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Abstract 
 

In this paper, we consider a smooth equilibrium solution (𝑢0, 𝑝0, 𝜏0) of the Boussinesq 

Equations on an infinite strip(𝛺 =  ℝ ×] −
1

2
,

1

2
[). 

We examine the analysis presented in [3] to investigate whether similar simplifications 

to those found in [8] and [1] can be achieved by reducing the spatial domain from the 

infinite plate 𝛺 =  ℝ2 ×] −
1

2
,

1

2
[to the infinite strip 𝛺 =  ℝ ×] −

1

2
,

1

2
[. 
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1. Notations 

 
Congratulations! Your paper has been accepted for journal publication. Please follow 

the steps outlined below when submitting your final draft to  

For 𝑋, 𝑌 Banach spaces, ∥ . ∥𝑋 , ∥ . ∥𝑌  are their respective norms. 𝐿(𝑋, 𝑌) is the space of 

bounded operators from 𝑋 to 𝑌 with ∥ 𝑇 ∥ the operator norm. 

For 𝐴 a linear operator on 𝑋 and 𝐸 ⊆  𝑋 a subspace, 𝐴 |𝐸 is the restriction of 𝐴 to 𝐸. 

For any Ω, 𝐻𝑃(Ω) is the Sobolev space of functions having square integrable derivatives 

up to order 𝑝 with (. , . )𝑝 and ∥ . ∥𝐻𝑃(Ω) the usual scalar product and norm on 𝐻𝑃(Ω) . We 

set ℒ2(Ω)  =  𝐻0(Ω) and ∥ . ∥𝐻𝑃=∥ . ∥𝐻𝑃(Ω)  and extend this notation to vectors and set : 

∥ 𝑢 ∥ℒ2
2 =∥ 𝑢1 ∥ℒ2

2 +∥ 𝑢2 ∥ℒ2
2 +∥ 𝑢3 ∥ℒ2

2                                      (1.1) 

    

where 𝑢 = (𝑢1 , 𝑢2, 𝑢3) ∈  (ℒ2(𝛺))
3
, Likewise with the Sobolev norms. The scalar 

product on (𝐻𝑃(Ω))3 is ⟨. , . ⟩𝑝, with : 

〈𝑢, 𝑣〉𝑝 = ∑(𝑢𝑖, 𝑣𝑖)𝑝

3

𝑖=1

, 𝑢𝑖, 𝑣𝑖 ∈ 𝐻𝑝(Ω)                                        (1.2) 

where 𝑢 = (𝑢1, 𝑢2, 𝑢3), ; 𝑣 = (𝑣1, 𝑣2, 𝑣3) we set 〈. , . 〉 = 〈. , . 〉0. 

𝐶𝑝(𝛺) is the space of functions 𝑝 times continously differentiable on 𝛺 and 𝐶0
𝑝(𝛺) is 

the space of functions 𝑓 ∈ 𝐶𝑝(𝛺) with 𝑠𝑢𝑝𝑝(𝑓) compact. 
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2. Introduction 
 

The Boussinesq equations describe the flow of an incompressible fluid under buoyancy 

forces due to temperature differences. In this simplified setup, we consider a 2𝐷 infinite 

strip with horizontal periodicity and vertical boundary conditions. Our purpose is to 

determine the stability of the equilibrium solution. 

For this we investigate the stability of equilibrium solutions to the Boussinesq equations 

in an infinite strip heated from below. The equilibrium solutions are assumed to be 

spatially periodic in the 𝑥 −direction. While the periodic case has been well-studied, the 

stability analysis differs significantly for non-periodic perturbations. We primarily analyze 

disturbances belonging to the space ℒ2(𝛺)  in the 𝑥 −direction. We systematically 

compare the stability properties under both periodic and non-periodic (ℒ2) perturbations, 

characterizing their fundamental relationship. 

In this paper, we study the stability of certain equilibrium solutions of the Bénard 

equations given by: 

{
𝜕𝑡𝑢 = 𝜈∆𝑢 − ∇𝑝 − 𝑔(1 − 𝛼(𝑇 − 𝑡0))𝑗 − (𝑢. ∇)u,

𝜕𝑡𝑇 = 𝜅∆𝑇 − (𝑢. ∇)𝑇,                          𝑤𝑖𝑡ℎ ∇. u = 0
                      (2.1) 

 

on the infinite strip domain Ω =  ℝ ×] −
1

2
,

1

2
[. Here, 𝑢 denotes the velocity field, 𝑝 the 

pressure, and 𝑇 the temperature. The constants are as follows: 𝑔 is the gravitational 

acceleration, 𝛼 > 0 is the thermal expansion coefficient, and 𝑗 = (0, 1) is the unit vector 

in the vertical direction. The parameters 𝜈 and 𝜅 represent the kinematic viscosity and 

thermal conductivity, respectively. 

We impose Dirichlet boundary conditions on the velocity field: 𝑢 = 0 on 𝜕𝛺. For the 

temperature, we assume fixed boundary values: 𝑇 (𝑥, −
1

2
) =  𝑡0 and 𝑇 (𝑥,

1

2
) = 𝑡1, 

where 𝑡0 >  𝑡1. 

Our focus is on equilibrium solutions (𝑢0, 𝜏0, 𝑝0) of system (2.1) that are sufficiently 

smooth on 𝛺, satisfy the given boundary conditions, and are periodic in the horizontal 

direction 𝑥 with period 𝐿, a property we refer to as 𝐿 −periodicity. 

We investigate the stability of such equilibria from two perspectives: 

1. Under small perturbations 𝑢 − 𝑢0, 𝑇 – 𝜏0, 𝑝 − 𝑝0 that are also 𝐿 −periodic and 

satisfy the same boundary conditions.  

2. Under general perturbations u,T,p which satisfy the same boundary conditions, but 

for which the differences satisfy: 

 

𝑢 − 𝑢0, 𝛻(𝑝 − 𝑝0) ∈ (ℒ2(𝛺))
2

, 𝑎𝑛𝑑 𝑇 − 𝜏0 ∈  ℒ2(𝛺). 
 

3. Preliminaries and Main Results 
 

We now summarize key results from [1, 8] that will be essential for our subsequent 
analysis. 

Consider an arbitrary but fixed 𝐿 −periodic equilibrium solution (𝑢0, 𝜏0, 𝑝0) of system 
(2.1), as introduced previously. To examine the stability of this solution under both 
𝐿 −periodic and ℒ2(𝛺)  perturbations, we introduce the substitutions: 

𝑢 =  𝑢0 + 𝑣, 

𝑇 =  𝜏0 + 𝜗, 
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𝑝 =  𝑝0 + 𝜋. 

After straightforward (non-scaled) computations, these substitutions yield the 
following system of equations: 

 

{
𝜕𝑡𝑣 = 𝜈∆𝑣 − (𝑢0. ∇)𝑣 − (𝑣. ∇)𝑢0 − ∇𝜋 − 𝛼𝑔𝜗𝑗,

𝜕𝑡𝑇 = 𝜅∆𝜗 − (𝑢0. ∇)𝜗 − (𝑣. ∇)𝜏0 − (𝑣. ∇)𝜗         
                      (3.1) 

Subject to the conditions ∇𝜗 = 0 and 𝑣 = 𝜗 = 0 on 𝜕𝛺, equation (3.1) requires an 

appropriate functional framework, depending on the type of stability under consideration. 

In the case of ℒ2(𝛺) −stability, the relevant concepts are as follows: 

We define the space 𝐸 ⊆ (ℒ2(𝛺))2 of divergence-free vector fields as the closure in 

(ℒ2(𝛺))2  of the set of smooth, compactly supported vector fields that are divergence-

free, i.e., 

𝐸 =  𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑖𝑛 (ℒ2(𝛺))2  𝑜𝑓 𝑎𝑙𝑙 𝑓 ∈  𝐻0
1(𝛺)2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∇ · 𝑓 = 0.         (3.2) 

We denote by 𝑃 be the orthogonal projection from (ℒ2(𝛺))2 onto the subspace 𝐸 and 
define the extended projection 𝒫 on (ℒ2(𝛺))3  by: 

                                     𝒫(𝑣, 𝜗) = (𝑃𝑣, 𝜗);   𝑣 ∈ (ℒ2(𝛺))
2

, 𝜗 ∈  ℒ2(𝛺)                            (3.3) 

Where (𝑣, 𝜗) represents the triplet (𝑣1, 𝑣2, 𝜗) for 𝑣 =  (𝑣1, 𝑣2). The Stokes operator 
𝐴𝑆 on 𝐸 is defined by 

                                  
𝑣 ∈ dom(𝐴𝑠) iff 𝑣 ∈ (𝐻2(Ω) ∩ 𝐻0

1(Ω))2and

div 𝑣 = 0 and 𝐴𝑆𝑣 = 𝜈𝑃∆𝑣 for such 𝑣
                                (3.4) 

Finally, we define an operator 𝐵𝑆 on the product space 𝐸 × ℒ2(𝛺) in terms of 𝐴𝑆 

                                  
(𝑣, 𝜗) ∈ dom(𝐵𝑆) iff  𝑣 ∈ dom(𝐴𝑠), 𝜗 ∈ 𝐻2(Ω) ∩ 𝐻0

1(Ω)

and 𝐵𝑆(𝑣, 𝜗) = (𝐴𝑆𝑣, 𝜅∆𝜗) for such (𝑣, 𝜗)
         (3.5) 

The properties of 𝐴𝑆 are thoroughly examined in [1],[8], with their extension to 𝐵𝑆 
developed in [6], Section VIII. These analyses reveal that both 𝐴𝑆 and 𝐵𝑆 are self-adjoint 
operators on their respective domains 𝐸 and 𝐸 × ℒ2(𝛺). Furthermore, they satisfy the 
conditions 𝐴𝑆 ≤ −𝜖 and 𝐵𝑆 ≤ −𝜖 for some 𝜖 > 0. To complete our formulation, we 
must incorporate the additional linear terms from (3.1), which we accomplish by 
defining: 

                                 
𝑇0𝑣 = −(𝑣. ∇)𝑢0 − (𝑢0. ∇)𝑣

𝑇1(𝑣, 𝜗) = (𝑇0𝑣 + 𝛼𝑔𝜗𝑗, −(𝑢0. ∇)𝜗 − (𝑣. ∇)𝑢0
                          (3.6) 

If we supply (3.6) with the stipulation: 

                                          dom(𝑇0) = 𝐻1(Ω)2,    dom(𝑇1) = 𝐻1(Ω)2                          (3.7) 

And 𝑁 is no-linear operator defined on 𝐸 by 𝑁(𝑣, 𝜗) = (0, −𝑣∇𝜗). 

Under these conditions 𝑇1 becomes an operator that is bounded relative to 𝐵𝑆 ( [9], pg. 
190, [4] , [8], [6] sect. VIII). Consequently, the operator 𝐵𝑆 + 𝒫𝑇1 generates a 
holomorphic semigroup on 𝐸 × ℒ2(𝛺). The main result derived in [8] on the basis of [4] 
, [1] and [5], establishes: 

(a) If 𝜎(𝐵𝑆 + 𝒫𝑇1) ⊆ {𝜆/ 𝑅𝑒(𝜆)  ≤  −𝜖} for some 𝜖 > 0, then the equilibrium 
solution 𝑢0, 𝜏0, 𝑝0 is Ljapounov stable; 

(b) If there exists 𝜆 ∈ 𝜎(𝐵𝑆 + 𝒫𝑇1) with 𝑅𝑒(𝜆) > 0, then 𝑢0, 𝜏0, 𝑝0  is Ljapounov 
unstable. 
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Following the main theorem in [8] and its extension to the Bénard case in [6], we can 
characterize 𝜎(𝐵𝑆 + 𝒫𝑇1) through 𝛩 − periodic spectra, which enables computational 
approaches in certain scenarios. 

In order to explain 𝛩 −periodicity we fix 𝜖 > 0 small and set 𝑀𝜖 =] − 𝜖, 2𝜋 + 𝜖[,
𝑀 = [0,2𝜋] and let  𝑀𝜖

̇  =  𝑀𝜖 − {0,2𝜋} =]0,2𝜋[. 

With 𝑄𝐿 =]0, 𝐿[ we set 𝑄 = 𝑄𝐿 × ℝ. For 𝛩 ∈ 𝑀𝜖 we say 𝑓 ∈ 𝐶𝛩
𝑝(𝑄) iff 𝑓 ∈ 𝐶𝑝(𝛺) 

and satisfies the 𝛩 −periodicity condition: 

 

                            
      𝑓(𝑥 + 𝑘𝐿, 𝑦) =  𝑒𝑖𝑘𝛩𝑓(𝑥, 𝑦), 𝑘 ∈ ℤ

for (𝑥, 𝑦) ∈ 𝛺  =  ℝ × [−
1
2 ,

1
2]

                                    (3.8) 

Sobolev spaces are introduced in a standard manner: a function 𝑓 ∈ 𝐻𝛩
𝑝(𝑄) iff 𝑓 ∈

 ℒ2(𝛺) and there exists a sequence (𝑓𝑛)𝑛∈ℕ ∈ 𝐶𝛩
𝑝(𝑄) such that lim||𝑓 − 𝑓𝑛||

𝐻𝑝 = 0 

where (𝐻𝑝 = 𝐻𝑝(𝑄). Similarly, a function 𝑓 ∈ 𝐶𝛩,0
1 (𝑄) iff 𝑓 ∈ 𝐶𝛩

1(𝑄)  and (𝑥, ±
1

2
) =

0 for 𝑥 ∈ ℝ. Then 𝑓 ∈ 𝐻𝛩,0
𝑝 (𝑄) iff lim||𝑓 − 𝑓𝑛||

𝐻1 = 0 for some sequence (𝑓𝑛)𝑛∈ℕ ∈

𝐶𝛩,0
𝑝 (𝑄)   (see [1] for details). One now defines 𝛩 −periodic counterparts of the objects 

𝐸, 𝑃, 𝒫, 𝐴𝑆 , 𝐵𝑆. Specifically, we define: 

𝐸Θ is the ℒ2(𝑄) − Closure of the set 𝑓 ∈ 𝐻Θ,0
1 (𝑄)2 such that ∇. 𝑓 = 0    (3.9) 

𝑃Θ is the orthogonal projection from ℒ2(𝑄)2onto 𝐸Θ while 𝒫Θ is given by 

                             𝒫Θ(𝑣, 𝜗) = (𝑃Θ𝑣, 𝜗), 𝑣 ∈ ℒ2(𝑄)2, 𝜗 ∈ ℒ2(𝑄)                       (3.10) 

The 𝛩 −periodic Stokes operator 𝐴𝑆(𝛩) is defined as follows: 
 

                      𝑣 ∈ dom(𝐴𝑠(Θ)) iff 𝑣 ∈ (𝐻Θ
2(Q) ∩ 𝐻Θ,0

1 (Q))2, 𝑑𝑖𝑣 𝑣 = 0

and 𝐴𝑆(Θ)𝑣 = 𝜈𝑃Θ∆𝑣 for such 𝑣 
        (3.11) 

The operator 𝐵𝑆(𝛩) is defined in terms of 𝐴𝑆(𝛩) by: 

(𝑣, 𝜗) ∈ dom(𝐵𝑆(𝛩) ) iff  𝑣 ∈ dom(𝐴𝑠(𝛩) ), 𝜗 ∈ 𝐻Θ
2(Q) ∩ 𝐻Θ,0

1 (Q)

and 𝐵𝑆(𝛩)(𝑣, 𝜗) = (𝐴𝑆(𝛩)𝑣, 𝜅∆𝜗) in this case.
         (3.12) 

 

The fundamental properties of 𝐴𝑆(𝛩), 𝐵𝑆(𝛩) are thoroughly discussed in [6], [4]. In 

particular, both operators are selfadjoint on their respective domains 𝐸𝛩, 𝐸𝛩 × ℒ2(𝑄), and 

≤ −𝜇 for some 𝜇 > 0 independent of 𝛩 ∈ 𝑀𝜖. Moreover, they have compact resolvents. 

The operators 𝑇0, 𝑇1, defined formally by (3.6) acquire a precise meaning by setting: 

                                 dom(𝑇0) = 𝐻1(𝑄)2,     dom(𝑇1) = 𝐻1(𝑄)3                    (3.13) 

Based on [4] it is shown in [6], that 𝑇1 is relatively bounded with respect to 𝐵𝑆(𝛩). As 
a result, the operator 𝐵𝑆(𝛩) + 𝒫𝛩𝑇1 generates a holomorphic semigroup on 𝐸𝛩 × ℒ2(𝑄), 
and it also has compact resolvent. 

The periodic case corresponds to 𝛩 = 0 or 𝛩 = 2𝜋. to emphasize this situation, one 
writes 𝐻𝑝𝑒𝑟

𝑝 (𝑄), 𝐻𝑝𝑒𝑟,1
𝑝 (𝑄), 𝐵𝑠(𝑝𝑒𝑟) etc. instead of 𝐻0

𝑝(𝑄), 𝐻0,1
𝑝 (𝑄), 𝐵𝑠(0) respectively. 

Although the definitions remain unchanged for 𝛩 ∈ 𝑀𝜖
̇  , the periodic case can be viewed 

as is the limit of the 𝛩 −periodic case as 𝛩 → 0, 𝛩 ∈ 𝑀𝜖
̇ . A more refined analysis is 

therefore necessary, leading to the introduction of a subclass of 𝐿 −periodic vector fields. 

Proposition 3.1. 𝐵𝑆  is selfadjoint and ≤ −𝜖 for some 𝜖 > 0, and exists 𝐶 > 0 such if 
𝐵𝑆(𝑣, 𝜗) = 𝑓 for (𝑣, 𝜗) ∈ 𝐷(𝐵𝑆) and 𝑓 ∈ 𝐸. then ||(𝑣, 𝜗)||

𝐻2 (𝛺)
  ≤  𝐶||𝑓||

ℒ2(𝛺)3 
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Proof. As indicated in [8] and [1] there exist constants 𝜖1, 𝜖2 > 0 such that The Stokes  
operator 𝐴𝑠 and the Laplace operator Δ are selfadjoints and satisfy ≤ −𝜖1 and ≤ −𝜖2 
respectively. 

Furthermore, there exists 𝐶1, 𝐶2 > 0 such that if 𝐴𝑆𝑣 = 𝑓1 and 𝜅Δ𝜗 = 𝑓2 for (𝑣, 𝜗) ∈
𝐷(𝐵𝑆) and 𝑓 = (𝑓1, 𝑓2) ∈ 𝐸, then setting 𝐶 = 𝑚𝑎𝑥{𝐶1, 𝐶2}, 𝜖 = 𝑚𝑖𝑛{𝜖1, 𝜖2}, the 
operator 𝐵𝑆 is selfadjoint and ≤ −𝜖, and ||𝑣, 𝜗||

𝐻2(𝛺) 
≤ 𝐶||𝑓||

ℒ2(𝛺)3                            ■ 

Remark 3.2. According to the inequality in Proposition 3.1, we conclude that the 
singularity of the operator 𝐵𝑠 vanishes at 𝛩 = 0 and 𝛩 = 2𝜋, as in the case of the 
Navier–Stokes equations in an infinite strip [1] . 

Corollary 3.3. 𝑇1 is relatively bounded with respect to 𝐵𝑆 ie : for all 𝛿 > 0 there is 
𝐾𝛿 > 0 such that: ∥ 𝑇1𝑢 ∥ℒ2(𝛺)3≤  𝛿 ∥ 𝐵𝑆𝑢 ∥ℒ2(𝛺)3+ 𝐾𝛿 ∥ 𝑢 ∥ℒ2(𝛺)3 , for all 𝑢 ∈ 𝐷(𝐵𝑆). 

Proof. Let 𝐴 be an operator on ℒ2(𝛺)3 defined by 

(𝐴𝑢)𝑖 = 𝛥𝑢𝑖 , ∀𝑢 ∈ 𝐷(𝐴), 𝐷(𝐴)  =  (𝐻2(𝛺) ∩ 𝐻0
1(𝛺))

3
, i = 1,2,3. 

Assume that 𝛺 is bounded in the 𝑦⃗ −direction. Then, by the Poincaré inequality, the 
operator 𝐴 is bounded in the sense that there exists a constant 𝑐′ > 0 such that 

∥ 𝐴𝑢 ∥ℒ2(𝛺)3≤  𝑐′ ∥ 𝑢 ∥𝐻2(𝛺)3 ∀𝑢 ∈ 𝐷(𝐴). 

Moreover, since 𝐴 ≤ −𝜀 for some 𝜀 > 0, the fractional power (−𝐴)1/2 is well-defined 
and bounded. We admit for the moment the following intermediate result: for any 𝛿 > 0, 
there exists a constant 𝐾𝛿 > 0 such that 

∥ (−𝐴)
1

2𝑢 ∥ℒ2(𝛺)3≤  𝛿 ∥ 𝐴𝑢 ∥ℒ2(𝛺)3 + 𝑘𝛿 ∥ 𝑢 ∥ℒ2(𝛺)3 ∀𝑢 ∈ 𝐷((−𝐴)
1

2).        (3.14) 

Furthermore, for all 𝑢 ∈ 𝐷 ((−𝐴)
1

2) = (𝐻0
1(Ω))3, it holds that 

∥ (−𝐴)
1
2𝑢 ∥ℒ2(𝛺)3= (∑(∇𝑢𝑖, ∇𝑢𝑖))1/2

3

𝑖=1

 

According to Proposition 3.1, there exists a constant 𝑐 > 0 such that 

∥ 𝑢 ∥𝐻2(𝛺)3 ≤ 𝑐 ∥ 𝐵𝑠𝑢 ∥ℒ2(𝛺)3  

Now, for all 𝑢 ∈ (𝐻0
1(Ω))3,  we have the estimate 

∥ 𝑇1𝑢 ∥ℒ2(𝛺)3  ≤ 𝑐"(∑ (∇𝑢𝑖, ∇𝑢𝑖))
1

2+∥ 𝑢 ∥ℒ2(𝛺)3 
3
𝑖=1   

 = 𝑐” ∥ (−𝐴)
1

2𝑢 ∥ℒ2(𝛺)3+ 𝑐" ∥ 𝑢 ∥ℒ2(𝛺)3   

Applying inequality (3.14), we obtain 

∥ 𝑇1𝑢 ∥ℒ2(𝛺)3  ≤ c( δ∥Au∥ℒ2(Ω)3 +kδ∥u∥ℒ2(Ω)3 )+c ∥ u ∥ℒ2(Ω)3   
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 = 𝑐"𝛿 ∥ 𝐴𝑢 ∥ℒ2(𝛺)3 + 𝑐"(𝑘𝛿 + 1) ∥ 𝑢 ∥ℒ2(𝛺)3   

From the inequality ∥Au∥ℒ2(Ω)3 ≤ c′ ∥ 𝑢 ∥𝐻2(𝛺)3 we can deduce that 

∥ 𝑇1𝑢 ∥ℒ2(𝛺)3 ≤  𝑐"𝛿c′ ∥ 𝑢 ∥𝐻2(𝛺)3 + 𝑐"(𝑘𝛿 + 1) ∥ 𝑢 ∥ℒ2(𝛺)3  

Finally, using the regularity estimate ∥ 𝑢 ∥𝐻2(𝛺)3 ≤ c ∥ 𝐵𝑠𝑢 ∥ℒ2(𝛺)3 , it follows that 

∥ 𝑇1𝑢 ∥ℒ2(𝛺)3 ≤  𝑐"𝛿c′c ∥ 𝐵𝑠𝑢 ∥ℒ2(𝛺)3 + 𝑐"(𝑘𝛿 + 1) ∥ 𝑢 ∥ℒ2(𝛺)3  

■ 

Proof of the inequality (3.14) 

Proof. We begin by recalling the elementary inequality: for all 𝜖 > 0 and all 𝜆 ≥ 0, 

                                                                      𝜆 ≤ 𝜖𝜆2 +
1

4𝜖
                                       (𝑎) 

Now, consider the operator 𝐴 defined on the domain 

𝐷(𝐴) = (𝐻2(𝛺) ∩ 𝐻0
1(𝛺))

3
 

With action 

𝐴𝑢 = −𝐼∆𝑢 = (−∆𝑢1, −∆𝑢2, −∆𝑢3), for 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ 𝐷(𝐴) 

Where 𝐼 is the 3 × 3 identity matrix. 

According to Proposition 3.1, the operator 𝐴 is self-adjoint and satisfies 

𝐴 ≥ 𝛿𝐼,    𝐹𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿 > 0. 

Let (𝐸𝜆)𝜆≥𝛿 denote the spectral family associated with 𝐴. By the spectral theorem, 

                                                                    𝐴 = ∫ 𝜆𝑑𝐸𝜆,                                        (3.15)
+∞

𝛿

 

                                                                    𝐴
1
2 = ∫ 𝜆

1
2𝑑𝐸𝜆,                                      (𝑏)

+∞

𝛿

 

Using identities (𝑎) and (𝑏), and by straightforward calculations, we obtain for all 𝑢 ∈
𝐷(𝐴): 

∥ 𝐴
1
2𝑢 ∥ ℒ2(𝛺)3

2
≤ 𝜖 ∥ 𝐴𝑢 ∥ ℒ2(𝛺)3

2 +
1

4𝜖
∥ 𝑢 ∥ ℒ2(𝛺)3

2  

Hence, 
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         ∥ 𝐴
1
2𝑢 ∥ℒ2(𝛺)3 ≤ √𝜖 ∥ 𝐴𝑢 ∥ ℒ2(𝛺)3+

1

2√𝜖
∥ 𝑢 ∥ ℒ2(𝛺)3 , ∀𝑢 ∈ 𝐷(𝐴)       (𝑐) 

We also recall that there exists a constant 𝑐0 > 0 such that 

                      ∥ 𝐴𝑢 ∥ ℒ2(𝛺)3
2 ≤ 𝑐0 ∥ 𝑢 ∥ 𝐻2(𝛺)3 ,    ∀𝑢 ∈ 𝐷(𝐴)                               (𝑑) 

Moreover, from the theory of quadratic forms (see [7]), it is known that 

                𝐷 (𝐴
1
2) = (𝐻0

1(Ω))
3

 and ∥ 𝐴
1
2𝑢 ∥ ℒ2(𝛺)3

2
= ∑ ∥ ∇𝑢𝑖 ∥ ℒ2(𝛺)3

2        (𝑒)

3

𝑖=1

 

Now, for any 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ 𝐷(𝐴), combining (𝑐), (𝑑) and Proposition 3.1, we 

obtain: 

∑ ∥ ∇𝑢𝑖 ∥ ℒ2(𝛺)3
2 ≤ 𝜖𝑐0𝑐 ∥ 𝐴𝑢 ∥ ℒ2(𝛺)3

2

3

𝑖=1

+
1

4𝜖
∥ 𝑢 ∥ ℒ2(𝛺)3

2      (3.16) 

where 𝑐 is the constant from Proposition 3.1. 

It is straightforward to verify that 

∥ 𝐴𝑢 ∥ ℒ2(𝛺)3
2 ≤ 𝑐0 ∥ 𝑢 ∥ 𝐻2(𝛺)3,

2 , for all 𝑢 ∈ 𝐷(𝐴)                        (3.17)   

for some constant 𝑐0 > 0. 

Moreover, it is well known—see, for instance, the theory of quadratic forms as 
developed in [7]—that the domain of the square root of 𝐴 satisfies 

                                    𝐷 (𝐴
1
2) = (𝐻0

1(Ω))
3

                                   (3.18) 

and the associated norm is given by 

                       ∥ 𝐴
1
2𝑢 ∥ ℒ2(𝛺)3

2
= ∑ ∥ ∇𝑢𝑖 ∥ ℒ2(𝛺)3

2                       (3.19)

3

𝑖=1

 

for any 𝑢 = (𝑢1, 𝑢2; 𝑢3) ∈ 𝐷(𝐴
1

2) = 𝐻0
1(Ω)3 

Now consider 𝑢 = (𝑢1, 𝑢2; 𝑢3) ∈ 𝐷(𝐴). Combining (3.19) with estimate (3.17), and 
applying Proposition 3.1, we deduce the following inequality: 

               ∑ ∥ ∇𝑢𝑖 ∥ ℒ2(𝛺)3
2 ≤ 𝜖𝑐0𝑐 ∥ 𝐴𝑢 ∥ ℒ2(𝛺)3

2

3

𝑖=1

+
1

4𝜖
∥ 𝑢 ∥ ℒ2(𝛺)3

2      (3.20) 

for any 𝜖 > 0, where 𝑐 is the constant appearing in Proposition 3.1.  ∎ 
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Remark 3.4. According to Corollary 3.3, the operator 𝑇1 is relatively bounded with 
respect to 𝐵𝑆. Consequently, the same holds for 𝒫𝑇1. It then follows from the result in 
[2] that the operator 𝐵𝑆 + 𝒫𝑇1 generates a holomorphic semi-group on 𝐸. 

Then, for each fixed 𝜆 > 0 such that 𝜆 ∈  𝜌(𝐵𝑆 + 𝒫𝑇1) (the resolvent set of 𝐵𝑆 +
𝒫𝑇1), we can define the fractional powers of the operator 𝐹𝜆 = 𝜆 − 𝐵𝑆  + 𝒫𝑇1 by 

𝐹𝜆
𝛾

 =  (𝜆 − 𝐵𝑆 + 𝒫𝑇1)𝛾, 𝛾 > 0. 

This allows us to introduce the corresponding fractional power spaces 𝑋𝛾 = 𝐷(𝐹𝜆
𝛾

 ), 

 Equipped with the norms 

∥ 𝑓 ∥𝛾 = ∥ 𝐹𝜆
𝛾

 𝑓 ∥ℒ2(𝛺)3  , 𝑓 ∈  𝑋𝛾. 

It is well known that the norms ∥·∥𝛾 are equivalent for different choices of 𝜆 > 0, and 

the spaces 𝑋𝛾 are independent of 𝜆 in the sense of norm equivalence. 

According to the results in [2], the non-linear operator N satisfies the following 
assertion: 

for any 𝛾 ∈]3

4
 , 1[ and any 𝑣 ∈ 𝑋𝛾, we have 

𝑁(𝑣) ∈ ℒ2(𝛺)3 and ∥ 𝑁(𝑣) ∥ℒ2(𝛺)3≤  𝐶𝛾 ∥·∥𝛾
2  

for some constant 𝐶𝛾 > 0 depending only on 𝛾. 

As a consequence, the original system (2.1) can be reformulated as an evolution 
equation in the sense of Pazy [2], where standard semi-group theory applies. 

3. Comments 

 

By adopting a methodology similar to that used in [8],[1] and rigorously following the 
steps developed in [3], we have recovered the results established for the Navier-Stokes 
equations in an infinite strip. This approach enabled us to generalise these results to the 
more complex framework of the Boussinesq equations in an infinite strip. 

As noted earlier, the singularities at Θ = 0 and Θ = 2π are not arise in the computations 

presented in the preceding sections. This exclusion leads to a simplification of the 
spectral theory developed for the three dimensional case (𝑑 = 3) in [3]. 

In light of this simplification, we restrict ourselves to a concise presentation of the 
resulting formulation. 

Accordingly, the well-known spectral formula takes the following simplified form in 
our case: 

             𝜎(𝐵𝑠 + 𝒫𝑇1)  = ⋃ 𝜎(𝐵𝑠(𝛩) + 𝒫𝛩𝑇1)                   

𝛩∈[0,2𝜋]

(4.1) 

From the spectral formula (4.1) and the equality 𝐵𝑠(𝑝𝑒𝑟) = 𝐵𝑠(0), we conclude: 
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             𝐵𝑠(𝑝𝑒𝑟) + 𝒫𝑝𝑒𝑟𝑇1 ⊆  𝐵𝑠 + 𝒫𝑇1                                      (4.2) 

This inclusion ensures that Ljapunov stability with respect to perturbations in ℒ2 
implies Ljapunov stability with respect to L−periodic perturbations as well. 
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