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Abstract
In this paper, we consider a smooth equilibrium solution (u,, po, 7o) Of the Boussinesq
Equations on an infinite strip(2 = R X] — 22 D.

2°2
We examine the analysis presented in [3] to investigate whether similar simplifications

to those found in [8] and [1] can be achieved by reducing the spatial domain from the

infinite plate 2 = R? x] — %% [to the infinite strip 2 = R X] — %%[
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1. Notations

Congratulations! Your paper has been accepted for journal publication. Please follow
the steps outlined below when submitting your final draft to

For X, Y Banach spaces, Il . llx, Il . lly are their respective norms. L(X,Y) is the space of
bounded operators from X to Y with || T || the operator norm.

For A a linear operator on X and E € X a subspace, A | is the restriction of A to E.

Forany Q, H? (Q) is the Sobolev space of functions having square integrable derivatives
up to order p with (.,.), and Il . lly» g, the usual scalar product and norm on HP(Q) . We

set L2(Q) = H°(Q) and Il . lyp=Il. llyp(q, and extend this notation to vectors and set :
I Z2=0wy 122410 uy 12241 ug 1122 (1.1)

where u = (uy ,uy,us3) € (LZ(Q))3, Likewise with the Sobolev norms. The scalar
product on (H”(Q))3is (.,.),, with :
3

Wvhy = D (W vy, v € HP(Q) (12)
i=1

Where u= (ull Uy, U3), y V= (vll Uy, v3) we set ( )’ > = ( )’ )0'
CP(0) is the space of functions p times continously differentiable on 2 and C¥ () is
the space of functions f € CP(2) with supp(f) compact.
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2. Introduction

The Boussinesq equations describe the flow of an incompressible fluid under buoyancy
forces due to temperature differences. In this simplified setup, we consider a 2D infinite
strip with horizontal periodicity and vertical boundary conditions. Our purpose is to
determine the stability of the equilibrium solution.

For this we investigate the stability of equilibrium solutions to the Boussinesq equations
in an infinite strip heated from below. The equilibrium solutions are assumed to be
spatially periodic in the x —direction. While the periodic case has been well-studied, the
stability analysis differs significantly for non-periodic perturbations. We primarily analyze
disturbances belonging to the space L£2(£2) in the x —direction. We systematically
compare the stability properties under both periodic and non-periodic (£?) perturbations,
characterizing their fundamental relationship.

In this paper, we study the stability of certain equilibrium solutions of the Bénard
equations given by:

{atu =vAu —Vp — g(l —a(T — to))j — (u.V)u,

2.1
0;T = kAT — (u. V)T, withV.u=0 @1

on the infinite strip domain Q = R x] — %% [. Here, u denotes the velocity field, p the
pressure, and T the temperature. The constants are as follows: g is the gravitational
acceleration, @ > 0 is the thermal expansion coefficient, and j = (0, 1) is the unit vector
in the vertical direction. The parameters v and k represent the kinematic viscosity and
thermal conductivity, respectively.

We impose Dirichlet boundary conditions on the velocity field: u = 0 on d2. For the
temperature, we assume fixed boundary values: T(x,—%) = t, and T(x,%) =ty,

where t, > t;.

Our focus is on equilibrium solutions (u, Ty, po) Of system (2.1) that are sufficiently
smooth on £, satisfy the given boundary conditions, and are periodic in the horizontal
direction x with period L, a property we refer to as L —periodicity.

We investigate the stability of such equilibria from two perspectives:

1. Under small perturbations u —uy, T -1, p — po that are also L —periodic and

satisfy the same boundary conditions.

2. Under general perturbations u,T,p which satisfy the same boundary conditions, but

for which the differences satisfy:

u—1uy,V(p—py) € (LZ(Q))Z, and T — 14 € L2(Q).
3. Preliminaries and Main Results

We now summarize key results from [1, 8] that will be essential for our subsequent
analysis.

Consider an arbitrary but fixed L —periodic equilibrium solution (u,, 7y, py) Of System
(2.1), as introduced previously. To examine the stability of this solution under both
L —periodic and £L2(2) perturbations, we introduce the substitutions:

u = ug+v,
T = T0+19,
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p = p0+7T

After straightforward (non-scaled) computations, these substitutions yield the
following system of equations:

{atv = vAv — (uy. V)v — (v.V)uy, — Vr — agdj, 31
0;T = kA9 — (uy. V)9 — (v.V)15 — (0. V)9 G
Subject to the conditions V9 = 0and v =9 = 0 on a2, equation (3.1) requires an
appropriate functional framework, depending on the type of stability under consideration.

In the case of £2(2) —stability, the relevant concepts are as follows:

We define the space E < (£2(£2))? of divergence-free vector fields as the closure in
(£2(02))? of the set of smooth, compactly supported vector fields that are divergence-
free, i.e.,

E = closure in (£L2(2))? of all f € H}()? suchthat V- f = 0. (3.2)

We denote by P be the orthogonal projection from (£2(42))? onto the subspace E and
define the extended projection P on (£2(2))3 by:

P(v,9) = (Pv,9); v e (L2W)9 € L2() (3.3)
Where (v, 9) represents the triplet (v, v,,9) forv = (v4,v,). The Stokes operator
Ag on E is defined by
v € dom(4) iff v € (H?(Q) N H}(Q))?and
divv = 0 and Agv = vPAv for such v
Finally, we define an operator B, on the product space E X L2(2) in terms of Ag
(v,9) € dom(By) iff v € dom(4,),9 € H2(Q) N H}(Q) (35)
and Bs(v,9) = (Agv, kAY) for such (v, 9) '
The properties of Ag are thoroughly examined in [1],[8], with their extension to Bg
developed in [6], Section VIII. These analyses reveal that both As and Bs are self-adjoint
operators on their respective domains E and E x L2?(£2). Furthermore, they satisfy the
conditions Ag < —e and Bg < —e for some € > 0. To complete our formulation, we

must incorporate the additional linear terms from (3.1), which we accomplish by
defining:

(3.4)

Tov = —(v.V)uy — (uy. V)v
T,(v,9) = (Tov + ag¥j, —(uy. V)9 — (v.V)u,
If we supply (3.6) with the stipulation:
dom(T,) = H1(Q)?, dom(T;) = H(Q)? (3.7)
And N is no-linear operator defined on E by N(v,9) = (0, —vV9).

Under these conditions T; becomes an operator that is bounded relative to Bs ( [9], pg.
190, [4], [8], [6] sect. VIII). Consequently, the operator Bg + PT; generates a
holomorphic semigroup on E x £2(2). The main result derived in [8] on the basis of [4]
, [1] and [5], establishes:

(@) Ifo(Bs +PTy) € {1/ Re(A) < —e} forsome e > 0, then the equilibrium
solution ugy, Ty, po IS Ljapounov stable;

(b) If there exists A € o(BS + PT,) with Re(4) > 0, then u,, 74, po IS Ljapounov
unstable.

(3.6)
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Following the main theorem in [8] and its extension to the Bénard case in [6], we can
characterize o(Bs + PT;) through © — periodic spectra, which enables computational
approaches in certain scenarios.

In order to explain @ —periodicity we fix e > 0 small and set M, =] — €,2m + €],
M =[0,2r] and let M, = M, — {0,2r} =]0,2m].

With Q, =]0, L[ we set Q = Q, x R. For @ € M, we say f € CE(Q) iff f € CP(2)
and satisfies the ® —periodicity condition:

fx+kLy) = e*®f(x,y),k €L

— 3.8
for (x,y) €N = Rx[—%,%] (36)

Sobolev spaces are introduced in a standard manner: a function f € H?(Q) iff f €
L£%(0) and there exists a sequence (fy)nen € Cg(Q) such that liml|f — fnl| , =0
where (H? = HP(Q). Similarly, a function f € C3,(Q) iff f € C3(Q) and (x,i%) =
0 for x € R. Then f € Hfo(Q) iff lim||f — fnl|,, =0 for some sequence (f)nen €
Cg,O(Q) (see [1] for details). One now defines ® —periodic counterparts of the objects
E,P,P, A, Bs. Specifically, we define:

Eg is the £2(Q) — Closure of the set f € Hg o(Q)? suchthatV.f =0 (3.9)
Py is the orthogonal projection from £2(Q)?onto Eg while Pg is given by

Po(v,9) = (Pev,9),v € L2(Q)%9 € L2(Q) (3.10)
The @ —periodic Stokes operator Ag(0) is defined as follows:

v € dom(4(0)) iffv € (H3(Q) N Hg o(Q))2 divv =0

and Ag(©)v = vPgAv for such v 31D)
The operator Bs(0) is defined in terms of Ag(©) by:
(v,9) € dom(Bs(0) ) iff v € dom(45(0)),9 € H5(Q) N Hg ,(Q) (3.12)

and Bs(0)(v,9) = (As(O)v, kAVY) in this case.

The fundamental properties of As(0), Bs(©) are thoroughly discussed in [6], [4]. In
particular, both operators are selfadjoint on their respective domains E,, E, X L?(Q), and
< —u for some u > 0 independent of ® € M.. Moreover, they have compact resolvents.
The operators T, T, defined formally by (3.6) acquire a precise meaning by setting:

dom(T,) = H(Q)?, dom(T,) = H(Q)3 (3.13)

Based on [4] it is shown in [6], that T} is relatively bounded with respect to Bs(0). As

a result, the operator Bs(0) + P,T; generates a holomorphic semigroup on Ey X £,(Q),
and it also has compact resolvent.

The periodic case corresponds to ® = 0 or ® = 2m. to emphasize this situation, one
writes Hy,,.(Q), H},, 1(Q), Bs(per) etc. instead of H{ (Q), Hy, (@), Bs(0) respectively.
Althougﬁ the definitions remain unchanged for & € M, , the periodic case can be viewed
as is the limit of the ® —periodic case as ® — 0,0 € M. A more refined analysis is
therefore necessary, leading to the introduction of a subclass of L —periodic vector fields.

Proposition 3.1. Bs is selfadjoint and < —e for some € > 0, and exists C > 0 such if
Bs(v,9) = f for (v,9) € D(Bs) and f € E.then ||(v, )], o = C||f||L2m)3
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Proof. As indicated in [8] and [1] there exist constants €;, €, > 0 such that The Stokes
operator A, and the Laplace operator A are selfadjoints and satisfy < —el and < —e2
respectively.

Furthermore, there exists C;, C, > 0 such that if Agv = f; and kA9 = f, for (v,9) €
D(Bs) and f = (f1, f2) € E, then setting C = max{C;, C,}, € = min{e,, €,}, the
operator By is selfadjoint and < —e, and [|v, 91|, ., < C[IfI[ 2 55

Remark 3.2. According to the inequality in Proposition 3.1, we conclude that the
singularity of the operator B vanishes at ® = 0 and @ = 2m, as in the case of the
Navier—Stokes equations in an infinite strip [1] .

Corollary 3.3. T; is relatively bounded with respect to B ie : for all § > 0 there is
Ks > 0 such that: | Tyu ll;2():< 68 Il Bsu llz2(gy2+ K Il w ll ;22 , for all u € D(By).

Proof. Let A be an operator on £2(2)3 defined by
(Aw); = Au;, Vu € D(A),D(A) = (H2(2) n HE @) )i =1,23.

Assume that 2 is bounded in the y —direction. Then, by the Poincaré inequality, the
operator A is bounded in the sense that there exists a constant ¢ “> 0 such that

Il Au llg2¢)3< ¢’ ll u llyzq)z Yu € D(A).

Moreover, since A < —e for some € > 0, the fractional power (—A)*/? is well-defined
and bounded. We admit for the moment the following intermediate result: for any § > 0,
there exists a constant Ks > 0 such that

1 1
I (—A)2u 23 < & Il Au iz (gys + ks Il U llg2(qys Y € D((—A)2).  (3.14)

Furthermore, for all u € D ((—A)%) = (H}(Q))3, it holds that

3
1
I (A2 2= () (Vay, V)2
i=1

According to Proposition 3.1, there exists a constant ¢ > 0 such that
” u ||H2(.Q)3 <c ” Bsu "1:2(12)3

Now, for all u € (Hj (Q))3, we have the estimate
1
I w2 < "B, (Vg Vu))z+ll u ll 2y

1
- C" ” (—A)Eu "Lz(_())3+ C" " u "132(.(2)3
Applying inequality (3.14), we obtain

” T]_u ”LZ(!))3 < C( 61l Au ll LZ(Q)3 +k5 lull LZ(Q)?’)-I_C " u ”LZ(Q)3
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= "6 " Au ”LZ(D)3 + C"(k6 + 1) " u |IL2(_(2)3

From the inequality Il Au Il ;2¢qy3 < ¢ Il u lly2(q)s We can deduce that
” Tlu ”LZ(.Q)3 < C"SC, ” u ||H2(_Q)3 + C"(k(g + 1) ” u ”[,2(_(2)3

Finally, using the regularity estimate Il u lly2¢g)s < c | Bsu llz2(q)3 , it follows that

” Tlu ||L2(.{2)3 < C"6CIC ” Bsu ”LZ(.Q)3 + C"(k(g + 1) " u "£2(0)3

Proof of the inequality (3.14)

Proof. We begin by recalling the elementary inequality: forall e > 0 and all 2 > 0,

A<el’+ 1 ()
4e

Now, consider the operator A defined on the domain
D(A) = (H2(@) N H} (@)
With action
Au = —IAu = (—Au,, —Au,, —Aus), for u = (uy, u,, u3) € D(A)
Where [ is the 3 x 3 identity matrix.
According to Proposition 3.1, the operator A is self-adjoint and satisfies
A =6l Forsomeéd > 0.

Let (E;)1ss denote the spectral family associated with A. By the spectral theorem,

+00
A= j AdEj;, (3.15)
8
1 +oo 1
Az = f A2dE,, (b)
8
Using identities (a) and (b), and by straightforward calculations, we obtain for all u €
D(A):
102 2 2
AZU Nl 2 pys=< € Il AU Il (2 ()3t Te [T EYPAE

Hence,
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1 1
A2 Nz s < VE I AW N gyt ==l e, Vi € DAY ()

We also recall that there exists a constant ¢, > 0 such that
I A1l 23 < €o U ll y2(gys,  Vu € D(A) (@)

Moreover, from the theory of quadratic forms (see [7]), it is known that

3
1 3 1 2
D (42) = (H}(@)” and || Azu | mmfz IVu 3205 ()

=1

Now, for any u = (uq, u,, u3z) € D(A), combining (c), (d) and Proposition 3.1, we
obtain:

3
1
D NV 1 2= ecoc I Aul Zaggs + - N gy (3.16)
i=1

where c is the constant from Proposition 3.1.
It is straightforward to verify that

I Au Il 32 (gy3< €o Il 1l 52 s, for allu € D(A) (3.17)

for some constant ¢, > 0.

Moreover, it is well known—see, for instance, the theory of quadratic forms as
developed in [7]—that the domain of the square root of A satisfies

p(42) = (H}(@)’ (3.18)
and the associated norm is given by
3
1 2 2
A2 N 2o = Z VU 1220 (3.19)
i=1

forany u = (uy, uy; u3) € D(A2) = H}(Q)3

Now consider u = (uq, uy; uz) € D(A). Combining (3.19) with estimate (3.17), and
applying Proposition 3.1, we deduce the following inequality:

3
1
D NV 1 2o ecoc I AUl 2o + - N gy (3:20)
i=1

for any € > 0, where c is the constant appearing in Proposition 3.1. ]

VOLUME 24 : ISSUE 11 (Nov) - 2025 Page No0:612



YMER || ISSN : 0044-0477 http://ymerdigital.com

Remark 3.4. According to Corollary 3.3, the operator T; is relatively bounded with
respect to Bg. Consequently, the same holds for PT;. It then follows from the result in
[2] that the operator Bg + PT,; generates a holomorphic semi-group on E.

Then, for each fixed A > 0 such that A € p(Bs + PT,) (the resolvent set of Bs +
PT,), we can define the fractional powers of the operator F; = A — Bs + PT; by

F/ = (A—-Bs+PT)Y,y > 0.
This allows us to introduce the corresponding fractional power spaces X, = D(F){’ ),
Equipped with the norms

Ifl,=0Ff 203, f € Xy

It is well known that the norms |I-|l,, are equivalent for different choices of 2 > 0, and
the spaces X,, are independent of A in the sense of norm equivalence.

According to the results in [2], the non-linear operator N satisfies the following
assertion:

forany y €]2,1[ and any v € X,,, we have
N(v) € L2(2)% and | N(v) llz2(qp< Cy 1112
for some constant C,, > 0 depending only on y.

As a consequence, the original system (2.1) can be reformulated as an evolution
equation in the sense of Pazy [2], where standard semi-group theory applies.

3. Comments

By adopting a methodology similar to that used in [8],[1] and rigorously following the
steps developed in [3], we have recovered the results established for the Navier-Stokes
equations in an infinite strip. This approach enabled us to generalise these results to the
more complex framework of the Boussinesq equations in an infinite strip.

As noted earlier, the singularities at ® = 0 and ® = 27 are not arise in the computations

presented in the preceding sections. This exclusion leads to a simplification of the
spectral theory developed for the three dimensional case (d = 3) in [3].

In light of this simplification, we restrict ourselves to a concise presentation of the
resulting formulation.

Accordingly, the well-known spectral formula takes the following simplified form in
our case:

o(B, + PT,) = U 5(By(0) + PoTy) (4.1)

0€[0,2m]

From the spectral formula (4.1) and the equality B;(per) = B4(0), we conclude:
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By(per) + Pye,Ty € B + PT, (4.2)

This inclusion ensures that Ljapunov stability with respect to perturbations in £2
implies Ljapunov stability with respect to L—periodic perturbations as well.

References

(11 A. Alami-Idrissi and S. Khabid, “Regularity properties of some Stokes operators on
an infinite strip ”’, Journal of Inequalities in Pure and Applied Mathematics, vol. 5,
no. 2, p. 8, (2003).

[21 A. Pazy, “Semigroupes of linear operators and applications to partial differential
equations”, Appl. Math. Sci, 44, Springer, New York: Springer, (1983).

(31 B. Scarpellini, and Wolf von Wahl, “Stability properties of the Boussinesq
equations ”, Zeittschrift fir angewandte Mathematik und Physik ZAMP, vol. 49, no. 2,
pp. 294-321, (1998).

(41 B. Scarpellini, “L*—Perturbations of space-periodic equilibria of Navier-Stokes ”, Z.
Analysis u. Anwendungen, vol. 14, no. 4, pp. 779-828, (1995).

51 B. Scarpellini, “The principle of linearized instability for a class of evolution
equations ”, Differential and Integral equations, vol. 7, no. 6, pp. 1573-1596, (1994).

(61 B. Scarpellini, “The principle of linearized instability for space-periodic equilibria of
NavierStokes on an infinite plat "e, Analysis, vol. 15, pp. 759-391, (1995).

[’1 M. Reed and B.Simon, Methods of Math. Physics V. Analysis of operators, Paris:
Gouthiervillars, (1957.1995).

81 S. Khabid, “Stability of L—periodic equilibrium solutions of Navier-Stokes equations
on infinite strip”, International Journal of Scientific Research in Computer Science,
Engineering and Information Technology (IJSRCSEIT), vol. 5, no. 3, pp. 575-582,
(2019).

191 T.Kato, “Perturbation theory for linear Operators ”, Berlin: Springer, (1966).

VOLUME 24 : ISSUE 11 (Nov) - 2025 Page No:614



