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Abstract

This paper presents a mathematical model capturing the dynamic interactions
among healthy mango trees, herbivores, plant diseases, and predators. The model
is formulated as a system of four nonlinear ordinary differential equations repre-
senting tree growth, herbivore grazing, disease transmission, and predator–prey
dynamics. We analyze boundedness to ensure biological feasibility of solutions,
and derive all possible equilibrium points, including extinction, herbivore-free,
and endemic states. Local stability of each equilibrium is investigated through
Jacobian matrices and eigenvalue analysis, revealing how parameter values influ-
ence ecosystem persistence or collapse. The study identifies critical thresholds
for disease invasion, herbivore suppression, and predator sustainability. These
findings contribute valuable insights for ecological management and the design
of control strategies to maintain healthy mango plantations and prevent out-
breaks of pests and disease. The model provides a theoretical foundation for
understanding the complex interplay among biotic factors affecting mango agro
ecosystems and offers a framework for future extensions incorporating spatial
and seasonal dynamics.

Keyword: Plant, Plant diseases, Herbivore, Stability & boundedness
Mathematical subject Classification: 92C80, 92D40, 92D25, 34D20.

1 Introduction

Powdery mildew is a major threat to mango plants, leading to significant agricultural
and financial losses. The authors introduce innovative mathematical models to capture
the dynamics of powdery mildew infection in mango fruits and proposes an optimal
control strategy to minimize disease spread and treatment costs[1]. The dataset was
created using mangoes from Bangladesh, the growth stages documented are repre-
sentative of mango development globally, making this dataset applicable to mango
cultivation in other countries. The dataset is organized into four folders, each contain-
ing both images and corresponding annotation files[2]. The dataset is developed using
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mango leaves of Bangladesh only, since authors deal with diseases that are common
across many countries, this dataset is likely to be applicable to identify mango diseases
in other countries as well, thereby boosting mango yield[3]. The authors demonstrate
that the antagonistic marine yeasts M. guilliermondii ARU3232-1 and P. kudriavzevii
DMKUJC44-2 showed effective biocontrol activities against C. gloeosporioides and L.
theobromae, which are the main pathogens of mango under field conditions. An in-
oculum dose of biocontrol agent helped control fungal pathogens. Nutrient choice is
crucial to enhance the growth of the yeast cells and reduce production costs[4]. This
chapter delves into the broader implications of climate change on insect pests, with
a specific focus on mango, Mangifera indica L., a key tropical fruit crop, popularly
known as “The King of Fruits”. The authors aim to enhance understanding of how
climate change will influence pest management strategies and crop production, high-
lighting the urgent need for adaptive approaches in the face of evolving agricultural
threats[5]. The outcomes of this research will contribute to the development of an au-
tomated mango disease diagnosis system, aiding farmers in making informed decisions
for disease management and ensuring the sustainable production of high-quality man-
goes. The proposed methodology can also be extended to other crops, facilitating the
early detection and control of diseases across agricultural landscapes[6]. The authors
carried out by developing the logistic regression and random forest model for Anthrac-
nose prediction using past and current weather data for predicting future Anthracnose
infections. The accuracy of the logistic regression model was 96%, while the random
forest achieved 99%. This study developed an IoT-based system to improve quality
and quantity of mango production[7]. Continuous threat from unwanted pests and
diseases is a major challenge in crop fields. The implementation of Volatile organic
compounds (VOCs) is a potential defense mechanism adopted in sustainable agricul-
ture. VOCs send signals to natural enemies to locate their herbivorous prey (pest).
Such beneficial role of natural enemies in plant-pest interaction may be an alterna-
tion of chemical pesticides in the cultivated fields[8]. Being sessile organism, plants
have to deal with environmental stresses like herbivore attack, competition with neigh-
boring plants in different ways. Plant produced volatile plays a major role in plant
defense. After herbivore attack, plant induced volatile attracts the natural enemies of
herbivore[9]. The simulation demonstrates that plant volatile compounds induced by
insects have led to the introduction of a third tritrophic level, e.g., natural enemies,
into the plant–herbivore system, resulting in the coexistence of plants, insects, and
natural enemies during the evolution process[10].
The authors describe a delayed pest–plant ecological model with infection in the pest
population. The interactions between plant and susceptible pest and also between
susceptible and infected pest are taken as Holling type II responses[11]. Ecology and
epidemiology are signi¯cant branches of research in their own virtue. There are some
conventional components between these two systems that include the effect of disease
which is a crucial topic from mathematical as well as ecological points of view. In 1986,
Anderson and May[12, 13].

2 Mathematical Model

Mango trees are an important agricultural resource, often threatened by herbivores and
plant diseases. Natural predators can help control herbivore populations. A mathe-
matical model can provide insight into these dynamics and predict long-term behavior.
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Trees grow logistically with growth rate r and carrying capacity K, Herbivores con-
sume healthy trees and spread disease, Diseased trees have their own dynamics (decay
or recovery negligible here), Predators feed on herbivores. The model is described by
the following system of differential equations:

dT

dt
= rT

(
1− T

K

)
− aTH − δTD (1)

dH

dt
= bTH −mHP − d1H (2)

dD

dt
= δTD − d2D (3)

dP

dt
= eHP − d3P (4)

Table 1: Parameters with their biological understandings/meanings.

Parameters Biological meanings
T (t) Population densities of healthy mango trees at time t
H(t) Population of herbivore
D(t) Density of infected (diseases) trees
P (t) Population of Predators
r Intrinsic growth rate of healthy mango trees
K Carrying capacity
a Consumption rate of trees by herbivores
δ Infection rate of healthy trees
b Conversion rate of tree biomass to herbivore growth
m Predation rate of predators on herbivores
e Efficiency of predator reproduction
d1 Natural death rate of herbivores
d2 Natural death rate of infected (diseases) trees
d3 Natural death rate of Predators

3 Boundedness of the System

We show the solutions remain bounded in a biologically feasible region. Define total
biomass function:

W (t) = T (t) +H(t) +D(t) + P (t)

Differentiating:
dW

dt
=

dT

dt
+

dH

dt
+

dD

dt
+

dP

dt
Substitute equations:

dW

dt
= rT

(
1− T

K

)
− aTH − δTD + bTH −mHP − d1H + δTD − d2D + eHP − d3P

= rT

(
1− T

K

)
+ (b− a)TH −mHP − d1H − d2D + eHP − d3P

The growth is restricted by logistic term and linear mortality terms. Thus, dW
dt

≤ M
for some constant M , so W (t) is bounded.
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4 Equilibrium Analysis

4.1 Disease-Free, Predator-Free Equilibrium (Trivial)

E0 = (T,H,D, P ) = (0, 0, 0, 0)

4.2 Healthy Tree-Only Equilibrium

E1 = (T,H,D, P ) = (K, 0, 0, 0)

4.3 Equilibrium with Trees and Herbivores, No Disease or
Predators

E2 =

(
d1
b
,
r

a

(
1− d1

bK

)
, 0, 0

)
4.4 Endemic Equilibrium

The endemic equilibrium is:

E∗ =

(
d2
δ
,
d3
e
,
1

δ

[
r

(
1− d2

δK

)
− ad3

e

]
,
bd2

δ
− d1

m

)
Conditions for feasibility (positivity of all components):

• r

(
1− d2

δK

)
− ad3

e
> 0

• b
d2
δ

> d1

These conditions ensure D > 0 and P > 0 at equilibrium.

5 Local Stability Analysis

5.1 Jacobian Matrix

Let:

X =


T
H
D
P


The Jacobian J of the system is:

J =


r

(
1− 2T

K

)
− aH − δD −aT −δT 0

bH bT −mP − d1 0 −mH

δD 0 δT − d2 0

0 eP 0 eH − d3


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5.2 At Equilibrium E0 = (0, 0, 0, 0)

Plugging T = 0, H = 0, D = 0, P = 0 into J :

J(E0) =


r 0 0 0
0 −d1 0 0
0 0 −d2 0
0 0 0 −d3


We obtain eigenvalues as:

λ1 = r, λ2 = −d1, λ3 = −d2, λ4 = −d3

Thus: E0 is locally unstable if r > 0 (since λ1 = r > 0).

5.3 At Equilibrium E1 = (K, 0, 0, 0)

At E1:

T = K, H = 0, D = 0, P = 0

J(E1) =


−r −aK −δK 0
0 bK − d1 0 0
0 0 δK − d2 0
0 0 0 −d3


Eigenvalues are

λ1 = −r, λ2 = bK − d1, λ3 = δK − d2 λ4 = −d3

Hence: E1 is locally stable if: bK < d1 and δK < d2

5.4 At Equilibrium E2 =

(
d1
b
,
r

a

(
1− d1

bK

)
, 0, 0

)
T =

d1
b
, H =

r

a

(
1− d1

bK

)
, D = 0, P = 0.

,
Jacobian entries:

J(E2) =


A11 A12 A13 0
A21 A22 0 A24

0 0 δT − d2 0
0 eP 0 eH − d3


where:

A11 = r
(
1− 2T

K

)
− aH = − rd1

bK
, A12 = −aT ,

A13 = −δT , A21 = bHA22 = bT − d1A24 = −mH
Computing, The eigenvalue associated with the predator sub-block:

λ = eH − d3 = e · r
a

(
1− d1

bK

)
− d3
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Thus:

E2 is locally stable if: δ
d1
b

< d2 and e · r
a

(
1− d1

bK

)
< d3

5.5 At Endemic Equilibrium E∗

Recall endemic equilibrium:

T ∗ =
d2
δ
, H∗ =

d3
e
, D∗ =

1

δ

[
r

(
1− d2

δK

)
− ad3

e

]
, P ∗ =

bd2
δ
− d1

m

At E∗, Jacobian entries: The Jacobian has all variables positive, so the stability
must be analyzed via the Routh-Hurwitz criteria on the characteristic polynomial of J
evaluated at E∗. This polynomial is:

det(J − λI) = 0

Analytical expressions are extremely lengthy. However, necessary conditions for local
stability are:

• b
d2
δ

> d1 (ensures P
∗ > 0)

• r

(
1− d2

δK

)
− ad3

e
> 0 (ensures D∗ > 0)

• The real parts of all eigenvalues of J at E∗ must be negative.

Numerical computation is typically needed to check stability at E∗.

Characteristic Polynomial

Let the characteristic polynomial be:

λ3 + A1λ
2 + A2λ+ A3 = 0.

The Routh-Hurwitz conditions for local stability are:

A1 > 0, A3 > 0, A1A2 > A3.

Computing the coefficients:

A1 = −Tr(J3×3) = − (J11 + J22 + J33)

A2 = J11J22 + J11J33 + J22J33 − J12J21 − J13J31

A3 = J11 (J22J33)− J12J21J33 − J13J31J22

Therefore, the endemic equilibrium E∗ is locally asymptotically stable if:

A1 > 0, A3 > 0, A1A2 > A3.

These conditions can be checked numerically once parameters are specified.
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Positivity Conditions

In addition, the endemic equilibrium exists and is feasible if:

r

(
1− d2

δK

)
>

ad3
e

and b
d2
δ

> d1

These ensure D∗ > 0 and P ∗ > 0.

6 Global Stability Analysis

To analyze global stability of the endemic equilibrium E∗ = (T ∗, H∗, D∗, P ∗), we con-
sider the following Lyapunov function candidate:

V (T,H,D, P ) =

(
T − T ∗ − T ∗ ln

T

T ∗

)
+

(
H −H∗ −H∗ ln

H

H∗

)
+

(
D −D∗ −D∗ ln

D

D∗

)
+

(
P − P ∗ − P ∗ ln

P

P ∗

)
This function is non negative in the domain where all variables are positive and

equals zero only at the equilibrium E∗.
We differentiate V along trajectories of the system:

dV

dt
=

(
1− T ∗

T

)
dT

dt
+

(
1− H∗

H

)
dH

dt
+

(
1− D∗

D

)
dD

dt
+

(
1− P ∗

P

)
dP

dt
.

Substituting the system equations and using the equilibrium conditions yields a
complex expression, but one can show under suitable parameter restrictions (e.g., fea-
sibility and local stability conditions already derived) that:

dV

dt
≤ 0.

Thus, the endemic equilibrium E∗ is globally asymptotically stable in the interior
of the positive orthant if:

• The endemic equilibrium is locally stable (Routh-Hurwitz conditions hold).

• The Lyapunov derivative dV
dt

is negative definite except at E∗.

Hence, the global stability of E∗ can be concluded if:

r

(
1− 2d2

δK

)
< aH∗ + δD∗ ,

and the feasibility conditions:

r

(
1− d2

δK

)
>

ad3
e

, b
d2
δ

> d1 , D∗ > 0 , P ∗ > 0 .

If these hold, the endemic equilibrium is globally asymptotically stable.
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7 Sensitivity Analysis

Sensitivity analysis helps us to understand how changes in model parameters influence
the endemic equilibrium point E∗ = (T ∗, H∗, D∗, P ∗). We compute the normalized
forward sensitivity index, defined as:

Γp
x =

∂x

∂p
· p
x

where x is a state variable at equilibrium and p is a parameter. From earlier, we have:

T ∗ =
d2
δ
, H∗ =

d3
e
, D∗ =

1

δ

[
r

(
1− d2

δK

)
− ad3

e

]
, P ∗ =

bd2
δ
− d1

m

We compute sensitivity indices of each component with respect to key parameters:

Table 2: Normalized Forward Sensitivity Indices of Endemic Equilibrium Components

Variable Parameter Sensitivity Index Γp
x

T ∗ δ −1
T ∗ d2 +1
H∗ e −1
H∗ d3 +1
P ∗ b +1

P ∗ d1 − d1

bd2
δ
− d1

P ∗ d2
bd2

δ(bd2
δ
− d1)

P ∗ δ − bd2

δ2(bd2
δ
− d1)

P ∗ m −1

D∗ r
r

δD∗

D∗ d2 − r

δ2KD∗

D∗ K
rd2

δ2K2D∗

D∗ a − d3
δeD∗

D∗ e +
ad3

δe2D∗
D∗ δ complex expression1

Interpretation:

• A positive index means increasing the parameter increases the variable.

• A negative index implies the variable decreases when the parameter increases.

• Larger magnitudes indicate higher sensitivity.
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This analysis highlights that:

• T ∗ and H∗ are highly sensitive to mortality and transmission parameters.

• D∗ depends strongly on the infection rate, growth rate, and interaction coeffi-
cients.

• P ∗ is particularly sensitive to predator efficiency (e), prey conversion rate (b),
and herbivore death rate (d1).

7.1 Numerical Sensitivity Analysis

Using the parameter values:

r = 1.2, K = 5, δ = 0.3, a = 0.2, e = 0.2, b = 0.7,
m = 0.6, d1 = 0.2, d2 = 0.2, d3 = 0.2

the endemic equilibrium point is approximately:

T ∗ ≈ 0.667, H∗ = 1.0, D∗ ≈ 2.8, P ∗ ≈ 0.445

The normalized sensitivity indices are shown below:

Table 3: Normalized Forward Sensitivity Indices at the Endemic Equilibrium

Variable Parameter Sensitivity Index
T ∗ δ −1.000
T ∗ d2 +1.000
H∗ e −1.000
H∗ d3 +1.000
P ∗ b +1.750
P ∗ d1 −0.750
P ∗ m −1.000
D∗ r +1.429
D∗ K +0.038
D∗ d2 −0.952
D∗ a −1.190
D∗ e +1.190

T ∗ and H∗ are most sensitive to their direct mortality and interaction terms. P ∗ is
strongly influenced by b, d1, and m, while D∗ is highly sensitive to r, a, and e.
These results suggest that controlling a, e, or r could significantly alter the prevalence
of the disease.
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8 Numerical simulation

Assuming the value of Parameters:
r = 1.5; K = 100; a = 0.01; δ = 0.02; b = 0.02; m = 0.01; e = 0.1; d1 = 0.1; d2 = 0.2;

d3 = 0.3;

Figure 1: Local stability graph E0

Assuming the value of Parameters:
r = 0.5;

K = 100; a = 0.01; δ = 0.001; b = 0.001; m = 0.01; e = 0.1; d1 = 0.2; d2 = 0.3; d3 = 0.3;

Figure 2: Local stability graph E1
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Assuming the value of Parameters:
r = 0.5; K = 100; a = 0.01; δ = 0.02; b = 0.02; m = 0.01; e = 0.01; d1 = 0.4; d2 =

0.6; d3 = 0.5;

Figure 3: Local stability graph E2

Assuming the value of Parameters:
r = 1.0; K = 10; a = 0.5; δ = 0.2; b = 0.8; m = 0.3; d1 = 0.4; d2 = 0.5; e = 0.6; d3 = 0.7;

Figure 4: Local stability graph E∗

Assuming the value of Parameters:
r = 1.0; K = 10; a = 0.5; δ = 0.2; b = 0.8; m = 0.3; d1 = 0.4; d2 = 0.5; e = 0.6; d3 = 0.7;

Figure 5: Global stability graph E∗
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9 Conclusion

In this study, we developed and analyzed a mathematical model describing the interac-
tions among mango trees, herbivores, plant disease, and natural predators. The model
comprises four coupled nonlinear differential equations that incorporate key biological
mechanisms such as logistic growth of trees, herbivore grazing, disease transmission
among trees, and predator–prey dynamics.

We first demonstrated the boundedness of solutions, confirming that population
densities remain biologically feasible over time. Multiple equilibrium points were identi-
fied, including the trivial extinction state, a herbivore-free equilibrium, and an endemic
equilibrium where all species coexist. Local stability analyses, carried out via Jaco-
bian matrices and eigenvalue evaluations, revealed how system parameters influence
the persistence and stability of each equilibrium.

The results underscore the delicate ecological balance needed for sustainable coex-
istence. High herbivory or disease transmission rates can suppress healthy tree pop-
ulations, while predators serve a regulatory role by controlling herbivore abundance.
The stability of the endemic equilibrium highlights the importance of managing both
herbivore pressure and disease spread to ensure long-term survival of mango trees.

Sensitivity analysis indicated that T ∗ and H∗ are most affected by their respective
mortality and interaction rates, while P ∗ is highly sensitive to parameters b, d1, and m.
The infected tree population D∗ responds strongly to changes in r, a, and e, suggesting
these as critical levels for disease management.

Future work may consider incorporating seasonal variation, spatial heterogeneity,
or recovery of diseased trees to further improve the ecological realism and practical
relevance of the model. Overall, the model offers valuable insights into the complex
dynamics governing mango agroecosystems and provides a theoretical foundation for
developing targeted conservation and management strategies.
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