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Abstract 

 

Pure and 5% manganese Mn-doped nickel oxide (NiO) thin films were synthesized through 

spray pyrolysis method and characterized for structure, morphology, optical, and antibacterial 

activity. X-ray diffraction (XRD) confirmed the development of a single-phase face-cantered 

cubic (FCC) structure of NiO with enhanced crystallinity on Mn doping. Field Emission 

Scanning Electron Microscopy (FESEM) showed porous granular morphology, and Energy 

Dispersive X-ray Spectroscopy (EDX) confirmed successful incorporation of Mn without 

secondary phases. Optical absorption measurements showed enhanced absorption and 

reduction in the optical band gap is 3.41eV (pure NiO) to 3.05 eV (Mn-doped NiO), reflecting 

enhanced light-harvesting capability. Antibacterial screening using the disc diffusion technique 

presented a significant decrease in the zone of inhibition for Mn-doped films, enhanced 

antibacterial activity. The paper confirms that Mn doping enhances the functional properties of 

NiO thin films significantly, and hence they are ideal candidates for optoelectronic devices and 

antibacterial surface coatings. 

 

Keywords: NiO thin films, Mn doping, Spray pyrolysis, XRD, UV-Visible spectroscopy, 
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1. Introduction 

 

Nickel oxide (NiO) is a highly versatile p-type wide band gap semiconductor that has attracted 

considerable interest owing to its remarkable combination of physical, chemical, and biological 

properties. It is widely explored in applications such as transparent electronics, electrochromic 

devices, solar energy conversion, photocatalysis, and antimicrobial coatings [1,2]. NiO’s 

inherent chemical stability, environmental benignity, low toxicity, and abundance in the earth’s 

crust make it a strong candidate for multifunctional materials in sustainable technologies [3,4]. 

Its face-centered cubic (FCC) crystal structure provides structural robustness, while its ability 

to form uniform thin films on diverse substrates makes it highly compatible with large-scale 

fabrication techniques. 

Despite these merits, pure NiO exhibits relatively low electrical conductivity and limited 

visible light absorption, which restricts its performance in optoelectronic and photoactive 

applications. These drawbacks can be effectively addressed through cationic doping, where 

suitable dopant ions are incorporated into the host lattice to modify its structural, electronic, 

and surface properties [5–7]. Transition metal doping has been shown to significantly influence 

the microstructure, defect chemistry, and band gap of NiO, thereby enhancing its functional 

performance [8,9]. 

Among potential dopants, manganese (Mn) offers distinct advantages due to its comparable 

ionic radius with Ni²⁺ (0.69 Å for Ni²⁺ and 0.67 Å for Mn²⁺) and its ability to exist in multiple 

oxidation states (Mn²⁺, Mn³⁺, Mn⁴⁺). This allows Mn to be incorporated into the NiO lattice 

with minimal structural distortion, while introducing beneficial defect states and modifying 

surface reactivity [10–13]. Such modifications are particularly important for antibacterial 

applications, where the material’s surface chemistry, morphology, and ion release behavior 

strongly influence bacterial inhibition performance. 
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NiO-based antibacterial coatings have attracted growing attention because they offer a non-

toxic, durable, and chemically stable means of preventing microbial contamination. The 

antibacterial effect of NiO is often attributed to mechanisms such as the generation of reactive 

oxygen species (ROS), release of Ni²⁺ ions that interfere with bacterial metabolism, and strong 

electrostatic interactions with negatively charged bacterial membranes. Incorporating Mn into 

NiO can further enhance or modulate these effects by altering the material’s surface charge, 

defect density, and photocatalytic activity under light exposure. These changes can increase 

bacterial cell membrane disruption and lead to improved antimicrobial efficacy against 

pathogenic microorganisms. 

In this context, the present study focuses on the synthesis of pure and Mn-doped NiO thin films 

via the spray pyrolysis method, a cost-effective and scalable deposition technique. The 

influence of Mn doping (5 mol%) on the structural, morphological, optical, and antibacterial 

properties of NiO is systematically investigated to evaluate its suitability for multifunctional 

applications, with a particular emphasis on enhanced antibacterial performance for potential 

biomedical and protective coating uses [15–20] 

 

2. Materials and Methods 

 

2.1 Chemicals and Reagents 

 

All reagents used in this study were of analytical reagent (AR) grade and utilized without any 

further purification. Nickel acetate tetrahydrate [Ni(OCOCH3)2·4H2O, 99% purity, AR grade] 

served as the precursor for NiO synthesis, while manganese acetate tetrahydrate [C4H6 

MnO4·4H2O] was employed as the Mn dopant source. Both chemicals were obtained from 

Merck, India. Deionized distilled water was used as the solvent in all solution preparations. 

Standard microscope glass slides (dimensions: 76 × 25 × 1 mm) were selected as substrates for 

thin film deposition. 

 

2.2 Substrate Preparation 

 

Prior to deposition, the glass substrates underwent a thorough cleaning protocol to enhance 

film adhesion and uniformity. Initially, slides were washed using a mild soap solution, followed 

by rinsing with deionized water. Subsequently, the substrates were soaked in freshly prepared 

chromic acid solution for 24 hours to eliminate residual organic and inorganic contaminants. 

After acid treatment, the substrates were rinsed multiple times with distilled water and air-

dried. 

 

2.3 Fabrication of Thin Films via Spray Pyrolysis 

 

Thin films of pure and Mn-doped NiO were synthesized using the spray pyrolysis technique. 

For the undoped films, a 0.1 M aqueous solution of nickel acetate was prepared by dissolving 

the appropriate quantity of nickel acetate in 20 mL of deionized water. To prepare Mn-doped 

NiO, manganese acetate was added to the precursor solution in such a way that the final doping 

concentration of Mn was 5 mol%. The spray system consisted of a glass nozzle connected to a 
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compressed air supply and a substrate holder maintained at 430 ± 5 °C. The precursor solution 

was atomized at a constant spray rate of 2 mL/min, with a nozzle-to-substrate distance of 28 

cm. The spraying process lasted for 10 minutes. After deposition, the films were subjected to 

thermal treatment at the same temperature (480 °C) for 2 hours in ambient air to ensure 

complete decomposition of the precursors and promote crystalline NiO phase formation. The 

resulting thin films, both pure NiO and Mn-doped, were found to be smooth, adhesive, and 

uniform. These samples were subsequently characterized to evaluate their structural, 

morphological, optical, and antibacterial properties. 

 

Results 

 

3.1 Structural Analysis 
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(b) XRD pattern of pure NiO and Mn-doped NiO samples 

 

The structural characteristics of undoped and 5 mol% Mn-doped NiO thin films were 

investigated using X-ray diffraction (XRD) within the 2θ range of 30° to 85°, as presented in 

Fig. a. The XRD patterns confirm the polycrystalline nature of the as-deposited films. All 

major diffraction peaks could be indexed to the (111), (200), (220), (311), and (222) planes of 

face-centered cubic (FCC) NiO, in good agreement with the standard JCPDS card No. 78-0643, 

confirming successful phase formation. In the case of the undoped NiO film, sharp and intense 

peaks were observed at approximately 2θ = 37.2°, 43.3°, 62.9°, 75.4°, and 79.3°, corresponding 

to the (111), (200), (220), (311), and (222) crystal planes, respectively. The dominant intensity 

along the (200) plane indicates preferential orientation and high crystallinity. Mn incorporation 
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at 5% level did not alter the fundamental peak positions, suggesting that the NiO lattice 

structure remains intact upon doping.  

Slight broadening and increased intensity of diffraction peaks were observed in the doped film. 

These changes suggest a decrease in crystallite size and improved crystallinity, which can be 

attributed to the successful substitution of Mn²⁺ ions into the Ni²⁺ sites within the NiO matrix 

[up to 23].  No additional peaks related to manganese oxide phases were detected, indicating 

the absence of any secondary phases or phase segregation. This further supports the hypothesis 

that Mn²⁺ ions are effectively incorporated into the NiO lattice without compromising phase 

purity. Additionally, the lack of noticeable peak shift implies minimal lattice distortion, likely 

due to the similar ionic radii of Mn²⁺ (0.67 Å) and Ni²⁺ (0.69 Å). The substitution may induce 

localized strain or distortion, but it does not significantly affect the overall crystal structure. In 

summary, Mn doping at 5% level enhances the crystalline quality of NiO thin films while 

preserving the single-phase FCC structure, making these films promising for multifunctional 

applications where both structural integrity and nanoscale features are crucial. 

𝐷 =
0.9𝜆

𝛽𝑐𝑜𝑠𝜃
   (1) 

𝜀ℎ𝑘𝑙 =
𝛽ℎ𝑘𝑙

4𝑡𝑎𝑛𝜃
                      (2) 

𝛿ℎ𝑘𝑙 =
1

𝐷ℎ𝑘𝑙
2       (3) 

 

a) XRD parameters for pure NiO and Mn doped NiO samples. 

 

Mn doping 

D 

(crystalline 

size) 

Dislocation 

density 

d 

(interplanar 

spacing) 

a 

(lattice 

parameter) 

lattice 

strain 

Pure NiO 14.90 0.004 0.1993 0.41 0.22 

5% 06.04 0.027 0.1994 0.41 0.01 

 

The small decrease of the particle size with Mn doping in NiO is in contrast to the case of Mn 

doped NiO, where Mn acts as a potential catalyst for nano-dot formation decreasing the particle 

size from 14.9 nm to less than 6.04 nm upon 5 at.% Mn. 
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3.2 Morphological Analysis 

 
b) Morphological size for pure NiO and Mn doped NiO samples. 

 

 

 

 

 

The surface morphology of pure and 5% Mn-doped NiO thin film was analyzed by Field 

Emission Scanning Electron Microscopy (FESEM) and is depicted as Fig. c. Both the samples 

are found to have an irregular porous granular structure of agglomerated nanoparticles. The 

morphology is found to have a uniform distribution and good substrate surface coverage. For 

undoped NiO, the surface composition consists of loosely packed, irregularly shaped grains 

with porosity [24, 25,26]. The slightly decreased porosity and more connected grains can be 

beneficial for charge transport and surface-related properties. The average grain size derived 

from FESEM images was calculated to be 26.37 nm for undoped NiO and 26.52 nm after 5% 

level of Mn doping in NiO. The surface morphology of the nanoparticles changes from 

flower to flake with the increase of dopant concentration till 5%. 

 

c) Atomic and weight %  for pure NiO and Mn doped NiO samples. 

Size Mn 

Pure NiO 26.37 

5% 26.52 

Atomic % Ni O Mn 

 0 26.76 73.24 0 
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The Spectra depict that the sample consists of elements Ni, Mn, and O only. No other 

impurities are present, which shows the good quality of the synthesized samples [27-30]. The 

atomic weight percentage of the prepared sample appeared at. It is well known that the complex 

metal oxides easily allow the oxygen excess and deficit. 

 

3.3 Optical Analysis 

 

d) Optical analysis 

 

The optical transmittance spectra of Mn-NiO films in the wavelength range from 300 to 1000 

nm are shown in Figure. The spectra shows that, the pure NiO film is more transparent than 

the doped sample. The transparency of Mn-NiO films decreases from approximately 59% to 

approximately 57% as Mn concentration increases from 0% & 5 at %.  Decrease in 

transmittance, upon Mn doping shows, increased light scattering due to the increased surface 

roughness and increased optical density [31,32,33]. The crystallization and grain size of Mn-

NiO films increase with Mn concentration, and the scattering effect occurs at higher Mn-doped 

concentration. The optical band gap was determined by extending the linear portion of the 

absorption curves. With increasing Mn concentration, the band gap of Mn-doped NiO films 

decreased from 3.41 to 3.05 eV, mainly due to reduced carrier mobility. This reduction is 

attributed to Mn ions acting as scattering centers, which obstruct the movement of charge 

carriers. [34-38] 
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3.5 Antibacterial Analysis 

 

 

 
1) Activity for undoped NiO                                       2) Activity for Mn doped NiO 5% 

 

The antibacterial efficiency of undoped and 5% Mn-doped NiO thin films was assessed by the 

Disc diffusion technique. Fig. X illustrates the zone of inhibition presented by the two samples 

against the E Coli. A distinct difference between the two samples in terms of antibacterial 

efficiency is evident. For the pure NiO, maximum inhibition zone was seen surrounding the 

film, indicating excellent antibacterial effects. This effect can be explained by the inert surface 

nature of pure NiO and its high interaction with cell membranes of bacteria.[39] 

Conversely, Mn-doped NiO (5%) film had a limited zone of inhibition, confirming minimal 

antibacterial activity. Pure NiO thin films attribute to enhanced antimicrobial functionality. 

This can be due to a number of factors like, Enhanced surface activity: Mn ions can modify the 

electronic structure and surface charge, leading to improved interaction with the negatively 

charged bacterial membranes. 

Increased ion release: Leaching of some of the Mn²⁺ ions can inhibit bacterial metabolic 

activities by affecting enzyme activity and DNA replication. These findings suggest that pure 

NiO not only improves the physicochemical properties but also confers great antibacterial 

potential, thus emerged as a strong candidate for antimicrobial coatings and biomedical 

applications [40]. 

 

4. Conclusion 

 

In this study, pure and 5% Mn-doped NiO thin films were successfully synthesized using the 

spray pyrolysis technique and comprehensively characterized in terms of their structural, 

morphological, optical, and antibacterial properties. XRD analysis confirmed that both samples 

crystallized in a single-phase face-centered cubic (FCC) NiO structure, with Mn incorporation 

enhancing crystallinity while preserving phase purity and lattice integrity. The reduction in 

crystallite size from 14.9 nm (pure NiO) to 6.04 nm (Mn-doped NiO) indicates that Mn 

substitution effectively influenced grain growth at the nanoscale. FESEM observations 

revealed a uniform porous granular morphology for both films, with Mn doping slightly 

improving grain connectivity and surface uniformity. EDX spectra confirmed the 
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homogeneous incorporation of Mn into the NiO lattice without any secondary phases or 

impurities, ensuring high material quality. Optical studies demonstrated that Mn doping 

reduced the band gap from 3.41 eV to 3.05 eV, attributed to defect state formation and 

improved light absorption in the visible range. These optical modifications can be beneficial 

for photoactive antibacterial applications where enhanced light–matter interaction supports 

antimicrobial activity. Antibacterial evaluation against E. coli revealed that pure NiO exhibited 

a pronounced inhibition zone, highlighting its intrinsic antimicrobial potential. The Mn-doped 

NiO film showed a modified antibacterial response, likely due to the combined effects of 

altered surface chemistry, defect distribution, and ion release characteristics induced by Mn 

incorporation. Such tunability in antibacterial performance opens pathways for tailoring NiO-

based coatings for specific biomedical and protective applications, where controlled bacterial 

suppression is required. Overall, the findings confirm that Mn doping is an effective strategy 

for modulating both the physicochemical and antibacterial properties of NiO thin films. The 

ability to engineer crystallinity, optical absorption, and surface reactivity positions Mn doped 

NiO as a promising multifunctional material for use in antimicrobial coatings, transparent 

protective layers, and bio-integrated optoelectronic systems. Future research could explore 

varying Mn concentrations, test activity against a broader range of pathogens, and assess long-

term stability under operational conditions to advance its real-world applicability. 
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