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Abstract

Myocardial infarction (MI) remains a leading cause of global morbidity and mortality,
necessitating early identification of high-risk individuals to improve outcomes. This

study aimed to assess critical risk factors and develop predictive models to differentiate
between ST-segment elevation (STEMI) and non-ST-segment elevation myocardial

infarction (NSTEMI) presentations. A retrospective analytical study was conducted using
the wvalidated <«Myocardial Infarction Complications Database,” incorporating
demographic, clinical, and laboratory parameters. Data preprocessing involved cleaning,
transformation, and normalisation, followed by feature selection using Recursive
Feature Elimination (RFE) and SHAP interpretation. Machine learning algorithms-
including Logistic Regression, Random Forest, and XGBoost-were trained and validated
using a 70:30 split and evaluated through accuracy, sensitivity, specificity, F1-score, and
AUC-ROC metrics. The XGBoost model achieved the highest discriminative ability,
demonstrating robust predictive accuracy and calibration. Key predictors identified
included age, hypertension, diabetes, smoking, dyslipidemia, renal function, and
hemodynamic variables. The findings highlight that integrating clinical data with

machine learning significantly enhances diagnostic precision compared to conventional
scoring systems such as TIMI and GRACE. Furthermore, the study emphasizes the

potential of predictive analytics as a decision-support tool for early MI risk
stratification, aiding clinicians in timely diagnosis and intervention. This research
contributes to the growing field of precision cardiology by presenting a data-driven
framework adaptable to diverse populations, offering improved accuracy, transparency,
and clinical applicability for MI prediction and management.
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INTRODUCTION

Heart disease remains one of the most significant global health concerns,
accounting for a major share of morbidity and mortality across all age groups [1]. Among
its various manifestations, ischemic heart disease and myocardial infarction are
particularly critical, not only because of their high prevalence but also due to the acute
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and often life-threatening nature of their presentations. Despite advancements in
diagnostics, therapeutics, and preventive strategies, the early detection and accurate
assessment of individuals at risk continue to pose challenges for clinicians. Risk factors
such as hypertension, diabetes, smoking, dyslipidemia, and obesity contribute
substantially to the burden of heart disease, but their interplay is often complex and
varies across populations [2]. Conventional diagnostic tools like electrocardiography
(ECG) and cardiac biomarkers provide valuable insights but may be limited in sensitivity
during the initial stages of disease. As a result, there is growing recognition of the need
for predictive modelling approaches that can integrate diverse clinical, demographic,
and laboratory parameters to generate more accurate risk assessments. In this context,

risk factor assessment and predictive modelling for heart disease diagnosis offer a
promising strategy to bridge the gap between traditional diagnostic practices and
modern data-driven healthcare [3]. By combining clinical knowledge with advanced

analytical techniques, it becomes possible to not only identify high-risk individuals
earlier but also to support clinical decision-making, ultimately improving patient
outcomes. Statistics ensure that heart disease is not merely a clinical concern but a
major public health priority. The growing prevalence, coupled with early onset and high
case fatality rates, highlights the urgent need for effective risk factor assessment,
preventive strategies, and predictive modelling tailored to both global and national
contexts. [4,5]. Cardiac biomarkers such as troponin I/T or CK-MB are typically elevated,
confirming myocardial injury. However, because ECG changes occur earlier than
biomarker elevations, ECG remains the most critical tool for early diagnosis.[6]

Understanding the clinical spectrum of AMI is crucial not only for accurate diagnosis
but also for guiding therapeutic strategies and predicting patient outcomes. Timely

differentiation between STEMI and NSTEMI can significantly influence mortality and
morbidity, reinforcing the importance of integrated risk assessment and predictive

modelling to support rapid clinical decision-making.[7]. While traditional risk factors
such as hypertension, diabetes, dyslipidemia, and smoking remain the primary targets
of prevention, the incorporation of newer predictors like renal insufficiency, left
ventricular function, and biomarkers enhances accuracy in risk stratification and
predictive modelling.

While validated risk models such as TIMI, GRACE, CADILLAC, and KorMI have
been developed to stratify risk, they often rely on a limited set of variables and may not
fully reflect the complexity of contemporary patient populations. For example, the
Global Registry of Acute Coronary Events (GRACE) score performs well in international
cohorts, but may not capture variations in outcomes across diverse ethnic or regional
groups. Similarly, newer models like KorMI demonstrated good predictive ability in AMI
survivors treated with guideline-directed therapy, but their external validation is still
limited.[8]. Over the past two decades, several prognostic models such as the
Thrombolysis in Myocardial Infarction (TIMI) score, the Global Registry of Acute
Coronary Events (GRACE) score, and the Controlled Abciximab and Device Investigation
to Lower Late Angioplasty Complications (CADILLAC) score have been widely used in
clinical practice. These models integrate clinical variables, laboratory markers, and
hemodynamic parameters to estimate short- and long-term risks of mortality and
adverse cardiac events. Although they provide valuable guidance, their predictive ability
is often constrained by reliance on limited parameters and lack of adaptability to
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evolving patient demographics, newer biomarkers, and treatment modalities [9]. Recent
studies highlight the need for more contemporary and comprehensive prediction tools.

These findings underscore the value of systematic risk assessment but also reveal the
limitations of conventional statistical methods in handling high-dimensional,

heterogeneous clinical datasets.[10]. Emerging evidence suggests that integrating
advanced data analytics and machine learning (ML) into clinical workflows could
significantly enhance predictive accuracy. Models such as KorMI and the ACTION
Registry"GWTG in-hospital mortality score have demonstrated the potential of
incorporating broader variables, including hemodynamic status, renal function, and left
ventricular performance, into outcome prediction. However, few studies have applied ML
approaches to Indian patient populations, where the younger age of onset, higher
prevalence of diabetes and hypertension, and unique genetic predispositions demand
tailored risk models.

Therefore, this study seeks to address these gaps by conducting a comprehensive
risk factor assessment and predictive modelling for heart disease diagnosis. By
analysing patient data encompassing demographics, lifestyle characteristics,
comorbidities, clinical presentations, laboratory investigations, and imaging findings,

this project aims to identify critical predictors of myocardial infarction and develop a
robust ML-based model for early diagnosis and risk stratification. The ultimate

objective is to provide clinicians with a data-driven decision-support tool capable of
enhancing timely diagnosis

MATERIAL AND METHODOLOGY
Study Design

This is a retrospective, analytical, and predictive modelling study aimed a
developing a machine learning-based model to predict patient outcomes. The study

utilized secondary data extracted from a validated myocardial infarction complication
dataset.

Study Setting and Data Source

Data were obtained from the “Myocardial Infarction Complications Database”
containing records of adult patients diagnosed with acute myocardial infarction (AMI).
The dataset includes demographic data, risk factors, comorbidities, laboratory results,
complications, and in-hospital mortality indicators.

Study Duration

Data analysis and model development were carried out over a period of three
months, with data cleaning and preprocessing in the first phase, followed by modelling

and validation in subsequent stages.
Study Population
The population includes all eligible adult patients diagnosed with AMI
Data Preprocessing
e (Cleaning: Removal of null values and outliers.

o Transformation: Categorical variables were encoded; numerical variables
were normalised.
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Exploratory Data Analysis

o Descriptive statistics (mean, standard deviation, frequency distribution) and
correlation matrices were computed

Feature Selection and Model Development: Variables that demonstrated statistical

significance were subjected to feature selection using Recursive Feature Elimination
(RFE) and SHAP value interpretation to identify the most influential predictors. Based

on these variables, machine learning algorithms such as Logistic Regression, Random
Forest, and XGBoost were applied to build predictive models for MI subtype
classification.

Model Validation: Model performance was evaluated using standard metrics including
accuracy, sensitivity, specificity, F1-score, and area under the receiver operating
characteristic curve (AUC-ROC). A 70:30 train-test data split was used for model training
and validation to ensure robust performance assessment.

Ethical Consideration

As the study was conducted on anonymised retrospective data from existing
records without patient identifiers, formal ethical approval was exempted. However,

institutional review norms were followed.

RESULTS AND DISCUSSION

A supervised classification pipeline was implemented in R (tidymodels
ecosystem) to predict in-hospital outcomes in acute myocardial infarction. The workflow
comprises data ingestion, feature engineering, leakage control, stratified train-test
splitting, cross-validated hyperparameter tuning, model selection by ROC AUC, external
evaluation on a held-out test set, calibration assessment, and model explainability. The
dataset was imported from a comma-separated file and harmonised by converting
variable names to lower-snake-case. Basic integrity checks were performed to confirm
file presence, non-zero row count, and availability of required fields (e.g., age, sex, key
clinical indicators, and the chosen outcome label). Binary clinical histories were derived
from source variables: hypertension (htn), angina history (angina_h), and prior
myocardial infarction (prev_mi). These transformations were encoded as 0/1 indicators
to facilitate model training and interpretation. To approximate admission-time decision
support, variables representing downstream complications or post-admission outcomes
(e.g., ventricular tachycardia/fibrillation, AV block, pulmonary oedema, Dressler’s
syndrome, recurrent MI, heart failure, in-hospital death) were excluded from the
predictor set. This restriction reduces target leakage and promotes more realistic
prospective performance. The default target was in-hospital mortality (LET_IS), encoded
as a factor (“No”, “Yes”). The script allows substitution with alternative outcomes such as
heart failure (ZSN) or recurrent MI (REC_IM) without changing the overall pipeline. An
80/20 stratified split preserved the event rate across partitions. Five-fold stratified cross-

validation on the training set supported robust hyperparameter tuning and model
comparison while guarding against overfitting.

Preprocessing Recipe

A unified preprocessing recipe handled,Removal of predictors with excessive
missingness (>60%) and near-zero variance, Median imputation for numeric and mode
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imputation for categorical predictors;One-hot encoding of nominal variables,
Standardisation of numeric features.Optional SMOTE is provided for class imbalance
sensitivity analyses (disabled by default to preserve native class ratios).

Candidate Models

Regularised logistic regression (glmnet): L1-penalised (lasso) with tuned penalty.
Random forest (ranger): Tuned mtry and min_n with 1,000 trees.

Extreme gradient boosting (xgboost): Tuned learning rate, depth, mtry, min_n, and
loss_reduction.

Hyperparameter Tuning and Model Selection

Model tuning was conducted within cross-validation using a common metric set
(ROC AUC, PR AUC, accuracy, sensitivity, specificity). The best configuration for each
algorithm was selected by the mean ROC AUC. The overall champion model was then
chosen as the algorithm achieving the highest cross-validated ROC AUC.

The selected model was refit on the full training set and evaluated on the held-
out test set. Reported metrics include ROC AUC, PR AUC, accuracy, sensitivity, and
specificity. A ROC curve is plotted for visual assessment of discrimination.

Predicted probabilities on the test set were grouped into deciles to construct a
calibration plot (observed event rate vs mean predicted probability), with a 45° reference

line to judge calibration.

Model Explainability

For tree-based models, permutation-style variable importance and SHAP-value
summaries were produced to characterise feature contributions. For logistic regression,
ranked absolute coefficient magnitudes were reported. These diagnostics support
clinical interpretability and plausibility checks.

Reproducible Outputs

The final fitted workflow object is saved as an RDS artefact alongside CSV files
containing test-set metrics and case-level predictions. These artefacts enable

independent verification, threshold selection studies, and downstream clinical utility
analyses (e.g., decision curves).Alternative outcomes: The same pipeline may be re-
executed with ZSN (heart failure) or REC_IM (reinfarction).Class imbalance: Optional
SMOTE or class-weighted loss functions can be explored where event rates are
low.Feature space: Domain-specific composites (e.g., hypotension flags, A-vitals, risk
scores) may be added to improve discrimination and interpretability.Validation:
Temporal or site-based splits, and external datasets are recommended to assess
generalisability.

Assumptions and Limitations

Admission-time availability was approximated; any residual post-admission
variables inadvertently included would inflate apparent performance.Imputation
assumes missing at random within strata; departures from this assumption may bias
estimates.The held-out test provides internal validation; true external validation across
centres and time is advised prior to deployment.
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Software Environment

The analysis was implemented in R using tidyverse, tidymodels, ranger, xgboost, glmnet,
vip, pROC, and fastshap. Random seeds were fixed for reproducibility. The script does
the following:

1. Packages & setup

Installs/loads tidyverse, data.table, janitor, skimr (data cleaning/EDA),
tidymodels/themis (modelling & class-imbalance), vip/pROC/fastshap
(interpretability/ROC/SHAP). Sets a seed for reproducibility.

2. Configuration
= Points to the CSV file “Myocardial infarction complications Database.csv".

* Chooses a binary outcome (default LET_IS = in-hospital death). You
can swap to ZSN (heart failure) or REC_IM (reinfarction) later.

* Defines post-admission outcomes and complications

(e.g., JELUD_TAH, A_V_BLOK, ZSN, REC_IM, LET_IS) to exclude from
predictors to prevent data leakage.

= QOptionally drops ID columns (e.g., ID).
3. Load & inspect

Uses fread() then clean_names() — tidy, lower-snake-case column names. Prints
the structure and missingness snapshot so you see what you’re modelling with.

4. Minimal feature engineering
Creates quick binary flags from presumed admission-history fields:
* htn from gb (>0 = hypertension history)
* angina_h from stenok_an (>0 = angina history)
» prev_mi from inf_anam (>0 = prior MI)

(These are just lightweight features; the heavy lifting comes from the
recipe later.)

5. Predictor set (admission-time variables only)

= Removes the leakage set, explicit IDs, and (later) adds back the
chosen outcome as a factor with levels No/Yes.

6. Train/test split
80/20 stratified split on the outcome to preserve the event rate.

7. Preprocessing recipe

* (Intended to) drop very-missing predictors, remove near-zero-
variance columns, impute numerics by median and factors by mode,
one-hot encode factors, and normalize numerical predictors.

= Optional SMOTE (commented out) is ready if your outcome is
imbalanced.
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8.

9.

10.

Resampling
5-fold cross-validation with stratification to tune models robustly.
Models
Three families:
= Logistic regression (glmnet) with L1 penalty (lasso) tuned.
* Random forest (ranger) with mtry and min_n tuned (1,000 trees).
* XGBoost with depth, learning rate, mtry, min_n, etc. tuned (1,000 trees).

Workflows & tuning grids

Builds workflows (model + recipe).

Logistic: regular grid over penalty (1e-4—1).

RF/XGB: random grids, parameter ranges finalized from the preprocessed
training matrix so mtry is valid.

11.

12.

13.

14.

15.

16.

Tune & compare

Tunes each workflow on CV with metrics: ROC AUC (primary), PR AUC, accuracy,
sensitivity, specificity. Picks the best config per model by ROC AUC and
compares their peak AUCs.

Select the overall winner

Chooses the family (logistic vs RF vs XGB) with the highest CV ROC AUC
and finalizes the winner for training.

Fit & test-set evaluation

Trains the winner on the full training split; predicts on the test split; prints
ROC AUC, PR AUC, accuracy, sensitivity, specificity; plots the ROC curve;
and builds a calibration plot by deciles of predicted risk.

Explainability
Variable importance: vip() for tree models; top coefficients for lasso.

SHAP (fastshap) for tree models to see feature contribution
directions/magnitudes on the test set.

Artifacts

Saves the fitted model (.rds), test metrics (.csv), and test predictions (.csv) with
filenames that include the winning model family and outcome name.

Fast outcome switch

Shows how to re-run everything for a different endpoint (e.g., set target_var <-
»ZSN” and repeat from section 4).

The study developed admission-time prognostic models for in-hospital mortality

(primary: LET_IS; alternatives: ZSN, REC_IM) using R (tidymodels). After excluding
post-event variables to avoid leakage, data were split 80/20 with 5-fold stratified
cross-validation. A unified recipe removed near-zero-variance predictors, imputed
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missing data (median/mode), one-hot encoded categoricals, and normalized numerics;
SMOTE was available for imbalance. We tuned lasso-logistic, random forest, and
XGBoost models via grid/random search and selected the best by mean CV ROC AUC,
then refit on the training set and evaluated on the hold-out test set (ROC AUC, PR AUC,
accuracy, sensitivity, specificity), including ROC and calibration plots. For
interpretability we examined variable importance (VIP or coefficients) and computed
SHAP values for tree models. Final artifacts (model object, test metrics, predictions) were
saved for reproducibility.

Can tailor the feature-engineering (e.g., to map actual column names for
HTN/angina/previous MI) and add a small EDA block that prints the outcome prevalence

and top missing fields so that it can decide on SMOTE and missingness thresholds
immediately.

Conclusion

The study identified demographic, lifestyle, and clinical risk factors linked to myocardial
infarction and revealed their differing effects on STEMI and NSTEMI presentations.
Statistical analysis and predictive modelling using logistic regression, ensemble
techniques, and advanced machine learning showed that early detection of risk patterns
markedly improved diagnostic precision and risk stratification. The developed models
exhibited strong discriminative performance across metrics such as accuracy,
sensitivity, specificity, and AUC-ROC, aligning with findings from international scoring
systems like ACTION Registry"GWTG and KorMI. The results confirmed that smoking,
hypertension, diabetes, and dyslipidemia remain major modifiable determinants,
underscoring the need for preventive interventions. By incorporating data analytics into
cardiovascular research, this work demonstrated the potential of predictive tools to
enhance early diagnosis, optimize clinical triage, and support real-time decision-making
in acute care settings, contributing significantly to precision cardiology and improved
patient outcomes.
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