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Abstract:

Key generation and Secure is critical to the security of a Cryptosystem. In fact, key generation
and key exchange is the most challenging part of cryptography. In this paper, a scheme for
symmetric key generation based on Polygonal numbers and Pythagorean triples has been

presented. i.e, focus on generating symmetric keys with using of k-gonal numbers P (k, n) is

g [((k—3)(n—1)+ (n+1)] for k > 2,n > 0 and to Generate a Pythagorean Triple
( x1, X2, x3) for each x4,there exists at least one x, and at least one x5 , with

1 . . .
—,pisafactor ofxz,fo is an odd
1 1 2p 1 1
Xy = |ax% _E| , X3 = |ax12 +E| ,where a =

{ﬁ, p is a factor of (%)2 ,if x; is an even .
Also, introduce to define additive (+) and multiplicative (*) operations on Sets of k-gonal
numbers as follows;

p(k,m) + p(k,n) = p(k,m +n) — (k — 2)mn forsome integersk >2,n=>0.

(k—4)(k—2)mn (

p(k,m) «p(k,n) = p(k,mn) + 2

m-1)(n—1)
forsome integers k>2,n>0m=>0.
Keywords: Polygonal number, Triangular numbers, Residues, Non- Residues, k-gonal
numbers.
Introduction:
Key generation and Secure is critical to the security of a Cryptosystem. In fact key generation

and key exchange is the most challenging part of cryptography. In this paper, a scheme for

symmetric key generation based on Polygonal numbers has been presented. The proposed
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scheme incorporates a Key Distribution center (KDC) for user authentication and secure
exchange of secret information to generate keys. The KDC operation involves a request from
a user for initiation. The KDC authenticates authenticate and secure exchange of secret
information to generate keys. The KDC authenticates the initiator. If the authentication is
successful, KDC generates and sends an encrypted timestamp to both the initiator and
responder. The proposed system is based on a novel mechanism to determine Polygonal
numbers to generate keys. The formula uses factors of x to generate y and z such thatx , y, z

satisfy the Pythagorean theorem.

Casel:The following notation has been used to Pythagorean triple calculation
x- input to calculate Pythagorean triple

p; - First prime factor of x, p, - Second Prime factor of x

2_.,2 24 2 1
_|x pml and z= |x2_ppl| the final key is
1 1

y and z — Key Pair, Suppose, If x is odd then y
computed by XORingyand z. i.e.p=y ® z.
Case 2: The following notation has been used to k-gonal calculation

x- choose some non- negative integers k, m, n as input to calculate polygonal number

y and z — Key Pair with using of addition and multiplication binary operation on a Set of

Polygonal numbers,
y=pk,m)+pkn) =plkm+n)—(k—2)mn

forsome integersk >2,n > 0,m > 0 and

(k—4)(k—2)mn (

: m-1)(n—1)

z=p(k,m) * p(k,n) = p(k,mn) +
forsome integers k >2,n>0,m=>0

In the proposed system, three parties are involved in key exchange process. i.e

Key distribution center (KDC), source (A) and destination (B). If A wants to communicate
with B using symmetric key encryption, a session must be created between them. A secret

session key shared between and B is required for encryption of data in this session.
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Main work:
In this paper, the total work is classified into Three parts:
Part-A: Introduce to define additive and multiplicative operations on Sets of Polygonal
numbers.
Part-B: Introduce to generate Pythagorean Triple.
Part-A:
Introduce to study Additive and Multiplicative operations on Set of k-gonal numbers
Now, I can go to introduce to some inherent properties of Sets of Polygonal numbers. Now
we can go to generate sets of numbers of square, pentagonal, Hexagonal, Heptagonal, and

octagonal with using of Triangular number p(3,n — 1). Also, by applying recursive results of

Triangular numbers, generated k-gonal numbers are = [(k — 3)(n — 1) 4+ (n + 1)] for some
g g g :

integersk>2,n>0,.

We obtain following Polygonal numbers by replacing k as 3,4 ,5 ,6 ,7 ,8.

n(n+

S (if ke = 3);

For some positive integer n, the Triangular number is

the square number is n?(if k = 4);

the Pentagonal number is n(3121—1) (if k =5);

the Hexagonal numberis n(2n — 1) (if k = 6);

n(5n—
2

the octagonal numberis n(3n — 2)(if k = 8).

3 (if k = 7); and

the Heptagonal number is

Also, The formation of triangular numbers is 1,1+2,1+2+3,...etc. The formation of square
numbers is 1,1+3,1+3+5,...... etc. It implies, successive addition of Arithmetic Progression

the formation of Pentagonal numbers1,1+4,1+4+7,....etc. it follows that k-gonal numbers

have having common difference k-2.

In particular, concerning addition (+), Binary operation of addition on Set of Polygonal
numbers as follows

p(k,m) + p(k,n) = p(k,m +n) — (k — 2)mn forsome integersk >2,n>0,m=>0.
Also, concerning multiplication (*), Binary operation of multiplication on Set of Polygonal

numbers as follows

(k—4)(k—2)mn
4

p(k,m) = p(k,n) = p(k, mn) + (m — 1)(n — 1) forsome integers

k>2n>0m=>0.
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Also, verified these properties are well defined for following Sets of Polygonal numbers by

replacing k values for 3,4,5,6,7 and 8.

From Reference [1], Binary operations on a set of Triangular numbers are well defined

That is Ty + Ty, = Topen — M, Ty * Tn = Ty —

extend this property to all k-gonal numbers as follows:

% (n—1)(m — 1). Now I can go to

Case 1: Now we can introduce an additive ('+’) operation on a set of Triangular numbers

as follows p(3,m) + p(3,n) = p(3,m+n) —mn

Table 1: Verification of additive operation on a Set of Triangular numbers:

m| n |p3m) | p3,n)| p8m | mn p(3,m) p(3,m+n) —mn
+n) +p(3,n)

1 2 1 3 6 2 4 4

2 3 3 6 15 6 9 9

4 5 10 15 45 20 25 25

Now we can introduce a multiplicative (“*’) operation on a Set of Triangular numbers as

follows, for some positive integers a, b

p(3,m) * p(3,m) = p(3,mn) - 2= (m — D(n - 1.

Table 2: Verification of multiplicative operation on a Set of Triangular numbers:

m | n [ p@m) [ p@n) [ M Tp@Emn)| p3mn) p(3,m)
4(n ~1) G m-n | PG
(n—-1)
23| 3 6 3 21 213 =18 18
304 6 10 18 78 78-18 = 60 60
415 10 15 60 210 210-60 = 150 150
5|6 15 21 150 465 | 465-150=315 315

Now we can extend this methodology to remaining all other polygonal numbers.

Case 2: Now we can go to define two types of Operations on a Set of Square numbers as

follows

S, = n?, S,, = m? then addition (+) and multiplication (*) operation are defined as follows

Sy + S = Smen — 2mnand S, * Sy = Sy
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Proof: Consider S;p4y, — 2mn = (n+m)? —2mn=n* +m? =5, + S,.
Hence S,, + S, = Sisn — 2mn.

Table 3: Verification of additive operation on a Set of square numbers:

n m| §, Sm Snim Sn+m — 2mn SntSm
1|2 1 4 9 5 5
2 13 4 9 25 13 13
4 |5 16 25 81 41 41

Again consider S,, * S, = n2.m? = (nm)? = S,,,,.Hence S,, * S;, = Spm-

Table 4: Verification of multiplicative binary operation on a Set of square numbers

n m Sn Sm Som Sn*Sm
1 2 1 4 4 4

2 3 4 9 36 36

4 5 16 25 400 400

Under these operations, we can verify easily algebraic structure of (S,,*) is becomes as a
Monoid, since this Nonempty Set is satisfying Closure axiom, Associate and Existence of
Identity element is 1 concerning multiplication. Also, ‘*’ is a binary operation on S,.
1.e Closure Axiom:S, * S, = S, € S, ,forall S, € 5,5, € S,
Associative axiom: (S, *S8p) *S. = S * (Sp *Sc) = Sape

Existence of identity: identity element §; = 1 € S,,,such that §,, *$; =51 * S, = S,.
Hence (S,,*) is becomes a Monoid.
Case 3: Now we can go to define two types of Operations on a Set of Pentagonal numbers as
follows

b =p(G,n) =

n(3n-1)
2

_ m(3m-1)

, bmn = p(5,m) then additive (+), multiplicative (*)

operations are defined as follows P, + B, = Py — 3mn, B, x Py, = Py + % (n—

H(m—-1)

- 2_ -
Proof: Consider P, ,,, — 3mn = (n+m)(3(2n+m) D 3mn = 3ntm) (:+m) omn
—nGn1) | mGmoD) P, + P,,.Hence P, + B,, = Py ;y — 3mn

2 2
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n m P, P, Poim Py im — 3mn P,+P, =P,y —3mn
1 2 1 5 12 6 6
2 3 5 12 35 17 17
4 5 22 35 117 57 57

Again consider, P, * By, — Py, =

3mn

n(3n-1) m(3m-1) _ nm(3nm-1)

2

_nm

2

onm-3n-3m+1

2

3nm-1, 3mn

_2[

2

Hence P, * P,, = By + Y n—=1)(m-1).

Table 6: Verification of multiplicative operation on a Set of pentagonal numbers:

1 ] 4

(n-Dm-1)

n | m | P | B an+3’77" (n—1) (m—1) P, * Py,
1| 2 1 5 5 5

2 | 3 5 12 60 60

4 |5 | 22 35 770 770

It follows that the above binary operations are well-defined.

Case 4: Now we can go to define two types of Operation on a Set of Hexagonal numbers as

follows

Hx, =n(2n—1), Hx, = m(2m — 1) then additive (+), multiplicative (*) operations are

defined as follows

Hx, + Hx,, = Hxyy;, — 4mn and Hx,, * Hx,, = Hxp,y, + 2mn(m — 1)(n — 1).

Proof: Consider Hx,, + Hx,;, — Hx;4m,

=n(2n—-1)+mC2m—-1)—(n+m)Qn+m)—1) =-4mn

Table 7: Verification of additive binary operation on a Set of Hexagonal numbers:

Hence Hx,, + Hx,, = Hx, 1, — 4mn.

n m Hx, | Hx, | HXpom | HXpym — 4mn Hx, + Hx,,.
1 2 1 6 15 7 7
2 3 6 15 45 21 21
4 5 28 45 153 73 73

Again consider Hx,, * Hx,,, — Hxp,
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=n(2n—1)m(2m—-1) —mn(2mn — 1)
=mn[2n-1)(2m-1)-C2mn—-1)] =2mn(m—-1)(n—-1)
Hence Hx,, * Hx,, = Hxppy + 2mn(m —1)(n—1)

Table 8: Verification of multiplicative operation on a Set of Hexagonal numbers:

n m Hx, | Hxp Hxppy + 2mn(m — 1) Hx, * Hx,,
(n—1)

1 2 1 6 6 6

2 3 6 15 90 90

4 5 28 45 1260 1260

Case 5: Now we can go to define two types of Operations on a Set of Heptagonal numbers as

follows
n(sn-3) m(5m-3) .. .. . .
Hp, = S Hp,, = ——— then additive (+), multiplicative (*) operations are defined as
follows
Hpn + Hpy = Hppym — Smn and Hpy, * Hpy = Hppyn + e (n—1D(m-1).

4

n(5n-3) + m(5m-3) _ (n+m)(5(n+m)-3) _

Proof: Consider Hp, + Hpy — Hppym = — . .

-Smn

Hence Hp,, + Hp,, = Hppym — Smn

Table 9: Verification of additive operation on a Set of Heptagonal numbers:

n m Hp, | Hpom | Hopem | HPpym — 5mn Hp, + Hp,, .
1 2 1 7 18 8 8
2 3 7 18 55 25 25
4 5 34 55 189 89 89

Again consider

n(n—-3) m(5Gm —-3) mn(5mn—3)
2 2 - 2
nm 25nm —15n—-—15m+9 5nm—3
-2 2 T

m—1D(m-1)

Hpy * Hpyy — Hpp =

= 1?% (n—1)(m — 1)Hence Hp,, * Hp;, = Hppm +

15mn
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Table 10: Verification of multiplicative operation on a Set of Heptagonal numbers
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n | m | Hpy |Hpm | Hbpm Hppym + 222 (n— 1) (m — 1) Hpr, * Hpm
121 | 7 7 7 7

2 3 7 [ 18] sl 126 126
415 34 [ 55 | 970 1870 1870
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Case 6: Now we can go to define two types of Operations on a Set of Octagonal numbers as
follows 0, = n(3n —2), 0,, = m(3m — 2) then additive (+), multiplicative (*) operations
are defined as follows

O, + 0, =0pyy —6mnand 0, *x 0,, = Oppy + 6M(M —1)(n — 1)

Proof: Consider 0, + 0, — Opyyy = n(Bn—-2)+m@Bm—-2)—(n+m)(3(n+m) —
2) = —6mn.

Hence O,, + 0, = O, 41y — 6MN.

Table 11: Verification of additive operation on a Set of Octagonal numbers :

n m 0, Om Onsm Onym — 6MN O+ 0p = Opyy — 6MN
1 2 1 8 21 9 9

2 3 8 21 65 29 29

4 5 40 65 225 105 105

Again consider O, * 0,, — Opy, = n(3n — 2)m(3m — 2) — nm(3nm — 2)
=mn[B3n—-2)(3m—-2) - Bmn—-2)] =6mn(m—-1)(n—-1)

Hence O,, * 0, = Oy, + 6mn(m — 1)(n — 1).

Table 12: Verification of multiplicative operation on a Set of Octagonal numbers:

n|mj| 0, | Op Onm Opm + 6mn(m — 1) 0,, * O,
n-1) = Oy +6mn(m—1)(n—1)
1 2 1 8 8 8 8
2 3 8 21 96 168 168
4 |5 40 65 1160 2600 2600

Hence, by observation,

p(k,m) + p(k,n) = p(k, m + n) — (k — 2)mn forsome integer k > 2.
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(k—4)(k-2)mn (m .

Also, concerning multiplication (*), p(k,m) * p(k,n) = p(k,mn) + .

1)(n — 1) forsome integer k > 2.

Case 7: summation of any two different k-gonal is p(kq,n) + p(ky,n) =n(n+ 1) +

n(n-1)
2

Proof: we know that p(k,n) = g [(k—3)(n—1)+ (n+1)] fork> 2.

[(ky + k2) — 6].

Consider
p(ky,n) + p(ky,n) = 2[(k1 -3)(n-1)+ (n+1)] +§[(kz -3)(n—-1)+ (n+1)]
—nm+1) + 22V [(ky + ky) — 6] = 2T, + [(ky + ky) — 6]T,_1.

2
E. g: Verify above result by taking some values of n, kq, k.

Letky =4,k, =5and n =4. Hence T, = 10,T; = 6,5, = 16 and P, = 22 implice
54_ + P4_ = 38.

n(n-1)
2

Also,n(n+ 1) + [(ky + k,) —6] =20+ 18 = 38.

Als0,2T, + [(ky + ky) — 6]T,_, = 20 + 18 = 38

Part-B: Introduce to generate Pythagorean Triple.

Casel: to Generate a Pythagorean Triple ( x4, x5, x3) for each x;,there exists at least one x,

_ 2 1
, X3 = |0Lx1 +E| ,

: 1
and at least one x5 , with x, = |axf — 4—a|

1 . . .
{5, p is a factor of x2,if x, is an odd

where a = L o\ 2

—,pisafactorof |—=) ,if x, is an even

o factor of 21 1
Casel.1: If x4 is an odd

) 1] . )

onsider x, = [ax{ — —]| since p is a factor of x7.

Consider x, = |ax? ” p factor of x?

Therefore x? = np where n is an integer

np 1
2p 4(%)

X, = = |%|, both n and p odd numbers nz;p become an integer.

. 1] . :

Similarly, x3 = |axf + E| since p is a factor of x7. Therefore
2 _ h . .

xi = np where n is an integer.

ne, 1 | _ [rtP
2p+4(%) |2

Hence ( x4, x5, x3) becomes a Pythagorean Triple.

X3 = |, both n and p odd numbers nzﬂ become an integer.
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Table 13: Some results are represented below:
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h 2 1
afCoosep T AT o T g e 4] [Carme
(Factor of x#) p
_n-p _n+p
2 -2
3 1 9 4 5 (3,4,5)
15 |1 225 112 113 (15,112,113)
15 |3 75 36 39 (15,36,39)
Case 1.2: If x4 is an even.
2
Consider x, = |ax1 — —| since p is a factor of( > ) .
There fore x? = 4np where n is an integer.x, = ?—; ~3 (l) = |n — p|, both n and p are
4p
2
integers, hence x; is also an integer. Similarly, x3 = |ax1 —| since p is a factor of( ) .

Therefore x? = 4np where n is an integer

X3=

1
w D)

Hence ( x4, x5, x3) becomes a Pythagorean Triple.

Table 14: Some results are represented below:

= |n + p|, both n and p are integers, hence x5 is also an integer.
p p g 3 g

X4 Choose p y =% X, = |ax1 , 1 Xy = |ax12 + i| (X1, X2, X3)
(Factorof(%)) =n—p4 =n+p4a

4 1 4 3 5 (4,3,5)

6 3 3 0 6 (6,0,6)

6 1 9 8 10 (6,8,10)

8 | 16 15 17 (8,15,17)

8 2 8 6 10 (8,6,10)
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Theorem 1: Generalisation of k-gonal numbers with using of triangular numbers is

%[(k —3)(n—1) + (n+ 1)] for k> 2. Successive Replacement of k values 3,4,5,....etc ,we

obtain Triangular numbers, Square Numbers, Pentagonal numbers... etc.

n(n+1)
2 b

Proof: We know that n™ term of Triangular number p(3,n) =

Also, generate all other Polygonal numbers with using of Triangular numbers as follows:
Square number S,, = T,,_; + T, Pentagonal number B, =T,,_1 + S, =2T,,_1 + T,
Hexagonal numbers Hx,, = T,,_1 + P, = 3T,_1 + T,

Heptagonal numbers Hp,, = T,_1 + Hx,, = 4T,_1 + T},

Octagonal numbers 0, = T,_1 + Hp,, = 5T,_1 + T},.

Hence, generalised k-gonal numbers k, = (k—3)T,,_1 + T, = %[(k -3(n-D+Mn+
1)] (ifk>2).

Conclusion: In this paper proposed to generate some set of Polygonal numbers is

%[(k —3)(n—1)+n+1)] fork>2,n=0. Also, another form to generate k-gonal

(k-2)n?—(k—4)n

numbers is for k >2, n = 0.Also introduced Binary operations under addition

and multiplication on a Set of Polygonal numbers as follows :

On a set of Triangular numbers T,, + T;, = T4, — Mn,
mn
Tn * Ty = Tinn — 4 (n—1(m-1).

On a Set of Square numbers Sy, + S, = Spam — 24 SnSms Sn * Sm = Sum-

On a Set of Pentagonal numbers P, + P, = Py, — 3mn,

3mn

B, *x P, = an+T n—1(m-1).
On a Set of Hexagonal numbers
Hx, + Hx,, = Hxp, .y, — 4mn, Hx, * Hx,, = Hxpp, + 2mn(m —1)(n — 1).

On a Set of Heptagonal numbers Hp,, + Hp,, = Hppim — Smn,

15mn

Hpy * Hpy = Hppm + (n—1(m-1).

On a Set of Octagonal numbers 0,, + 0,, = 0,4, — 6mn and

Op * Oy = Oy + 6Mn(m — 1)(n — 1).

particularly concerning addition, Binary operation of k-gonal numbers is
ki + kn = kypyn — (k — 2)mn.

Also, concerning multiplication, Binary operation of k-gonal numbers is
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(k—4)(k—-2)mn (

e * e = Jegm + =

n—1)(m—1). And to generate a Pythagorean Triple (

. . 1
X1, X5, x3) for each x;,there exists at least one x, and at least one x5 , with x, = |axf - E| ,

1. . :
. {5, p is a factor of x2, if x, is an odd
X3 = |axf + E| ,where a =

2 .
. X1 . .
{E' p is a factor of (?) ,if x4 is an even
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