using of triangular numbers is

 $\frac{n}{2}[(k-3)(n-1)+(n+1)]$ for k > 2. Successive Replacement of k values 3,4,5,....etc ,we obtain Triangular numbers, Square Numbers, Pentagonal numbers... etc.

Proof: We know that nth term of Triangular number $p(3, n) = \frac{n(n+1)}{2}$,

Also, generate all other Polygonal numbers with using of Triangular numbers as follows:

Square number $S_n = T_{n-1} + T_n$, Pentagonal number $P_n = T_{n-1} + S_n = 2T_{n-1} + T_n$

Hexagonal numbers $Hx_n = T_{n-1} + P_n = 3T_{n-1} + T_n$,

Heptagonal numbers $Hp_n = T_{n-1} + Hx_n = 4T_{n-1} + T_n$

Octagonal numbers $O_n = T_{n-1} + Hp_n = 5T_{n-1} + T_n$.

Hence, generalised k-gonal numbers $k_n = (k-3)T_{n-1} + T_n = \frac{n}{2}[(k-3)(n-1) + (n+1)]$ (if k>2).

Conclusion: In this paper proposed to generate some set of Polygonal numbers is

 $\frac{n}{2}[(k-3)(n-1)+(n+1)]$ for $k>2, n\geq 0$. Also, another form to generate k-gonal numbers is $\frac{(k-2)n^2-(k-4)n}{2}$ for $k>2, n\geq 0$. Also introduced Binary operations under addition and multiplication on a Set of Polygonal numbers as follows:

On a set of Triangular numbers $T_m + T_n = T_{m+n} - mn$,

$$T_m * T_n = T_{mn} - \frac{mn}{4} (n-1)(m-1).$$

On a Set of Square numbers $S_n + S_m = S_{n+m} - 2\sqrt{S_nS_m}$, $S_n * S_m = S_{nm}$.

On a Set of Pentagonal numbers $P_n + P_m = P_{n+m} - 3mn$,

$$P_n * P_m = P_{nm} + \frac{3mn}{4} (n-1)(m-1).$$

On a Set of Hexagonal numbers

$$Hx_n + Hx_m = Hx_{n+m} - 4mn$$
, $Hx_n * Hx_m = Hx_{nm} + 2mn(m-1)(n-1)$.

On a Set of Heptagonal numbers $Hp_n + Hp_m = Hp_{n+m} - 5mn$,

$$Hp_n * Hp_m = Hp_{nm} + \frac{15mn}{4}(n-1)(m-1).$$

On a Set of Octagonal numbers $O_n + O_m = O_{n+m} - 6mn$ and

$$O_n * O_m = O_{nm} + 6mn(m-1)(n-1).$$

particularly concerning addition, Binary operation of k-gonal numbers is

$$k_m + k_n = k_{m+n} - (k-2)mn.$$

Also, concerning multiplication, Binary operation of k-gonal numbers is

 $k_n*k_m=k_{nm}+\frac{(k-4)(k-2)mn}{4}(n-1)(m-1).$ And to generate a Pythagorean Triple (x_1,x_2,x_3) for each x_1 , there exists at least one x_2 and at least one x_3 , with $x_2=\left|ax_1^2-\frac{1}{4a}\right|$,

$$x_3 = \left| ax_1^2 + \frac{1}{4a} \right| \text{ where } a = \begin{cases} \left\{ \frac{1}{2p}, p \text{ is a factor of } x_1^2, if \ x_1 \text{ is an odd} \right. \\ \left\{ \frac{1}{4p}, p \text{ is a factor of } \left(\frac{x_1}{2} \right)^2, if \ x_1 \text{ is an even} \right. \end{cases}$$

References:

- [1]. Sridevi, K., & **Srinivas, T.** (2023). Transcendental representation of Diophantine equation and some of its inherent properties. *Materials Today: Proceedings*, *80*, 1822-1825.
- [2]. Sridevi, K., & **Srinivas, T.** (2023). Existence Of Inner Addition and Inner Multiplication On Set of Triangular Numbers and Some Inherent properties of Triangular Numbers. *Materials Today: Proceedings*, *80*, 1822-1825.
- [3]. Sridevi, K., & **Srinivas, T.** (2023). Cryptographic coding To Define Binary Operation on Set of Pythagorean Triples. *Materials Today: Proceedings*, *80*, 1822-1825.
- **[4]. Srinivas, T.**, & Sridevi, K. (2022). Transcendental representation of Diophantine Equation $x^n + y^n = z^n$ to Generate At most All Pythagorean and Reciprocal Pythagorean Triples. *JOURNAL OF ALGEBRAIC STATISTICS*, 13(2), 3600-3609.
- [5]. Sridevi, K., & **Srinivas, T**. (2022). Algebraic Structure Of Reciprocal Pythagorean Triples. Advances And Applications In Mathematical Sciences, Volume 21, Issue 3, January 2022, P.1315-1327© 2022 Mili Publications, India 0974-6803.
- [6]. Srinivas, T., & Sridevi, K. (2022, May). A New Approach to Define Length of Pythagorean Triples and Geometric Series Representation of Set of Pythagorean Triples. In *Journal of Physics: Conference Series* (Vol. 2267, No. 1, p. 012059).ISSN:1742-6596. IOP Publishing.
- [7]. Srinivas, T., & Sridevi, K. (2022, January). A new approach to define a new integer sequences of Fibonacci type numbers with using of third order linear Recurrence relations. In *AIP Conference Proceedings* (Vol. 2385, No. 1, p. 130005).ISSN 1551-7616.
- [8]. Srinivas, T., & Sridevi, K. (2021, November). A New approach to define Algebraic Structure and Some Homomorphism Functions on Set of Pythagorean Triples and Set of Reciprocal Pythagorean Triples " in JSR (Journal of Scientific Research), Volume 65, Issue 9, November 2021, Pages 86-92.ISSN: 0447-9483.

[9]. Sridevi, K., & Srinivas, T. (2020). A new approach to define two types of binary operations on set of Pythagorean triples to form as at most commutative cyclic semi group. *Journal of Critical Reviews*, 7(19), 9871-9878.

- [10]. SRINIVAS,. T. (2020). Proof Of Fermat's Last Theorem By Choosing Two Unknowns in the Integer Solution Are Prime Exponents. *pacific international Journal*, *3*(4), 147-151. ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03, issue number 03
- [11]. Srinivas, T. (2014). Transportation and its health implications in India. *Int. J. Eng. Res. Dev*, *10*(7), 67-73. ISSN 2349-6185
- [12]. Baggidi, P. R., Prasad, D. G., & **Srinivas**, **T**. (2013). Security enhancement in mobile ad hoc networks using non-zero noncooperative game theory. *International Journal of Research in Computer and Communication Technology*, *2*(8), 614-621.ISSN:2278-5841.
- [13]. Srinivas, T., & Bathul) S,(2013). Monotonicity, IJSR (Issn: 2277-8179)
- [14]. Srinivas, T., & Bathul S,(2013). Approximate Derivatives, IJSR (Issn:2277-8179)
- [15]. Srinivas, T., & Devi(2016) P. S. The Conventional Method of Optimizing Delivery Routes And Schedules.IJRCCT(2320-5156)
- [16]. Srinivas, T., & Devi,(2017) P. S Effective Ness And Illustration Of Distribution Systems And Supply Chain Management.IJECS(Issn:2319-7242))
- [17]. Srinivas T(2018), Taguchi Philosophy of Engineering Quality" in Pacific International Journal, ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03, issue number 03
- [18]. Srinivas T(2018), Financial Soundness Of Selected Indian Petroleum Companies Using Altman Z—Score Model in Pacific International Journal, ISSN 2616-4825 [Online] 2663-8991 [Print] Volume number 03, issue number 03.
- [19]. Srinivas, T., & Ashok Kumar. C (2024). Construction of Pythagorean and Reciprocal Pythagorean n-tuples in Accelerating Discoveries in Data Science and Artificial Intelligence II, Springer Proceedings in Mathematics & Statistics 438, https://doi.org/10.1007/978-3-031-51163-9 4
- [20]. Srinivas, T., & Sridevi, K(2024). A new approach to determine constant coefficients in higher order linear recurrence relations and repeated steps of their residues with mth integer modulo of some Fibonacci type numbers in 3rd International Conference on Functional Materials, Manufacturing, and Performances, AIP Conf. Proc. 2986, 030177-1–030177-9; https://doi.org/10.1063/5.0192504

Page No:880

[21]. Srinivas T(2023), Symmetric Key generation And Tree Construction in Cryptosystem based on Pythagorean and Reciprocal Pythagorean Triples in QEIOS, https://doi.org/10.32388/MTTDWD

- [22]. Srinivas T(2024), Additive and Multiplicative Operations on Set of Polygonal Numbers in QEIOS https://doi.org/10.32388/MY00LE
- [23].Srinivas T(2023), Some Inherent Properties of Pythagorean Triples in *Research Highlights in Mathematics and Computer Science Vol. 7*, 18 March 2023, Page 156-169 https://doi.org/10.9734/bpi/rhmcs/v7/18767D **Published:** 2023-03-18.
- [24] Srinivas, T. (2024). Construction of Pythagorean and Reciprocal Pythagorean n-tuples. Springer Proceedings in Mathematics and Statistics.
- [25] Srinivas, T. (2025). a book of Compact Mathematics for Undergraduate: Formulas & Identities-part I. BP international Publishers.
- [26]. Srinivas, T.(2025). A Study on Integer Design of Exponential Solutions of Diophantine Equations $\alpha(X^4+Y^4)^2=(C^2+D^2)(Z^2+W^2)^2P^\beta$ With $\alpha>0$, $\beta=1,2,3,4,5,6,7$ and x< y< w< z. International Journal of Advanced Research in Science, Engineering and Technology Vol. 12, Issue 10, October 2025.
- [27]. Srinivas, T.(2025). A Study on Integer Design of Exponential Solutions of Diophantine Equations $\alpha(X^4+Y^4)^2=(C^2+D^2)(Z^2-W^2)^2P^\beta$ With $\alpha>0$, $\beta=1,2,3,4,5,6,7$ and x< y< w< z. International Journal of Advanced Research in Science, Engineering and Technology Vol. 12, Issue 10, October 2025.
- [28]. Srinivas, T.(2025). A Study on Integer Design of Exponential Solutions of Diophantine Equations $\alpha(X^4+Y^4)^2=(C^2+D^2)(Z^2+W^2)$ P^{β} With $\alpha>0$, $\beta=1,2,3,4,5,6,7$ and x< y< w< z. International Journal of Advanced Research in Science, Engineering and Technology Vol. 12, Issue 10, October 2025.
- [29]. Srinivas,T.(2025). A Study On Integer Design Of Solutions Of Diophantine Equation $\alpha(X^4+Y^4)^2(2U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^{\beta}$ With $\alpha>0,\beta=1,2,3,4,5,6,7$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882. [30].
- [30]. Srinivas,T.(2025). A Study On Integer Design Of Solutions Of Diophantine Equation $\alpha(X^4+Y^4)^2(2U^2+V^2)=T^2(C^2+D^2)(Z^2+W^2)P^{\beta}$ With $\alpha>0,\beta=1,2,3,4,5,6,7$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-28

[31]. Srinivas,T.(2025). A Study On Integer Design Of Solutions Of Diophantine Equation $\alpha(X^4+Y^4)^2(3U^2+V^2)=T^2(C^2+D^2)(Z^2+W^2)P^{\beta}$ With $\alpha>0,\beta=1,2,3,4,5,6,7$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-28

- [32]. Srinivas,T.(2025). A Study On Integer Design Of Solutions Of Diophantine Equation $\alpha(X^4+Y^4)^2(2U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^{\beta}$ With $\alpha>0,\beta=1,2,3,4,5,6,7$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-28.
- [33]. Srinivas,T.(2025). A Study On Integer Design Of Solutions Of Diophantine Equation $\alpha(X^4+Y^4)(\gamma U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^\beta$ With α , $\beta>0$, $\gamma=2,3$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-28
- [34]. Srinivas,T.,G.Sujatha(2025). Solving For Stoichiometric Coefficients Of Chemical Diophantine Equation $\alpha(X^4+Y^4)^2(5U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^\beta$ With $\alpha>0,\beta=1,2,3,4,5,6,7$ and x< y< w< z, 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-28
- [35]. Srinivas,T.,G.Sujatha(2025), SOLVING FOR STOICHIOMETRIC OEFFICIENTS OF CHEMICAL DIOPHANTINE EQUATION $\alpha(X^4+Y^4)^2(5U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^\beta$ WITH $\alpha>0$, $\beta=1,2,3,4,5,6,7$ and x< y< w< z. International Research Journal of Modernization in Engineering Technology and Science Volume:07/Issue:11/November-2025.
- [36]. Srinivas, T., G. Sujatha (2025), Integer Design Of Solutions Of One Of The Complex Stoichiometric Reaction System $\alpha(X^4+Y^4)^2(21U^2+V^2)=T^2(C^2+D^2)(Z^2-W^2)P^\beta$ WITH $\alpha>0$, $\beta=1,2,3,4,5,6,7$ and x< y< w< z. YMER || ISSN: 0044-0477, Volume 24, issue 11. [37]. Srinivas, T (2025). A STUDY OF k-GONAL NUMBERS, Palestine Journal of Mathematics, Vol 14 (Special Issue IV), (2025), 1-17.
- [38]. Srinivas, T., K. Umadevi(2025), INTEGER DESIGN OF SOLUTIONS OF ONE OF THE DIOPHANTINE EQUATIONS $\alpha(\mathbf{X}^4 + \mathbf{Y}^4)(\mathbf{P}^2 + \mathbf{Q}^2 + \mathbf{R}^2 + \mathbf{S}^2) = (\mathbf{T}^2 + \mathbf{U}^2)(\mathbf{C}^2 \mathbf{D}^2)(\mathbf{Z}^2 \mathbf{W}^2)\mathbf{P}^\beta$ WITH X<Y<W<Z and P is ODD, $\alpha > 0$, $\beta > 0$. YMER || ISSN: 0044-0477, Volume 24, issue 11. [39]. Srinivas, T., K. Umadevi(2025), INTEGER DESIGN OF SOLUTIONS OF ONE OF THE DIOPHANTINE EQUATIONS $\alpha(\mathbf{X}^4 + \mathbf{Y}^4)(\mathbf{P}^2 + \mathbf{Q}^2 + \mathbf{R}^2 + \mathbf{S}^2) = (\mathbf{T}^2 + \mathbf{U}^2)(\mathbf{C}^2 \mathbf{D}^2)(\mathbf{Z}^2 + \mathbf{W}^2)\mathbf{P}^\beta$ WITH X<Y<W<Z and P is ODD, $\alpha > 0$, $\beta > 0$. International Research Journal of Modernization in Engineering Technology and Science Volume:07/Issue:11/November-2025.