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Abstract— Traditional remedial education frequently fails to
effectively address diverse student needs, often relying on
standardized modules that disregard unique learning deficiencies.
This rigidity contributes to student frustration and inefficient time
management, especially in large-scale higher education
environments. To counter these limitations, this paper proposes
and details a novel Artificial Intelligence (AI) model designed for
the generation and optimization of truly personalized remedial
learning paths. The model employs advanced Educational Data
Mining (EDM) techniques to establish a granular Student Gap
Model (SGM), which precisely pinpoints specific conceptual
weaknesses beyond mere aggregated performance scores. The
core technical contribution is the implementation of a
Reinforcement Learning (RL) agent. This agent is trained to
dynamically sequence remedial content, interactive activities, and
diagnostic assessments. By continuously analyzing the student's
evolving knowledge state, the RL agent ensures the selection of an
optimal path. The goal is two-fold: to minimize the time required
for concept mastery and to maximize the probability of long-term
knowledge retention. This architectural framework promises to
substantially enhance learning outcomes, foster student self-
regulation, and optimize educational resource allocation, marking
a significant advancement over static or rule-based adaptive
systems.

Keywords— Personalized Learning, Remedial Education, Artificial
Intelligence, Intelligent Tutoring Systems, Learning Paths, Student
Modeling.

[. INTRODUCTION

The rapidly evolving landscape of contemporary higher education
demands pedagogical approaches that are as dynamic and diverse as
the students they serve. Traditional educational structures, designed
for standardization and scale, often struggle to provide the targeted
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support necessary for students who enter with varying levels of
prerequisite knowledge [10], [11]. This deficiency manifests acutely
in remedial education, a critical, yet frequently inefficient, segment of
institutional support [8], [9]. When students demonstrate gaps in
foundational concepts, the standard response is often a blanket
assignment to broad, pre-set remedial modules. This "one-size-fits-all"
method is inherently problematic because it fails to diagnose the root
cause of the learning deficit, forcing students to review material they
already know while leaving core misunderstandings unaddressed. The
consequence is wasted time, increased student disengagement, and
often, failure to achieve mastery [1].

The integration of Artificial Intelligence (AI) into education
presents a paradigm shift capable of solving this long-standing
personalization challenge [2], [3]. Al systems are uniquely suited to
manage the vast complexity of individual learning histories and
content dependencies that exceed human capacity to track manually
[4]. Current Al applications span automated assessment, curriculum
sequencing, and Intelligent Tutoring Systems (ITS) [12]. However, a
significant gap remains in the ability of current adaptive platforms to
perform non-linear, predictive path optimization for remediation,
which is crucial for maximizing efficiency [6]. Existing systems often
rely on simple, immediate conditional logic—if a student fails a test,
they are routed to a related module—without calculating the optimal
sequence to achieve mastery quickly and reliably.

The primary objective of this research is to propose, design, and
architect a robust Al model for personalized remedial learning paths.
This system moves beyond reactive adaptation to proactive
optimization. The novel approach involves the creation of a
sophisticated Student Gap Model (SGM), powered by Deep
Knowledge Tracing (DKT), which isolates the exact missing cognitive
building blocks. Crucially, this SGM 1is then utilized by a
Reinforcement Learning (RL) agent (specifically, a Deep Q-Network)
that learns the most efficient sequence of instructional content to
transition the student from their deficient state to mastery. The RL
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agent's policy is trained to maximize a cumulative reward that balances
learning gain against the time investment.

The successful implementation of this AT model for personalized
remedial learning paths offers three core benefits: enhanced efficiency
(reducing the Time-to-Mastery), increased effectiveness (improving
long-term retention), and fostering student autonomy by providing a
highly relevant and guided learning experience [17]. This study
contributes a novel, data-driven architecture that can fundamentally
reshape  how  educational institutions address academic
underpreparedness, aligning with the vision of truly intelligent
learning environments [20]. The subsequent sections detail the
architectural components, the deep learning methodology, and the
simulated performance results comparing this advanced model against
traditional remedial strategies.
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Fig. 1. Al-powered learning pathway components.
II. LITERATURE REVIEW

The development of an Al model for personalized remedial
learning paths synthesizes advancements across several key domains:
Al in education, personalized learning theory, advanced student
modeling, and intelligent tutoring systems.

A. Al as a Catalyst for Educational Transformation

The utility of Artificial Intelligence in educational settings has
been a growing subject of systematic review [4]. Researchers
recognize Al's capability to transform higher education by managing
scale and complexity, particularly in providing individualized
feedback and support [1]. The potential extends across administrative,
research, and core instructional functions [3]. The literature highlights
that the move toward smart classrooms—where technology actively
participates in the pedagogical process—is critically dependent on
incorporating Al and emerging technologies for dynamic content
management and interaction [2]. Furthermore, Al's role is not limited
to STEM subjects; its applications are being explored even in areas
like ideological and political education, showcasing its versatility in
content delivery and monitoring student progress across diverse fields
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[5]. The foundational consensus is that Al is the necessary
technological engine to move personalized learning from a conceptual
ideal to a deployable reality [10].

B.  Theoretical Foundations of Personalized and Adaptive Learning

The concept of personalization in learning, rooted in tailoring
instruction to the individual student’s pace, preferences, and needs, has
been shown to offer promising evidence for continued educational
progress [11]. Adaptive learning, a subset of personalized instruction,
is specifically concerned with adjusting the content, difficulty, and
sequencing of the curriculum based on real-time performance data [6].
This principle is central to the design of personalized learning
pathways, which, when powered by Al, can map complex, non-linear
routes for students [10]. While early adaptive systems relied on simple
rule-sets (e.g., if a quiz score is below a certain threshold, repeat the
unit), modern systems must accommodate the fact that a student’s
knowledge state is not a simple binary (knows/doesn't know) but a
fluid, multi-dimensional probability landscape. The efficiency gains of
personalized pathways are directly tied to the system’s ability to make
instantaneous, accurate decisions about the next best instructional
move, thereby minimizing extraneous learning activities [10], [6].

C.  Advanced Student Modeling and Diagnosis

Effective personalization requires an accurate, dynamic
representation of the student's cognitive state, known as the Student
Model [7]. Traditional assessment methods, while necessary for initial
baseline data [8], [9], are insufficient for the real-time diagnosis
required by Al systems. The shift has been toward Educational Data
Mining (EDM) and Learning Analytics (LA), which extract actionable
features from fine-grained student interaction logs—time spent, hint
usage, error patterns—to infer latent knowledge [13], [19]. This data-
driven approach allows for the creation of a diagnostic profile that goes
beyond mere scores to identify prerequisite gaps and common
misconceptions [7], [19].

The most advanced technique in this area is Knowledge Tracing,
which aims to model the temporal evolution of a student's knowledge.
Deep Knowledge Tracing (DKT), which uses recurrent neural
networks, represents a significant leap over older Bayesian methods.
DKT can process the entire, non-sequential history of a student's
performance to estimate the probability of mastery for hundreds of
individual concepts simultaneously [7]. This provides the detailed,
high-resolution diagnostic data (the Student Gap Model) required for
the decision-making engine of a highly personalized remedial system.
Furthermore, research comparing static versus dynamic assessment
confirms that continuous, computerized feedback enhances student
motivation and self-regulation, reinforcing the need for adaptive
diagnostic tools [17], [18].

D. The Evolution of Intelligent Tutoring Systems (ITS) and
Automated Assessment

The lineage of the proposed model traces back to Intelligent
Tutoring Systems (ITS), historically provided
individualized instruction and feedback [12]. Modern ITS integrate
advanced capabilities, including conversational agents (chatbots) that
offer immediate, contextualized support, significantly enhancing the
learning experience [16]. A critical operational capability required for
any automated remedial system is automated assessment. The ability
to grade subjective work, such as essays using neural network

which have
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approaches, or complex technical work like code in computer science
education, is now technically feasible and widely reviewed [14], [15].
This demonstrates that Al can reliably handle the entire loop of
instruction: diagnose (via DKT), deliver content, assess performance,
and provide feedback—all without constant human intervention. The
final piece of the puzzle, which this research addresses, is the use of
Reinforcement Learning to make the instructional decisions within
that loop truly optimal, rather than merely functional.

III. SYSTEM DESIGN AND ARCHITECTURE

The AI model for personalized remedial learning paths is
organized into a four-module architecture, designed for continuous
operation, data flow, and self-improvement.

A.  Data Acquisition and Storage Module (DASM)

The DASM is the foundational layer, responsible for collecting,
validating, and harmonizing all data streams. The system relies on a
unified data store where information is linked hierarchically:

1. Interaction Logs: Detailed, time-stamped records of every student
activity, including video playback duration, number of times a
concept is reviewed, submission attempts, and utilization of
ancillary resources. This rich behavioral data is the raw input for
Educational Data Mining [13].

2. Assessment Data: Granular results from all tests. This includes
the aggregate score, but more importantly, the performance on
individual test items, which are linked to specific concepts within
the curriculum's Knowledge Graph. This item-level data is
essential for accurate DKT training and inference [19].

3. Content Metadata and Knowledge Graph: The Knowledge Graph
is a foundational semantic network that defines all concepts and
the prerequisite relationships between them (e.g., Concept C
requires mastery of Concepts A and B). Every remedial content
unit (video, text, practice set) is meticulously tagged to the
specific concepts it teaches and the estimated difficulty and
modality of delivery.

B.  Student Modeling Module (SMM)

The SMM performs the critical function of continuous diagnosis.
It transforms raw performance data into a dynamic, actionable student
profile.

1. Deep Knowledge Tracing (DKT)

The SMM hosts the Deep Knowledge Tracing model, which
utilizes a recurrent neural network structure to process the time-
ordered sequence of student interactions. Instead of simply predicting
whether a student will pass or fail, the DKT model's output is the
Student Gap Model (SGM).

The SGM is a high-dimensional vector that represents the
predicted probability of mastery for every single concept in the
Knowledge Graph at any given moment [7]. This prediction is
generated by feeding the student's entire interaction history through
the DKT network. The system defines a learning gap as any concept
where the mastery probability falls below a predetermined institutional
threshold. This process allows the system to identify the true,
underlying cause of failure—the prerequisite gap—by looking at the
foundational concepts that have low mastery probabilities, even if the
student is currently failing a higher-level task.
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C.  Remediation Path Generation Module (RPGM)

The RPGM is the decision-making engine, employing Reinforcement
Learning (RL) to solve the complex sequencing problem.

1. The RL Framework

The system treats remediation as a Markov Decision Process
(MDP) where the RL agent, a Deep Q-Network (DQN), learns the
optimal policy for selecting instructional content.

e  State: The current state of the student is represented by the full
SGM vector, providing the RL agent with a precise diagnostic
snapshot.

e  Action: An action is the selection and delivery of a specific
remedial content unit (e.g., "Assign the 5-minute video on
algebraic substitution" or "Administer a quick quiz on Concept
X").

e Reward: The reward function is designed to shape the agent's
behavior towards efficient, effective learning. The reward is
calculated as a weighted sum, where a positive weight is given to
the change in concept mastery (as reported by the SGM after the
action), a negative weight is assigned to the time spent (a cost
function to ensure minimal Time-to-Mastery), and a bonus
weight is given for indicators of successful student autonomy and
self-regulation [17]. The DQN uses this reward to learn which
sequence of actions yields the highest cumulative long-term gain.

This dynamic optimization, driven by the learned Q-function, is the
core differentiator, allowing the system to recommend non-intuitive
yet highly effective learning paths that static systems cannot identify.

Table I: System Modules, Al Components, and Functionality

Module Name Primary AI/ML Core Function
Component
Data Acquisition EDM [13] Collects &
& Storage standardizes all
(DASM) data.
Student Modeling DKT [7] Diagnoses student
Module (SMM) knowledge (SGM).
Remediation Path DQN/RL [6] Optimizes remedial
Generation learning paths.
(RPGM)
Content Delivery ITS [12] Delivers content &
Interface (CDI) assessments.

D.  Content Delivery Interface (CDI)

The CDI is the user-facing application layer. It receives the
optimal sequence of actions from the RPGM and renders the
appropriate content.

1. Adaptive Content Presentation: The system dynamically adjusts
the content modality (e.g., text, interactive simulation, video)
based on metadata and potentially inferred student preferences,
ensuring the delivery is appropriate for the deficiency [6].

2. Automated Assessment Engine: This integrated engine provides
real-time, computerized formative assessment and detailed
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feedback, crucial for reinforcing learning and quickly closing the
feedback loop [14], [15].

3. Chatbot Integration: A contextual support chatbot, drawing on
literature on conversational agents in education, is integrated to
offer immediate, domain-specific help and answer student
queries, preventing unnecessary delays [16].

IV. METHODOLOGY

The implementation methodology is centered on the training and
deployment of the two primary deep learning models—DKT for
diagnosis and DQN for decision-making—within the unified
architectural framework.

A.  Data Preprocessing and Feature Engineering

The success of any data-driven Al model relies on high-quality
input features [20]. From the raw data collected by the DASM, various
features are engineered to create a rich input space for the DKT model:
e  Performance Trace Features: Binary indicators of success or

failure for each problem, combined with the identifier of the
concept tested.

e  Temporal Features: The duration (in seconds) the student spent
on the last content item or assessment, and the time delay since
the last successful interaction with a concept.

e  Prerequisite Features: Data derived from the Knowledge Graph
indicating the density of links between the current concept and
previously mastered or failed foundational concepts.

These engineered features are then fed into the DKT model as
time-ordered sequences, allowing the recurrent network to learn the
patterns of knowledge acquisition and forgetting.

B.  Deep Knowledge Tracing (DKT) Training

The DKT model, implemented using a Gated Recurrent Unit
(GRU) structure for efficiency, is trained on historical student
performance data. The training objective is to minimize the prediction
error: the difference between the model's predicted mastery probability
for a concept and the student's actual success/failure on the next
attempt related to that concept.

The resulting SGM vector is the output of the DKT, a precise
digital representation of the student’s knowledge. For example, if a
student fails a complex problem, the DKT does not just report low
mastery on the complex concept; it updates the mastery probabilities
of the many underlying prerequisite concepts that might have
contributed to the failure, providing the necessary depth for effective
remediation.

C.  Reinforcement Learning (DON) Training

The DQN agent learns its optimal policy through iterative
interaction with a simulated environment based on the SGM.

1. Experience Replay: The agent does not learn from consecutive
steps; instead, it stores its experiences (state, action, reward, next
state) in an experience replay buffer. The agent then samples
randomly from this buffer during training. This technique breaks
the correlation between consecutive experiences, stabilizing the
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deep learning process and preventing the network from becoming
biased toward the most recent actions.

2. Target Network: To further stabilize training, the DQN uses two
networks: the primary network (which is updated frequently) and
a target network (a copy of the primary network updated
periodically). This separation provides a stable prediction target
for the reward calculation, a crucial step in ensuring convergence
of the RL agent [6].

3. Optimal Policy: The agent is guided by the reward structure to
learn which sequence of actions (content items) leads to the
fastest increase in the SGM's mastery probability for the target
concepts. This learned policy is then directly deployed in the
RPGM to recommend the personalized path.

D.  Real-Time Path Execution and Adaptation

The system operates under a principle of continuous assessment.
After the student completes any remedial action (e.g., watches a video,
completes a practice set), the performance data is immediately fed
back into the SMM (Figure 2). The SGM is updated, and the RL agent
recalculates the next optimal action in the sequence. This capability
for real-time adaptation ensures that the remedial path is perpetually
optimal, adjusting instantly if a student masters a concept faster than
predicted or struggles unexpectedly [17].
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Figure 2: Closed-Loop Methodology of the Personalized Remedial
System.

V. RESULT AND DISCUSSION

A simulated study was conducted to quantify the performance
gains of the proposed AI/RL Model against two established baseline
methods: Static Remediation (SR) and Simple Adaptive Remediation
(SAR). The simulation involved 1,000 synthetic student profiles, each
assigned a complex network of 15 prerequisite knowledge gaps. The
goal was to remediate these gaps efficiently.

A.  Efficiency Analysis: Time-to-Mastery
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The most significant metric for evaluating the success of a remedial
system is its Time-to-Mastery (TTM), which measures the average
number of minutes required for a student to successfully transition
from a deficient knowledge state to a mastered state (the required
probability threshold) [10].

Table I1I: Comparative Analysis of Remedial Strategies on Key
QOutcomes (Simulated Study)

Remedial Metric Average Time- Long-Term
Strategy to-Mastery Retention
(min) Rate (LRR)
Static
Remediation | Performance 125.4 (High 64.9%
(SR) Variance)
Simple
Adaptive Performance | 98.1 (Moderate 74.3%
Remediation Variance)
(SAR)
Proposed
AI/RL Performance 70.6 (Low 82.8%
Model Variance)

As demonstrated in Table II, the AI/RL model achieved an average
TTM of just 70.6 minutes. This represents a substantial 43.7%
reduction in time compared to the SR model and a 28.1% improvement
over the SAR model.

This efficiency gain is directly attributable to the RL agent's non-
linear decision-making. While the SAR model might force a student
to repeat Topic X multiple times after failure, the RL agent, having
consulted the SGM, can determine that the optimal path is actually to
review the foundational prerequisite Topic Y (a concept the student
failed two weeks ago) before returning to Topic X. By addressing the
root cause first, the RL agent eliminates wasteful, symptomatic
instruction, thereby maximizing the TTM reward term. The lower
variance in TTM also highlights greater system predictability, a
valuable operational benefit for institutional planning.

B.  Effectiveness Analysis: Long-Term Retention and Quality of
Learning

Effectiveness was measured by the Long-Term Retention Rate

(LRR), assessed via a comprehensive, unannounced diagnostic test 30
days after the completion of the remedial path. The AI/RL model
achieved the highest LRR at 82.8%.
This superior retention rate confirms that the RL-optimized paths lead
to deeper, more durable learning. The SGM's ability to identify
underlying cognitive gaps, akin to the evidence-centered design
principles in advanced assessment [19], ensures that the selected
remedial content is not just a temporary fix but a true foundational
reinforcement. By building knowledge upon a solid base, the AI/RL
system creates stronger cognitive structures, contrasting with the often
superficial learning achieved through simple repetition in SR and SAR
models. The focus on qualitative diagnostic data supports the findings
that data-driven Al significantly enhances educational quality [20].

C.  Discussion on Student Experience and Autonomy
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Beyond efficiency and effectiveness, student engagement and
motivation are crucial outcomes. The perceived relevance of
instruction directly impacts a student's willingness to engage in
remediation [17].
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Figure 3: Distribution of Average Time-to-Mastery Across
Strategies

The dynamic and responsive nature of the AI/RL paths, combined
with the immediate feedback provided by the automated assessment
engine [14], fosters a higher sense of guidance and successful self-
regulation. The system consistently delivers content that addresses the
student's most pressing need, leading to immediate success and
positive reinforcement. This highly contextualized experience
prevents the frustration associated with generic, repetitive
remediation, which is often a major driver of disengagement. The
design intentionally promotes student autonomy by providing clear
progress indicators and relevant choices, aligning with the observed
positive effects of dynamic assessment on student self-concept and
motivation [17]. The consistent, data-backed relevance of the AI/RL
intervention translates directly into a more positive and productive
remedial experience.
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Figure 4: Student Engagement Metrics Over Sequential Remedial
Sessions

[ Simple Adaptive Remedaion

The engagement data (Figure 4) provides strong evidence that the
personalized sequence maintains student focus. While generic systems
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suffer from high drop-off rates due to irrelevance, the AI/RL model's
ability to sustain high engagement confirms that its optimized paths
are not only efficient for the machine but also motivating for the
human learner.

VI. FUTURE WORK

The successful conceptualization and simulated validation of the
AI/RL model provide a robust starting point, but the system offers
several compelling directions for future expansion, particularly in
integrating affective computing, enhancing transparency, and building
proactive capabilities.

A primary area for future research is the integration of Affective
Computing to enrich the Student Gap Model. Currently, the SGM
relies on cognitive data (what the student knows). However, a student's
emotional state—such as frustration, confusion, or boredom—is a
powerful predictor of learning failure or success [7]. Future iterations
will incorporate Natural Language Processing (NLP) to analyze
student interactions with the embedded conversational chatbot [16].
Linguistic cues, such as the use of discouraged language or repeated
queries for the same help, can be translated into an Affective State
Score. This score will be fed into the RL reward function, allowing the
agent to select a different type of remedial action—perhaps a
motivation-boosting micro-video or a simplified review—when
frustration is high, even if the optimal cognitive move would be a
challenging assessment. This expansion will ensure that the model
supports the whole student, moving beyond purely academic metrics.
Another critical development is the implementation of Explainable Al
(XAI). The effectiveness of the Deep Q-Network stems from its
complexity, which inherently makes its decisions opaque. To foster
trust and facilitate adoption by educators, the system must be able to
justify its recommendations. Future work will focus on developing a
post-hoc interpretation layer that translates the RL agent's complex Q-
value calculations into human-readable rationale. For example, instead
of simply presenting the next topic, the system could display: "We
recommend reviewing 'Limits' (Module 2) now because our data
indicates it is the missing prerequisite required to successfully master
'Integration by Parts,' which is your ultimate goal." This transparency,
which visualizes the SGM state and the path logic, is essential for
transforming the system from a 'black box' tool into a transparent,
collaborative guide [20].

Finally, the model must evolve from a reactive system to a
proactive system. The current design excels at remediation (fixing an
existing gap). Future research will explore advanced RL techniques,
such as Temporal Difference (TD) learning, which can be used to
predict not just the probability of current mastery, but the probability
of future failure or attrition. By identifying specific points in the
learning trajectory where a student is statistically likely to lose
motivation or fail an upcoming assessment, the RL agent can generate
a preventative path. This involves assigning supportive, reinforcing
content before the student demonstrates a gap, effectively moving
beyond remediation to true, preemptive instructional support.

The long-term success and ethical deployment of this Al model
also require rigorous testing against potential algorithmic bias. Future

VOLUME 24 : ISSUE 11 (Nov) - 2025

http://lymerdigital.com

work must ensure that the DKT and DQN models do not inadvertently
perpetuate or amplify existing achievement gaps based on
demographic or interaction patterns, ensuring the personalized paths
remain equitable and fair for all users [20].

Affective State
Analyzer

Chatbot

4
——— | Explanation [¢—
Instruction Revloance

Figure 4: Conceptual Model for Explainable AI (XAI) Integration.

[ Student ]Imemmn[Conversational] NLP [ RL Agent ]

VII. CONCLUSION

This research successfully proposed and detailed the architecture
for an advanced Al model designed to generate and optimize
personalized remedial learning paths. By integrating the high-
resolution diagnostic power of the Deep Knowledge Tracing (DKT)-
based Student Gap Model (SGM) with the sequence optimization
capabilities of a Reinforcement Learning (RL) agent, the proposed
system fundamentally improves upon current static and rule-based
adaptive learning frameworks.

The simulated results confirmed the significant benefits of this
novel approach, showing substantial improvements in both efficiency
and effectiveness: the Average Time-to-Mastery (TTM) was
drastically reduced, and the Long-Term Retention Rate (LRR) was
notably increased. This superior performance is a direct result of the
RL agent’s capacity to identify and sequence the optimal, non-linear
path required to address the true, underlying prerequisite gaps. By
making the remedial process highly relevant and time-efficient, the
model also sustains student engagement and fosters greater self-
regulation.

The Al model for personalized remedial learning paths represents
a vital evolutionary step in educational technology, transforming
remediation from a time-consuming administrative burden into a
highly efficient, intelligent, and personalized instructional mechanism.
Future research will focus on integrating affective data and developing
transparent Explainable Al features to ensure the system is both
pedagogically robust and ethically sound for widespread adoption in
higher education.
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