Synthesis, characterization and evaluation of anti-microbial

action of oxazolidine substituted chalcone derivatives

Shreya Rajpoot*, Dr. Shivakant Shukla

Lakshmi Narain College of Pharmacy, Bhopal

*Corresponding Author

Email: lncpbho@gmail.com

Abstract

Five novel oxazolidine-chalcone compounds were synthesized and evaluated for antifungal action.

The preliminary anti-fungal activity of the synthesized compounds was studied by zone of

inhibition method and the IC₅₀ was calculated by broth dilution method. The yield of the

compounds was in the range of 61-38%. Moderate antifungal activity against both the tested fungal

strains was exhibited by the synthesized oxazolidine derivatives. The zone of inhibition exhibited

by RSO₂ was highest among all compound. RSO₁ exhibited slightly lower efficacy compared to

RSO₂ but higher than other compounds. This suggests the presence of any electron donating group

on the aromatic ring of side chain was beneficial for activity.

Keywords: Oxazolidine, chalcone, anti-fungal, zone of inhibition, inhibitory concentration

Introduction

Fungal pathogens are responsible for at least 13 million infections and 1.5 million deaths globally

per year, primarily in those with some compromised immune function [1]. Combined with delays

in diagnosis due to the nonspecific symptoms of severe disease, fungal infections are chronically

underdiagnosed, with a high degree of variability in the prognosis of affected patients [2]. This is

concerning as the number of immunocompromised patients, especially in those without human

immunodeficiency virus (HIV), has risen in the past decade. Accumulative studies have indicated

that Candida (albicans and non-albicans) and Aspergillus (Asp.) species account for most severe

clinical fungal infections [3,4].

Thus, the development of novel antifungal agents with low resistance and high efficacy is a priority [5]. Azoles and chalcone based compounds have been able to make most of the clinically used antifungal agents. Literature also points that oxazolidine based compounds have been the first antifungal compounds and the nucleus is widely investigated and able to bring out some promising compounds with antifungal actions.

In the present investigation we planned to design and synthesize novel chalcone linked oxazolidine derivatives with an objective to obtain potent antifungal compounds.

(Z)-1-phenyl-3-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one

Figure 1. Proposed structure

Material and Methods

Chemistry

The synthesis of target derivatives was prepared in accordance with the modification of scheme 1[6].

 $(E)\hbox{-3-phenyl-1-} (4\hbox{-}(2\hbox{-phenyloxazolidin-3-yl}) phenyl) prop-2\hbox{-en-1-one}, \textbf{RSO1-5}$

Scheme 1. Synthesis strategy

The steps involved in the synthesis of target compounds involved

- 1. Synthesis of 2-phenyloxazolidine
- 2. Synthesis of 4-(2-phenyloxazolidin-3-yl)benzaldehyde
- 3. Synthesis of chalcone derivatives

Synthesis of 2-phenyloxazolidine

In a round bottom flask, 0.01 mol of ethanolamine was placed and to it was added 15 mL ethanol.

To the solution was added 0.01 mol of benzaldehyde and 0.01 mol of potassium carbonate. The

reaction mixture was refluxed on boiling water bath for 3.5 h and the solution was cooled to obtain

the 2-phenyloxazolidine [3].

Synthesis of 4-(2-phenyloxazolidin-3-yl)benzaldehyde

A solution of 0.016 mol DIPEA and 0.01 mol 2-phenyloxazolidine was prepared in 20 mL acetone

and stirred at 0 °C for 15 min. To this solution was added 0.02 mol of 4-chlorobenzaldehyde

dropwise maintaining the temperature at 0 °C. On completion of addition, the reaction flask was

attached to reflux condenser and heated at room temperature for 2h under constant stirring. 20 mL

of cold water was added to the reaction mixture and stirring was continued for 1 h at room

temperature. The solid that precipitated was filtered under vacuum and dried to obtain 4-(2-

phenyloxazolidin-3-yl)benzaldehyde [7].

General method for the synthesis of chalcone derivatives

To a solution of 4-(2-phenyloxazolidin-3-yl)benzaldehyde (0.001 mol) and corresponding

acetophenone (0.001 mol) in acetic acid (10 mL) was added conc. H₂SO₄ (0.3 mL) and stirred at

10-20°C until the completion of reaction (≈72 h). The precipitate was filtered off and recrystallized

from acetic acid [4].

Chemical characterization of synthesized compounds

The various physical and chemical features of the synthesized compounds was studied using

reported methods [8-11].

Antifungal evaluation

The microorganisms used for the antimicrobial study were procured from Institute of Microbial

Technology, Chandigarh (MTCC). Aspergillus niger (MTCC 40) was used for the present

investigation. A few drops of the bacterial suspension were injected onto the surface of pre-poured,

3 mm-thick nutritional agar plates. The disc diffusion method was used to screen for antifungal

activity [12].

The synthesized oxazolidine-chalcone derivatives were dissolved in appropriate solvent to obtain the solutions of 25, 50, 75 & 100 μ g/mL. These solutions were used as the test samples. Using a cork borer (10mm), wells were created in the agar plate at equal intervals, and 200 mL of the oxazolidine (25, 50, 75, and 100 μ g/mL) were poured into each one. The plates were kept at 37 \pm 0.1°C for 72 hours to promote microbial development. Each plate's zone of inhibition was measured in millimeters.

The broth dilution technique was used to determine the minimum inhibitory concentration of the synthesized compounds. The final inoculum size (of fungal culture) was maintained to 10^5 CFU/mL. A set of tubes containing only the inoculated broth was used as the growth control, and one containing only the broth was used to ensure the sterility of the medium. All the tubes were incubated at 37° C for 72 h to allow for growth of micro-organism. After incubation, the optical density of the content from each tube was observed at 600 nm using UV-Visible spectrophotometer. The concentration that led to half of the optical density (50%) of the growth control tube was observed for each sample [12].

Results and Discussion

Chemistry

The synthesized compounds were coded as **RSO₁-RSO₅** and these compounds were tested yield (%), solubility, retention factor (R_f hexane-ethylacetate, 3:7) and melting point (°C).

(E)-3-(4-hydroxyphenyl)-1-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one, RSO₁

Yield: 65%; color: off-white; melting point: 221-223°C, R_f : 0.48; Mass: 371.4; 1H-NMR (δ , ppm): 3.59, 5.92, 6.87-7.83, 5.79; FT-IR(cm⁻¹): 3619, 1707, 1615, 815

(E)-3-(4-aminophenyl)-1-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one, RSO₂

Yield: 68%; color: pale-yellow; melting point: 204-206°C, R_f : 0.51; Mass: 370.45; 1H-NMR (δ , ppm): 3.91, 5.82, 6.69-7.83, 4.40; FT-IR(cm⁻¹): 3565, 1740, 1582, 852

(E)-3-(4-fluorophenyl)-1-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one, RSO₃

Yield: 61%; color: light brown; melting point: 206-208°C, R_f : 0.74; Mass: 373.43; 1H-NMR (δ, ppm): 3.59, 5.92, 6.99-7.83; FT-IR(cm⁻¹): 1708, 1628

(E)-3-(4-bromophenyl)-1-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one, RSO₄

Yield: 63%; color: pale-yellow; melting point: 219-221°C, R_f: 0.69; Mass: 434.4; 1H-NMR (δ, ppm): 3.91, 5.92, 6.99-7.83; FT-IR(cm⁻¹): 1708, 1582, 812

(E)-3-(4-nitrophenyl)-1-(4-(2-phenyloxazolidin-3-yl)phenyl)prop-2-en-1-one, RSO₅

Yield: 61%; color: dark yellow; melting point: 233-235°C, R_f : 0.61; Mass: 371.4; 1H-NMR (δ , ppm): 3.59, 5.92, 6.99-7.83; FT-IR(cm⁻¹): 1708, 1615

The synthesis of the oxazolidine in the first step was achieved by condensation of aminoethanol with carbonyl compound. The oxazolidine underwent substitution reaction with chlorobenzaldehyde to obtain the intermediate carbaldehyde. The carbaldehyde was subjected to claisen-schmidt condensation with acetophenones to obtain the desired chalcone.

The products were insoluble in water, methanol and DMSO while they were soluble in chloroform and were obtained in 61-68% yield. The structural identification of the compounds was done by FTIR spectroscopy to identify the functional groups present and ¹H-NMR spectroscopy to identify the protons in the molecules.

All the compounds exhibited the stretching and bending vibrations for aromatic C-C/C=C (1625-1575 cm⁻¹), C=O (1650-1750 cm⁻¹) and C-N (900-800 cm⁻¹), in the FTIR spectrum. The stretching vibrations corresponding to O-H (3500-3800 cm⁻¹) and N-H (3300-3600 cm⁻¹) and were also found in the corresponding compounds.

The proton NMR spectra presented the chemical shifts presence of protons of aromatic ring (6.8-8.3 ppm), oxazolidine hydrogen (3.59-3.91 ppm & 5.92 ppm) in all compounds.

Antifungal action

The zone of inhibition was measured to assess the preliminary antifungal activity of the synthesized oxazolidine-chalcone. Four concentrations of the oxazolidine were tested for antifungal action. Ketoconazole was used as the standard drug for antifungal action (Table 1).

Table 1. Zone of inhibition exhibited by compounds

Compound Code	Zone of Inhibition (mm)*			
	25µg	50μg	75µg	100µg
RSO ₁	-	-	15	21
RSO ₂	-	-	16	22
RSO ₃	-	-	15	17
RSO ₄	-	-	16	19
RSO ₅	-	-	15	17
Ketoconazole	23	-	-	-

Minimum Inhibitory Concentration (MIC)

The MIC value of the test compounds was determined using broth dilution method by measuring the optical density of the broth solution incubated with diluted drug samples (Figure 2).

The concentration that resulted in 50% optical density in comparison to the growth tube was taken as MIC of the test sample (Table 2).

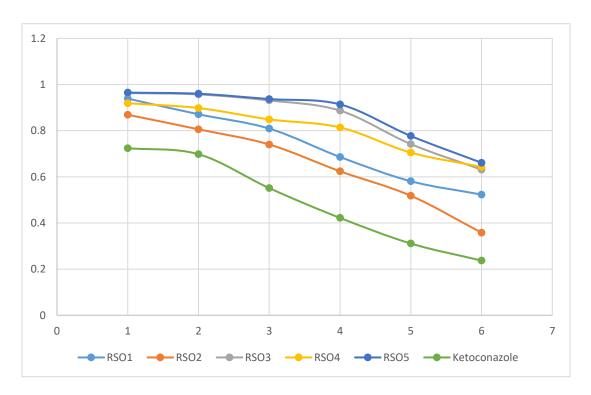


Figure 2. Plot of optical density vs. concentration

Table 2. Calculated IC₅₀ values of the test samples

Test sample	IC ₅₀ (μg/mL)	
RSO ₁	107.17	
RSO_2	62.51	
RSO ₃	168.97	
RSO ₄	144.76	
RSO ₅	161.43	
Ketoconazole	18.12	

The antifungal action was exhibited by the compounds against *A. niger* was exhibited by the compounds. The zone of inhibition exhibited by RSO₂ was highest among all compound. RSO₁ exhibited slightly lower efficacy compared to RSO₂ but higher than other compounds. This suggests the presence of any electron donating group on the aromatic ring of side chain was beneficial for activity.

Conclusion

In this work, oxazolidine-chalcone compounds were synthesized and evaluated for antifungal action. Compound RSO₂ was able to produce antifungal action against both the tested fungal strains in concentration less than $100 \mu g$. The structure can hence be optimized to obtain novel anti-fungal compounds with good potency.

Acknowledgements

The corresponding author would like to thank RB Science Research Lab, Bhopal for providing facilities to replicate the procedures.

References

1. F. Bongomin, S. Gago, R.O. Oladele, D.W. Denning. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi. 2017, 3, 57.

2. P.E. Formanek, D.F. Dilling. Advances in the diagnosis and management of invasive fungal disease. Chest. 2019, 156, 834–842.

- 3. D.A. Enoch, H. Yang, S.H. Aliyu, C. Micallef. Human Fungal Pathogen Identification; Springer: New York, 2017; Vol. 1508.
- 4. D. Allen, D. Wilson, R. Drew, J. Perfect. Azole Antifungals: 35 Years of Invasive Fungal Infection Management. Expert Rev. Anti-Infect. Ther. 2015, 13, 787–798.
- H. Su, L. Han, X. Huang. Potential Targets for the Development of New Antifungal Drugs.
 J. Antibiot. 2018, 71, 978–991.
- 6. Paulen A, Gasser V, Hoegy F, Perraud Q, Pesset B, Schalk IJ, Mislin GLA. Synthesis and antibiotic activity of oxazolidinone-catechol conjugates against Pseudomonas aeruginosa. Org. Biomol. Chem., 2015, DOI: 10.1039/C5OB01859E.
- 7. S.B. Bakare. Synthesis and biological evaluation of some hybrid 2-quinolinone derivatives containing cinnamic acid as anti-breast cancer drugs. Bull. Chem. Soc. Ethiop. 2021, 35(3), 551-564.
- 8. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (Editors). In: Vogel's Textbook of Practical Organic Chemistry. 5th edition, Longman, Singapore, 1989, pp. 26-33
- 9. Ault, A.; Determination of physical properties. In techniques and experiments for organic chemistry; University science books: Susalito. 1998, 138-240.
- Ault, A. Separate of substance publication of substances. In techniques 1 experiments for organic chemistry. University science books, chemistry. University science books. 1998, 44-37.
- 11. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (Editors). In: Vogel's Textbook of Practical Organic Chemistry. 5th edition, Longman, Singapore, 1989, pp. 197-233
- 12. Mishra R, Mishra B, Moorthy NSHN. Synthesis and antimicrobial evaluation of some 3,4-dihydropyrimidine-2-one derivatives. Trends in Applied Sciences Research, 2008; 3(2): 203-208.