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       Abstract— Traditional remedial education frequently fails to 

effectively address diverse student needs, often relying on 

standardized modules that disregard unique learning deficiencies. 

This rigidity contributes to student frustration and inefficient time 

management, especially in large-scale higher education 

environments. To counter these limitations, this paper proposes 

and details a novel Artificial Intelligence (AI) model designed for 

the generation and optimization of truly personalized remedial 

learning paths. The model employs advanced Educational Data 

Mining (EDM) techniques to establish a granular Student Gap 

Model (SGM), which precisely pinpoints specific conceptual 

weaknesses beyond mere aggregated performance scores. The 

core technical contribution is the implementation of a 

Reinforcement Learning (RL) agent. This agent is trained to 

dynamically sequence remedial content, interactive activities, and 

diagnostic assessments. By continuously analyzing the student's 

evolving knowledge state, the RL agent ensures the selection of an 

optimal path. The goal is two-fold: to minimize the time required 

for concept mastery and to maximize the probability of long-term 

knowledge retention. This architectural framework promises to 

substantially enhance learning outcomes, foster student self-

regulation, and optimize educational resource allocation, marking 

a significant advancement over static or rule-based adaptive 

systems. 

  

Keywords— Personalized Learning, Remedial Education, Artificial 

Intelligence, Intelligent Tutoring Systems, Learning Paths, Student 

Modeling. 

 

I. INTRODUCTION 

 

       The rapidly evolving landscape of contemporary higher education 

demands pedagogical approaches that are as dynamic and diverse as 

the students they serve. Traditional educational structures, designed 

for standardization and scale, often struggle to provide the targeted 

support necessary for students who enter with varying levels of 

prerequisite knowledge [10], [11]. This deficiency manifests acutely 

in remedial education, a critical, yet frequently inefficient, segment of 

institutional support [8], [9]. When students demonstrate gaps in 

foundational concepts, the standard response is often a blanket 

assignment to broad, pre-set remedial modules. This "one-size-fits-all" 

method is inherently problematic because it fails to diagnose the root 

cause of the learning deficit, forcing students to review material they 

already know while leaving core misunderstandings unaddressed. The 

consequence is wasted time, increased student disengagement, and 

often, failure to achieve mastery [1]. 

      The integration of Artificial Intelligence (AI) into education 

presents a paradigm shift capable of solving this long-standing 

personalization challenge [2], [3]. AI systems are uniquely suited to 

manage the vast complexity of individual learning histories and 

content dependencies that exceed human capacity to track manually 

[4]. Current AI applications span automated assessment, curriculum 

sequencing, and Intelligent Tutoring Systems (ITS) [12]. However, a 

significant gap remains in the ability of current adaptive platforms to 

perform non-linear, predictive path optimization for remediation, 

which is crucial for maximizing efficiency [6]. Existing systems often 

rely on simple, immediate conditional logic—if a student fails a test, 

they are routed to a related module—without calculating the optimal 

sequence to achieve mastery quickly and reliably. 

      The primary objective of this research is to propose, design, and 

architect a robust AI model for personalized remedial learning paths. 

This system moves beyond reactive adaptation to proactive 

optimization. The novel approach involves the creation of a 

sophisticated Student Gap Model (SGM), powered by Deep 

Knowledge Tracing (DKT), which isolates the exact missing cognitive 

building blocks. Crucially, this SGM is then utilized by a 

Reinforcement Learning (RL) agent (specifically, a Deep Q-Network) 

that learns the most efficient sequence of instructional content to 

transition the student from their deficient state to mastery. The RL 
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agent's policy is trained to maximize a cumulative reward that balances 

learning gain against the time investment. 

     The successful implementation of this AI model for personalized 

remedial learning paths offers three core benefits: enhanced efficiency 

(reducing the Time-to-Mastery), increased effectiveness (improving 

long-term retention), and fostering student autonomy by providing a 

highly relevant and guided learning experience [17]. This study 

contributes a novel, data-driven architecture that can fundamentally 

reshape how educational institutions address academic 

underpreparedness, aligning with the vision of truly intelligent 

learning environments [20]. The subsequent sections detail the 

architectural components, the deep learning methodology, and the 

simulated performance results comparing this advanced model against 

traditional remedial strategies. 

 

Fig. 1. AI-powered learning pathway components. 

 

II. LITERATURE REVIEW 

 
       The development of an AI model for personalized remedial 

learning paths synthesizes advancements across several key domains: 

AI in education, personalized learning theory, advanced student 

modeling, and intelligent tutoring systems. 
 

A.  AI as a Catalyst for Educational Transformation 

       The utility of Artificial Intelligence in educational settings has 

been a growing subject of systematic review [4]. Researchers 

recognize AI's capability to transform higher education by managing 

scale and complexity, particularly in providing individualized 

feedback and support [1]. The potential extends across administrative, 

research, and core instructional functions [3]. The literature highlights 

that the move toward smart classrooms—where technology actively 

participates in the pedagogical process—is critically dependent on 

incorporating AI and emerging technologies for dynamic content 

management and interaction [2]. Furthermore, AI's role is not limited 

to STEM subjects; its applications are being explored even in areas 

like ideological and political education, showcasing its versatility in 

content delivery and monitoring student progress across diverse fields 

[5]. The foundational consensus is that AI is the necessary 

technological engine to move personalized learning from a conceptual 

ideal to a deployable reality [10]. 
 

B.  Theoretical Foundations of Personalized and Adaptive Learning 
 

        The concept of personalization in learning, rooted in tailoring 

instruction to the individual student’s pace, preferences, and needs, has 

been shown to offer promising evidence for continued educational 

progress [11]. Adaptive learning, a subset of personalized instruction, 

is specifically concerned with adjusting the content, difficulty, and 

sequencing of the curriculum based on real-time performance data [6]. 

This principle is central to the design of personalized learning 

pathways, which, when powered by AI, can map complex, non-linear 

routes for students [10]. While early adaptive systems relied on simple 

rule-sets (e.g., if a quiz score is below a certain threshold, repeat the 

unit), modern systems must accommodate the fact that a student’s 

knowledge state is not a simple binary (knows/doesn't know) but a 

fluid, multi-dimensional probability landscape. The efficiency gains of 

personalized pathways are directly tied to the system’s ability to make 

instantaneous, accurate decisions about the next best instructional 

move, thereby minimizing extraneous learning activities [10], [6]. 
 

C.  Advanced Student Modeling and Diagnosis 

        Effective personalization requires an accurate, dynamic 

representation of the student's cognitive state, known as the Student 

Model [7]. Traditional assessment methods, while necessary for initial 

baseline data [8], [9], are insufficient for the real-time diagnosis 

required by AI systems. The shift has been toward Educational Data 

Mining (EDM) and Learning Analytics (LA), which extract actionable 

features from fine-grained student interaction logs—time spent, hint 

usage, error patterns—to infer latent knowledge [13], [19]. This data-

driven approach allows for the creation of a diagnostic profile that goes 

beyond mere scores to identify prerequisite gaps and common 

misconceptions [7], [19]. 

      The most advanced technique in this area is Knowledge Tracing, 

which aims to model the temporal evolution of a student's knowledge. 

Deep Knowledge Tracing (DKT), which uses recurrent neural 

networks, represents a significant leap over older Bayesian methods. 

DKT can process the entire, non-sequential history of a student's 

performance to estimate the probability of mastery for hundreds of 

individual concepts simultaneously [7]. This provides the detailed, 

high-resolution diagnostic data (the Student Gap Model) required for 

the decision-making engine of a highly personalized remedial system. 

Furthermore, research comparing static versus dynamic assessment 

confirms that continuous, computerized feedback enhances student 

motivation and self-regulation, reinforcing the need for adaptive 

diagnostic tools [17], [18]. 
 

D.  The Evolution of Intelligent Tutoring Systems (ITS) and 

Automated Assessment 
 

      The lineage of the proposed model traces back to Intelligent 

Tutoring Systems (ITS), which have historically provided 

individualized instruction and feedback [12]. Modern ITS integrate 

advanced capabilities, including conversational agents (chatbots) that 

offer immediate, contextualized support, significantly enhancing the 

learning experience [16]. A critical operational capability required for 

any automated remedial system is automated assessment. The ability 

to grade subjective work, such as essays using neural network 
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approaches, or complex technical work like code in computer science 

education, is now technically feasible and widely reviewed [14], [15]. 

This demonstrates that AI can reliably handle the entire loop of 

instruction: diagnose (via DKT), deliver content, assess performance, 

and provide feedback—all without constant human intervention. The 

final piece of the puzzle, which this research addresses, is the use of 

Reinforcement Learning to make the instructional decisions within 

that loop truly optimal, rather than merely functional. 

 

III. SYSTEM DESIGN AND ARCHITECTURE 

      The AI model for personalized remedial learning paths is 

organized into a four-module architecture, designed for continuous 

operation, data flow, and self-improvement. 
 

A.  Data Acquisition and Storage Module (DASM) 

       The DASM is the foundational layer, responsible for collecting, 

validating, and harmonizing all data streams. The system relies on a 

unified data store where information is linked hierarchically: 

1. Interaction Logs: Detailed, time-stamped records of every student 

activity, including video playback duration, number of times a 

concept is reviewed, submission attempts, and utilization of 

ancillary resources. This rich behavioral data is the raw input for 

Educational Data Mining [13]. 

2. Assessment Data: Granular results from all tests. This includes 

the aggregate score, but more importantly, the performance on 

individual test items, which are linked to specific concepts within 

the curriculum's Knowledge Graph. This item-level data is 

essential for accurate DKT training and inference [19]. 

3. Content Metadata and Knowledge Graph: The Knowledge Graph 

is a foundational semantic network that defines all concepts and 

the prerequisite relationships between them (e.g., Concept C 

requires mastery of Concepts A and B). Every remedial content 

unit (video, text, practice set) is meticulously tagged to the 

specific concepts it teaches and the estimated difficulty and 

modality of delivery. 
 

B.  Student Modeling Module (SMM) 

        The SMM performs the critical function of continuous diagnosis. 

It transforms raw performance data into a dynamic, actionable student 

profile. 

1.  Deep Knowledge Tracing (DKT) 

         The SMM hosts the Deep Knowledge Tracing model, which 

utilizes a recurrent neural network structure to process the time-

ordered sequence of student interactions. Instead of simply predicting 

whether a student will pass or fail, the DKT model's output is the 

Student Gap Model (SGM). 
 

       The SGM is a high-dimensional vector that represents the 

predicted probability of mastery for every single concept in the 

Knowledge Graph at any given moment [7]. This prediction is 

generated by feeding the student's entire interaction history through 

the DKT network. The system defines a learning gap as any concept 

where the mastery probability falls below a predetermined institutional 

threshold. This process allows the system to identify the true, 

underlying cause of failure—the prerequisite gap—by looking at the 

foundational concepts that have low mastery probabilities, even if the 

student is currently failing a higher-level task. 

 

C.  Remediation Path Generation Module (RPGM) 

The RPGM is the decision-making engine, employing Reinforcement 

Learning (RL) to solve the complex sequencing problem. 
 

1.   The RL Framework 

        The system treats remediation as a Markov Decision Process 

(MDP) where the RL agent, a Deep Q-Network (DQN), learns the 

optimal policy for selecting instructional content. 

• State: The current state of the student is represented by the full 

SGM vector, providing the RL agent with a precise diagnostic 

snapshot. 

• Action: An action is the selection and delivery of a specific 

remedial content unit (e.g., "Assign the 5-minute video on 

algebraic substitution" or "Administer a quick quiz on Concept 

X"). 

• Reward: The reward function is designed to shape the agent's 

behavior towards efficient, effective learning. The reward is 

calculated as a weighted sum, where a positive weight is given to 

the change in concept mastery (as reported by the SGM after the 

action), a negative weight is assigned to the time spent (a cost 

function to ensure minimal Time-to-Mastery), and a bonus 

weight is given for indicators of successful student autonomy and 

self-regulation [17]. The DQN uses this reward to learn which 

sequence of actions yields the highest cumulative long-term gain. 
 

     This dynamic optimization, driven by the learned Q-function, is the 

core differentiator, allowing the system to recommend non-intuitive 

yet highly effective learning paths that static systems cannot identify. 
 

Table I: System Modules, AI Components, and Functionality 
 

Module Name 
 

Primary AI/ML 

Component 

Core Function 

Data Acquisition 

& Storage 

(DASM) 

EDM [13] Collects & 

standardizes all 

data. 

Student Modeling 

Module (SMM) 

DKT [7] Diagnoses student 

knowledge (SGM). 

Remediation Path 

Generation 

(RPGM) 

DQN / RL [6] Optimizes remedial 

learning paths. 

Content Delivery 

Interface (CDI) 

ITS [12] Delivers content & 

assessments. 

 

D.  Content Delivery Interface (CDI) 

        The CDI is the user-facing application layer. It receives the 

optimal sequence of actions from the RPGM and renders the 

appropriate content. 

1. Adaptive Content Presentation: The system dynamically adjusts 

the content modality (e.g., text, interactive simulation, video) 

based on metadata and potentially inferred student preferences, 

ensuring the delivery is appropriate for the deficiency [6]. 

2. Automated Assessment Engine: This integrated engine provides 

real-time, computerized formative assessment and detailed 
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feedback, crucial for reinforcing learning and quickly closing the 

feedback loop [14], [15]. 

3. Chatbot Integration: A contextual support chatbot, drawing on 

literature on conversational agents in education, is integrated to 

offer immediate, domain-specific help and answer student 

queries, preventing unnecessary delays [16]. 

 

IV. METHODOLOGY 

 
        The implementation methodology is centered on the training and 

deployment of the two primary deep learning models—DKT for 

diagnosis and DQN for decision-making—within the unified 

architectural framework. 
 

A.  Data Preprocessing and Feature Engineering 

       The success of any data-driven AI model relies on high-quality 

input features [20]. From the raw data collected by the DASM, various 

features are engineered to create a rich input space for the DKT model: 

• Performance Trace Features: Binary indicators of success or 

failure for each problem, combined with the identifier of the 

concept tested. 

• Temporal Features: The duration (in seconds) the student spent 

on the last content item or assessment, and the time delay since 

the last successful interaction with a concept. 

• Prerequisite Features: Data derived from the Knowledge Graph 

indicating the density of links between the current concept and 

previously mastered or failed foundational concepts. 
 

      These engineered features are then fed into the DKT model as 

time-ordered sequences, allowing the recurrent network to learn the 

patterns of knowledge acquisition and forgetting. 
 

B.  Deep Knowledge Tracing (DKT) Training 

       The DKT model, implemented using a Gated Recurrent Unit 

(GRU) structure for efficiency, is trained on historical student 

performance data. The training objective is to minimize the prediction 

error: the difference between the model's predicted mastery probability 

for a concept and the student's actual success/failure on the next 

attempt related to that concept. 
 

       The resulting SGM vector is the output of the DKT, a precise 

digital representation of the student’s knowledge. For example, if a 

student fails a complex problem, the DKT does not just report low 

mastery on the complex concept; it updates the mastery probabilities 

of the many underlying prerequisite concepts that might have 

contributed to the failure, providing the necessary depth for effective 

remediation. 
 

C.  Reinforcement Learning (DQN) Training 

       The DQN agent learns its optimal policy through iterative 

interaction with a simulated environment based on the SGM. 

1. Experience Replay: The agent does not learn from consecutive 

steps; instead, it stores its experiences (state, action, reward, next 

state) in an experience replay buffer. The agent then samples 

randomly from this buffer during training. This technique breaks 

the correlation between consecutive experiences, stabilizing the 

deep learning process and preventing the network from becoming 

biased toward the most recent actions. 

2. Target Network: To further stabilize training, the DQN uses two 

networks: the primary network (which is updated frequently) and 

a target network (a copy of the primary network updated 

periodically). This separation provides a stable prediction target 

for the reward calculation, a crucial step in ensuring convergence 

of the RL agent [6]. 

3. Optimal Policy: The agent is guided by the reward structure to 

learn which sequence of actions (content items) leads to the 

fastest increase in the SGM's mastery probability for the target 

concepts. This learned policy is then directly deployed in the 

RPGM to recommend the personalized path. 
 

D.  Real-Time Path Execution and Adaptation 

        The system operates under a principle of continuous assessment. 

After the student completes any remedial action (e.g., watches a video, 

completes a practice set), the performance data is immediately fed 

back into the SMM (Figure 2). The SGM is updated, and the RL agent 

recalculates the next optimal action in the sequence. This capability 

for real-time adaptation ensures that the remedial path is perpetually 

optimal, adjusting instantly if a student masters a concept faster than 

predicted or struggles unexpectedly [17]. 

 

 
 

Figure 2: Closed-Loop Methodology of the Personalized Remedial 

System. 

 

V.   RESULT AND DISCUSSION 

 
       A simulated study was conducted to quantify the performance 

gains of the proposed AI/RL Model against two established baseline 

methods: Static Remediation (SR) and Simple Adaptive Remediation 

(SAR). The simulation involved 1,000 synthetic student profiles, each 

assigned a complex network of 15 prerequisite knowledge gaps. The 

goal was to remediate these gaps efficiently. 
 

A.  Efficiency Analysis: Time-to-Mastery 
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     The most significant metric for evaluating the success of a remedial 

system is its Time-to-Mastery (TTM), which measures the average 

number of minutes required for a student to successfully transition 

from a deficient knowledge state to a mastered state (the required 

probability threshold) [10]. 
 

Table II: Comparative Analysis of Remedial Strategies on Key 

Outcomes (Simulated Study) 

 

Remedial 

Strategy 

Metric Average Time-

to-Mastery 

(min) 

Long-Term 

Retention 

Rate (LRR) 

Static 

Remediation 

(SR) 

 

Performance 

 

125.4 (High 

Variance) 

 

64.9% 

Simple 

Adaptive 

Remediation 

(SAR) 

 

Performance 

 

98.1 (Moderate 

Variance) 

 

74.3% 

Proposed 

AI/RL 

Model 

 

Performance 

 

70.6 (Low 

Variance) 

 

82.8% 

 

As demonstrated in Table II, the AI/RL model achieved an average 

TTM of just 70.6 minutes. This represents a substantial 43.7% 

reduction in time compared to the SR model and a 28.1% improvement 

over the SAR model. 
 

      This efficiency gain is directly attributable to the RL agent's non-

linear decision-making. While the SAR model might force a student 

to repeat Topic X multiple times after failure, the RL agent, having 

consulted the SGM, can determine that the optimal path is actually to 

review the foundational prerequisite Topic Y (a concept the student 

failed two weeks ago) before returning to Topic X. By addressing the 

root cause first, the RL agent eliminates wasteful, symptomatic 

instruction, thereby maximizing the TTM reward term. The lower 

variance in TTM also highlights greater system predictability, a 

valuable operational benefit for institutional planning. 
 

B.  Effectiveness Analysis: Long-Term Retention and Quality of 

Learning 
 

       Effectiveness was measured by the Long-Term Retention Rate 

(LRR), assessed via a comprehensive, unannounced diagnostic test 30 

days after the completion of the remedial path. The AI/RL model 

achieved the highest LRR at 82.8%. 

This superior retention rate confirms that the RL-optimized paths lead 

to deeper, more durable learning. The SGM's ability to identify 

underlying cognitive gaps, akin to the evidence-centered design 

principles in advanced assessment [19], ensures that the selected 

remedial content is not just a temporary fix but a true foundational 

reinforcement. By building knowledge upon a solid base, the AI/RL 

system creates stronger cognitive structures, contrasting with the often 

superficial learning achieved through simple repetition in SR and SAR 

models. The focus on qualitative diagnostic data supports the findings 

that data-driven AI significantly enhances educational quality [20]. 
 

C.  Discussion on Student Experience and Autonomy 

Beyond efficiency and effectiveness, student engagement and 

motivation are crucial outcomes. The perceived relevance of 

instruction directly impacts a student's willingness to engage in 

remediation [17]. 

 
Figure 3: Distribution of Average Time-to-Mastery Across 

Strategies 

 

       The dynamic and responsive nature of the AI/RL paths, combined 

with the immediate feedback provided by the automated assessment 

engine [14], fosters a higher sense of guidance and successful self-

regulation. The system consistently delivers content that addresses the 

student's most pressing need, leading to immediate success and 

positive reinforcement. This highly contextualized experience 

prevents the frustration associated with generic, repetitive 

remediation, which is often a major driver of disengagement. The 

design intentionally promotes student autonomy by providing clear 

progress indicators and relevant choices, aligning with the observed 

positive effects of dynamic assessment on student self-concept and 

motivation [17]. The consistent, data-backed relevance of the AI/RL 

intervention translates directly into a more positive and productive 

remedial experience. 

 

 
Figure 4: Student Engagement Metrics Over Sequential Remedial 

Sessions 

 

     The engagement data (Figure 4) provides strong evidence that the 

personalized sequence maintains student focus. While generic systems 
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suffer from high drop-off rates due to irrelevance, the AI/RL model's 

ability to sustain high engagement confirms that its optimized paths 

are not only efficient for the machine but also motivating for the 

human learner. 

 

 

VI.  FUTURE WORK 

 
      The successful conceptualization and simulated validation of the 

AI/RL model provide a robust starting point, but the system offers 

several compelling directions for future expansion, particularly in 

integrating affective computing, enhancing transparency, and building 

proactive capabilities. 
 

       A primary area for future research is the integration of Affective 

Computing to enrich the Student Gap Model. Currently, the SGM 

relies on cognitive data (what the student knows). However, a student's 

emotional state—such as frustration, confusion, or boredom—is a 

powerful predictor of learning failure or success [7]. Future iterations 

will incorporate Natural Language Processing (NLP) to analyze 

student interactions with the embedded conversational chatbot [16]. 

Linguistic cues, such as the use of discouraged language or repeated 

queries for the same help, can be translated into an Affective State 

Score. This score will be fed into the RL reward function, allowing the 

agent to select a different type of remedial action—perhaps a 

motivation-boosting micro-video or a simplified review—when 

frustration is high, even if the optimal cognitive move would be a 

challenging assessment. This expansion will ensure that the model 

supports the whole student, moving beyond purely academic metrics. 

Another critical development is the implementation of Explainable AI 

(XAI). The effectiveness of the Deep Q-Network stems from its 

complexity, which inherently makes its decisions opaque. To foster 

trust and facilitate adoption by educators, the system must be able to 

justify its recommendations. Future work will focus on developing a 

post-hoc interpretation layer that translates the RL agent's complex Q-

value calculations into human-readable rationale. For example, instead 

of simply presenting the next topic, the system could display: "We 

recommend reviewing 'Limits' (Module 2) now because our data 

indicates it is the missing prerequisite required to successfully master 

'Integration by Parts,' which is your ultimate goal." This transparency, 

which visualizes the SGM state and the path logic, is essential for 

transforming the system from a 'black box' tool into a transparent, 

collaborative guide [20]. 
 

       Finally, the model must evolve from a reactive system to a 

proactive system. The current design excels at remediation (fixing an 

existing gap). Future research will explore advanced RL techniques, 

such as Temporal Difference (TD) learning, which can be used to 

predict not just the probability of current mastery, but the probability 

of future failure or attrition. By identifying specific points in the 

learning trajectory where a student is statistically likely to lose 

motivation or fail an upcoming assessment, the RL agent can generate 

a preventative path. This involves assigning supportive, reinforcing 

content before the student demonstrates a gap, effectively moving 

beyond remediation to true, preemptive instructional support. 
 

      The long-term success and ethical deployment of this AI model 

also require rigorous testing against potential algorithmic bias. Future 

work must ensure that the DKT and DQN models do not inadvertently 

perpetuate or amplify existing achievement gaps based on 

demographic or interaction patterns, ensuring the personalized paths 

remain equitable and fair for all users [20]. 

 
 

Figure 4: Conceptual Model for Explainable AI (XAI) Integration. 

 

VII.  CONCLUSION 

 
      This research successfully proposed and detailed the architecture 

for an advanced AI model designed to generate and optimize 

personalized remedial learning paths. By integrating the high-

resolution diagnostic power of the Deep Knowledge Tracing (DKT)-

based Student Gap Model (SGM) with the sequence optimization 

capabilities of a Reinforcement Learning (RL) agent, the proposed 

system fundamentally improves upon current static and rule-based 

adaptive learning frameworks. 
 

      The simulated results confirmed the significant benefits of this 

novel approach, showing substantial improvements in both efficiency 

and effectiveness: the Average Time-to-Mastery (TTM) was 

drastically reduced, and the Long-Term Retention Rate (LRR) was 

notably increased. This superior performance is a direct result of the 

RL agent’s capacity to identify and sequence the optimal, non-linear 

path required to address the true, underlying prerequisite gaps. By 

making the remedial process highly relevant and time-efficient, the 

model also sustains student engagement and fosters greater self-

regulation. 
 

      The AI model for personalized remedial learning paths represents 

a vital evolutionary step in educational technology, transforming 

remediation from a time-consuming administrative burden into a 

highly efficient, intelligent, and personalized instructional mechanism. 

Future research will focus on integrating affective data and developing 

transparent Explainable AI features to ensure the system is both 

pedagogically robust and ethically sound for widespread adoption in 

higher education. 
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