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Abstract  

 

The potentials of additive manufacturing (AM) transformed the engineering field through 

innovative, customized, and rapid fabrication of complex geometries. This study investigates 

the capabilities of fused deposition modeling (FDM) additive manufacturing to attain the 

desired mechanical properties of parts for engineering applications. FDM gained popularity 

due to its low cost, ease of use, versatility and suitability for various engineering parts of 

different materials. The experiments are designed based on Taguchi methodology to fabricate 

the test specimens using Polylactic acid (PLA) material. The mechanical test was conducted 

and data collected for statistical analysis. An Artificial Intelligence (AI) based hybrid 

approach is used for the parametric optimization. The results show a significant improvement 

in tested mechanical strength corresponding to the optimum parameters settings. The 

optimized parameters are validated through experiments in conjunction with findings of 

former researchers. It resulted to saving of manufacturing time and material with 9.77% and 

0.11% respectively with desired mechanical strength.  The outcomes of this study are 

significant for the engineers, researchers and practitioners to understand the parametric role 

of AM for engineering applications. 

 

Keywords: Additive manufacturing; Artificial Intelligence; Parametric Optimization; 

Mechanical Strength 

 

1. INTRODUCTION 

 

Additive manufacturing (AM), a revolutionary paradigm shift in engineering and 

manufacturing, has seen profound development, particularly in the area of extrusion-based 

methods. Extrusion-based AM, often referred to as fused filament fabrication (FFF) or fused 

deposition modeling (FDM), relies on the precise deposition of material, typically 

thermoplastic polymers or composite materials, through a heated nozzle onto a build platform 

(Dev and Srivastava, 2020; Yadav, et al, 2020; Dev and Srivastava, 2021; Yadav et al., 

2023). This process enables the layer-by-layer construction of three-dimensional objects with 

high precision. The extrusion-based approach offers several distinct advantages, including 
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compatibility with a variety of materials, ease of use, and relatively low equipment cost, 

making it amenable to a wide range of engineering applications. 

 

Recently, the use of extrusion-based manufacturing processes has increased significantly. 

This increase is driven by the desire to produce technical parts with better mechanical 

properties (Gupta, et al, 2019; Dev and Srivastava, 2021). Ensuring the desired strength in 

these parts is not just a choice; this is crucial for their effective use in various technical areas. 

These areas span a wide range of industries such as aerospace, automotive, consumer 

electronics, biomedical needs, snap fits, conceptual models for final manufacturing, casting, 

molding, and other plastic parts as shown in Figure 1 (Srivastava and Rathee, 2018a) where 

performance and reliability are of utmost importance. The FDM was also used to develop the 

security apparatus for defence application by many organizations such as RLM industries 

(US), Sheppard airbase firm, EOIR technology, Tiberius arms firm, etc. (Rathee et al., 2017).  

 

 
Figure 1 Engineering applications of EAM 

 

Many former research studies evaluated the effects of EAM process parameters on the part 

characteristics. The structural integrity and mechanical properties of fused deposition 

modeling (FDM) components inherently depend on the effectiveness of filament bonding, as 

highlighted in previous research (Sun, 2008). The quality of filament bonding is primarily 

determined by the temperature parameters used during the extrusion process and the 

environmental conditions under which the structure is constructed. Inadequate temperature 

control during the printing process can result in uneven adhesion of successive layers within 

the geometric configuration, thereby affecting the mechanical properties of the components. 

However, if the temperature significantly exceeds the glass transition temperature of the 

material, this promotes accelerated bonding between filaments, as previous studies show 

(Bellehumeur and Li, 2004). 

 

Samykano and colleagues (Samykano et al., 2019) conducted a comprehensive experimental 

investigation to confirm the influence of key printing parameters on the mechanical 

properties of fused deposition modeling (FDM) components. Their results showed a direct 

relationship between layer thickness, fill fraction and screen angle with the improvement in 

tensile strength, but at the expense of reduced toughness. In addition, the research examined 

the influence of variables such as layer height, grid orientation and infill density on the 

mechanical properties of FDM parts. To achieve superior mechanical properties, it is 

recommended to use a minimum layer thickness and an intermediate build orientation as 

suggested in a study by a previous researcher. Panda et al. (Panda et al., 2009) used design of 
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experiments (DOE) to conduct a study to investigate the dependence of the strength of the 

manufactured part on FDM parameters. The strength increases because only the layer 

thickness increases based on selected parameters. 

 

With the increasing demand for customer needs, FDM processes face some challenges in 

producing parts of the desired quality without the need to develop new material. It is not easy 

to develop a new material to achieve the desired properties for each applied part. Some of 

these challenges require more research attention. 

 

• It is critical for both manufacturers and consumers to gain a comprehensive 

understanding of how various factors affect the quality of FDM manufactured parts, 

including tensile strength, production time, and material consumption. 

• The influence of process parameters on the properties of the final part highlights the 

importance of their selection, analysis, optimization and validation. These parameters 

can be specific to the material, modeling or production process.  

• With the growing demand for multifunctional parts, there is a need for multi-objective 

optimization to meet different performance criteria simultaneously.  

• The main focus of FDM technology should be to produce reliable products with the 

desired properties while minimizing material consumption and manufacturing time. 

 

In recent years, more and more emphasis has been placed on finding the best process 

parameters in FDM process. Before starting production, it is essential to understand the 

relationships between process parameters, material properties and the desired quality 

characteristics of the desired part. However, it is important to note that there are no 

universally perfect process parameters that can achieve desired properties across all part types 

with minimal material input. Nevertheless, the relationship between process variables and 

part quality characteristics, especially when using combined artificial intelligence-based 

statistical methods, remains an under-researched area. Therefore, researchers and industry 

specialists are continually looking for new ways to improve the EAM process.  

 

The main aim of the study is divided into two objectives; 

• To study and experimental analysis of EAM process for mechanical properties. 

• Optimization of EAM to achieve the desired mechanical properties of PLA material for 

engineering applications.  

 

Taguchi methodology is used to design the experiments, and an AI-based integrated approach 

i.e. ANN-GA is used for multi-objective optimization of EAM process. Three process 

parameters such as layer thickness, feed rate and nozzle temperature are selected for the 

experimental observations concerning the response parameters.  

 

Layer thickness (LT):  The layer thickness is the layer size in the vertical direction. The 

value of layer thickness for most FDM machines is 0.254 mm.  Generally, the value of slice 
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height is affected by the type of material and nozzle size.(Tymrak, et al, 2014)(Rankouhi et 

al., 2017)(Mohamed et al, 2015).  

 

Feed rate (FR): The deposition rate indicates the extrusion rate of the semi-molten material 

through the die. A smaller layer thickness reduces the deposition rate and consumes more 

time and energy (Sood et al, 2012). By optimally selecting the process parameters, the 

desired product quality can be achieved with minimal use of resources. 

 

Nozzle temperature (NT): The nozzle temperature is the temperature at which the filament 

melts and is released through the nozzle, forming the layer of the part to be manufactured. 

Nozzle temperature controls fluidity and fluidity, which further controls proper bonding of 

grids and layers. It affects part integrity and mechanical properties. The nozzle temperature 

also influences the surface properties of parts due to the annealing of the model. 

 

2. METHODOLOGY 

 

2.1. Material and Experiments 

 

In this study, polylactic acid (PLA) is considered as a manufacturing material. PLA is a 

biodegradable and biocompatible thermoplastic polymer that is obtained from renewable raw 

materials such as corn starch or sugar cane. PLA is known for its environmental impact and 

ease of use, making it a popular choice in 3D printing and additive manufacturing. It is 

widely valued for its ability to produce parts with good mechanical properties and 

dimensional accuracy (Chacón et al., 2017; Chalgham et al, 2021; Kumar et al, 2021). 

 

The experiments are designed using the Taguchi approach in MINITAB-17 software. The 

Taguchi method is a powerful and widely used technique for experimental design and 

optimization (Sood, et al, 2009; Srivastava and Rathee, 2018b; Wankhede et al., 2020). Three 

process variables are selected at three levels such as layer thickness (0.20 mm, 0.30 mm and 

0.40 mm), nozzle temperature (220 °C, 230 °C, 240 °C) and feed speed (25.0 mm/s, 30.0 

mm/s and 35.0 mm/s). 

 

ASTM-D638 represents the reference standard for determining the appropriate dimensions of 

the tensile test specimen ( Tontowi et al., 2017). According to the chosen standard, the 

dimensions of the sample are: full length = 165 mm, distance between clamps = 115 m, 

parallel length = 57 mm, gauge length = 50 mm amd width of parallel section = 13 mm. 

Based on the designed experiments and standard dimensions sample parts fabricated using 

PLA thermoplastic filament. The setup of part fabrication is shown in Figure 2.  

 

 
Figure 2 Dimensions of specimen 
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Further the specimens are subjected to the mechanical test through universal testing machine 

(UTM). The material weight measurements were carried out using a high-precision Shimadzu 

ATX224 analytical balance with a capacity of 220 g and an accuracy of 0.1 mg. the stop 

watch is used to record the manufacturing time of each sample.  

 

2.2. Measurements  

 

The mechanical tensile test is carried out on Tinius Olsen Universal Tensile Machine at a 

constant strain rate of 0.01 per second (Dev and Srivastava, 2022). The load-displacement 

curve obtained by loading the samples on the machine to determine the point of ultimate 

tensile strength. The average tensile strength value of three similar samples was taken into 

account for the analysis. The test setups for tensile strength is shown in Figures 3. The 

electronic balance with a capacity of 220 g, registered trademark of Shimadzu Corporation 

Japan, was used to measure the sample mass. 

 

 
Figure 3 Setups (a) EAM machine (b) Extruder mechanism processing tensile sample (c) 

fabricated tensile sample (d) Mechanism processing gear train (e) UTM for tensile test 

 

3. RESULTS  

 

Table 1 presents the experimental results showing the average values of the response 

parameters corresponding to different input parameter combinations. The experimental data 

reveals that the maximum tensile strength achieved was 46.1 MPa (Run 4: layer thickness 0.2 

mm, nozzle temperature 230°C, feed rate 25 mm/s), while the minimum material weight was 

7.102 g and the minimum manufacturing time was 35.04 minutes (Run 25: layer thickness 

0.4 mm, nozzle temperature 240°C, feed rate 35 mm/s). These results demonstrate that 

achieving optimal values for all response parameters simultaneously through a single 

parameter combination is challenging, necessitating multi-objective optimization.. 
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Table 1 Experimental conditions and corresponding responses 

 

Exp.  

Run 

Layer 

Thickness 

(mm)  

Nozzle 

Temperature 

(°C) 

Feed Rate 

(mm/s) 

Tensile 

Strength 

(MPa) 

Manuf. 

Time (min) 

Material 

Weight (gm) 

1 0.2 220 25 45.2 37.59 8.891 

2 0.2 220 30 43.8 37.38 8.922 

3 0.2 220 35 42.5 37.17 8.945 

4 0.2 230 25 46.1 37.5 8.973 

5 0.2 230 30 44.9 37.32 8.992 

6 0.2 230 35 43.6 37.09 9.017 

7 0.2 240 25 44.7 37.43 9.039 

8 0.2 240 30 43.4 37.28 9.046 

9 0.2 240 35 42.2 37.03 9.094 

10 0.3 220 30 41.6 36.39 9.153 

11 0.3 220 35 40.3 36.18 9.177 

12 0.3 220 25 42.7 36.56 9.223 

13 0.3 230 30 42.4 36.32 9.254 

14 0.3 230 35 41.2 36.13 9.283 

15 0.3 230 25 43.6 36.51 9.318 

16 0.3 240 30 41.1 36.27 9.359 

17 0.3 240 35 39.9 36.07 9.394 

18 0.3 240 25 42.3 36.45 9.426 

19 0.4 220 35 38.4 35.17 9.462 

20 0.4 220 25 40.8 35.57 9.478 

21 0.4 220 30 39.6 35.39 9.511 

22 0.4 230 35 39.3 35.11 9.528 

23 0.4 230 25 41.7 35.52 9.549 

24 0.4 230 30 40.5 35.31 9.662 

25 0.4 240 35 38.2 35.04 9.619 

26 0.4 240 25 40.6 35.46 9.587 

27 0.4 240 30 39.4 35.25 9.642 

 

Table 1 also shows that increasing the layer thickness results in a noticeable reduction in 

tensile strength. The increased layer thickness leads to the formation of voids and a 

subsequent reduction in the number of bonds, which in turn leads to a reduction in the 

structural strength of the component (Nidagundi et al, 2015); (Tymrak et al, 2014); 
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(Rankouhi et al., 2017). Conversely, a smaller layer thickness leads to a significant change in 

the physical morphology of the component. This promotes more effective void filling by 

improving both inter- and intra-layer bonding interactions. 

 

Previous research studies, such as those conducted by Vicente and Leite in 2019, also 

examined analogous effects. Increasing the nozzle temperature results in a slight increase in 

the tensile strength (TS) of the printed object. This phenomenon is due to the critical role of 

nozzle temperature in influencing the bond quality between grids and layers, which 

ultimately determines the structural integrity and mechanical properties of the final 

component, as Sun noted in 2008 (Sun, 2008). The result is insufficient nozzle temperature in 

different regions. This leads to poor adhesion between the grids, resulting in reduced strength 

of the part. Conversely, a higher nozzle temperature coupled with a lower printhead speed 

improves the quality of the joints and thereby improves the mechanical properties of the part, 

as reported by Sun in 2008 and Dong et al. was confirmed (Sun, 2008); (Dong et al., 2018). 

Conversely, the tensile strength decreases with increasing feed speed. This decrease in tensile 

strength at higher feed rates may be attributed to the reduced time available for the first layer 

to effectively adhere to the subsequent layer, which in turn hinders the establishment of a 

proper bond between layers and ultimately reduces the strength of the final part, as described 

by Dong et al. observed (Dong et al., 2018). 

 

3.1. Artificial neural network Models 

 

The Artificial Neural Network (ANN) is a computational approach in the field of artificial 

intelligence that mimics the cognitive processes of the human brain for the purpose of 

information analysis and processing. Comprised of a complicated network of basic neural 

units, synapses and weight factors (Gupta et al, 2018); (Deshwal et al, 2020). The ANN has a 

remarkable self-learning ability that continuously refines its performance as it encounters 

ever larger amounts of data. To effectively use this capability, the first step is to construct the 

ANN model, which is created based on the input data and corresponding target values. The 

network is then trained and optimized. This training process is facilitated by applying the 

Levenberg-Marquardt algorithm, which fine-tunes the parameters of the network to produce a 

close match between input and target data. The degree of accuracy of this alignment is 

quantified by generating regression measures, often referred to as R-values. An R value close 

to 1 means a robust and precise correlation between the output of the network and the desired 

target, indicating a strong relationship. 

 

The architecture of an artificial neural network (ANN) consists of three different layers, 

namely the input layer, the hidden layer and the output layer, as shown in Figure 4. The input 

layer serves as an initial repository for the input variables, where relevant data is initially 

entered. The information is then passed from the input layer to the hidden layer, which 

processes and transforms this information through a series of interconnected neurons. Finally, 

the output layer provides the response data and provides the final output or prediction of the 

neural network in response to the given inputs. 
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The present study configures a hidden layer consisting of six neurons denoted as X1, X2, and 

X3. In this architectural framework, X1, X2 and X3 serve as the input process variables. The 

hidden layer is associated with bias terms, specifically b1, b2, b3, b4, b5, and b6, 

corresponding to each of the six neurons. Furthermore, connections between these neurons 

and the output layer are established through weight parameters w1, w2 and w3. The 

activation of these neurons is computed using the logarithmic sigmoid transfer function. 

Notably, to mitigate issues related to computational complexity and resource-intensive 

calculations, a simplified linear transfer function is adopted for the output parameters, 

ensuring a more streamlined and efficient processing approach.  

 

 
Figure 4 ANN architecture 

 

The main steps to obtain the mathematical models based on weight and bias values are as 

follows: Step 1: Normalize experimental data between 0 and 1 to reduce variability before 

using it in an artificial neural network. Step 2: Calculate the output of each neuron within the 

ANN, where each neuron processes data based on its specific properties. Step 3: Determine 

the final output of the network by aggregating individual neuron outputs, a crucial step in 

extracting insights and predictions from the ANN (Gupta and Pandey, 2018).  
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Figure 5 Regression plots corresponding to optimal training algorithm (A) TS (B) MT and 

(C) MW 

 

Regression measures, represented by R values, are used to quantify the extent of the 

relationship between the output and the target variables. Figure 5, labeled as (a), (b) and (c), 

shows different R values corresponding to different facets such as training, validation and test 

results for TS, MT and MW. The R value close to unity shows the close relationship. The 

artificial neural network architecture includes three different layers: the input layer, the 

hidden layer and the output layer. The input layer is used to host the input variables, forming 

the basis for subsequent network operations. 

 

Based on the neuron weight and bias values, the mathematical models are developed for 

selected responses as mentioned in Eq. 1, 2 and 3.  

 

Tensile stregth = 3.0037*N(1) – 0.15346*N(2) – 0.87704*N(3) - 2.5502*N(4) – 0.36295*N(5) – 

0.26836*N(6)  – 0.55494                                   

[1] 

Manufacturing time = 0.056924*N(1) – 0.94578*N(2) – 1.2931*N(3) + 0.14657*N(4) + 

0.76399*N(5) – 2.1098*N(6) + 2.1753                

        [2] 

Material = 0.066765*N(1) + 0.73868*N(2) + 0.59319*N(3) – 1.289*N(4) – 0.16728*N(5) + 

0.39071*N(6) + 0.23181                 

[3] 

In the mathematical models, N is representing the neuron. These models are further 

considered as objective functions in Matlab for optimization and getting the desired outputs.  

 

3.2. Multi-objective Optimization   

 

Achieving the desired performance with minimal resource conservation depends on the 

precise configuration of the process parameters. Achieving an optimized parameter set for 

one response variable may not necessarily match the optimization requirements of another, 

mainly due to the inherent conflicts between response variables. Therefore, to circumvent 

these challenges, the use of the multi-objective genetic algorithm within the MATLAB 
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software environment was considered essential for the optimization of artificial neural 

network based mathematical models. This algorithm, which acts as a search heuristic, is 

based on the principles of natural inheritance and offers an effective means of tackling such 

complex optimization tasks.  

 

The genetic algorithm (GA) was first conceptualized by Holland and colleagues around the 

1960s-1970s (Konak, Coit and Smith, 2006). The main steps of the algorithm are shown in 

Figure 6. The strength should be maximized and at the same time the material weight and 

manufacturing time should be minimized. The minimum and maximum ranges of the process 

parameters are considered constraints, e.g. 0.2 ≤ 𝐿𝑇 ≥ 0.4, 220 ≤ NT ≥ 240, 25 ≤ 𝐹𝑅 ≥

35. 

 

 
Figure 6 Multi Objective Genetic Algorithm 

 

After implementing the multi-objective genetic algorithm, many optimal solutions obtained 

corresponding to different parametric settings. The parameters providing the fabrication with 

minimum time are considered for the further validation. The optimized values of parameters 

are layer thickness= 0.25 nozzle temperature= 226.66 ℃ and feed rate is 28.18 mm/s with 

tensile strength 45.21 MPa, manufacturing time 9.02 and material 36.02 gram. The same 

parameters are used to fabricate the part to validate the optimized results. The fabricated 

specimen subjected to tensile strength test. The result represented graphically in Figure 7 and 

Table 2. The experimental results shows the tensile 44.71 MPa, manufacturing time 35 

minutes and material is 9.15 gram. 
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Figure 7 Tensile strength corresponding to optimized parameters 

 

Table 2 Result confirmation 

 

Particulars  Input Parameters Responses parameters  

Parameters  LT (mm) NT (℃) FR mm/s TS (MPa) MT (mins) MW (gm) 

Optimized 0.25 226.66 28.18 45.21 36.02 9.02 

Experimental  0.25 226 28 44.71 32.50 9.01 

Error (%)    1.10 -9.77 -0.11 

 

4. CONCLUSIONS  

 

This study focused on the potential of extrusion-based additive manufacturing for 

engineering applications. Using Taguchi methodology, authors designed experiments to 

produce test samples from polylactic acid (PLA) material. The subsequent tests provided us 

with valuable data for detailed statistical analysis. In addition, we have integrated an artificial 

intelligence (AI)-based hybrid approach to optimize the process parameters. The results of 

the study were very promising as achieved significant improvement in the mechanical 

strength of the components and further verified the optimized parameters through additional 

experiments in line with previous research results. Importantly, these optimizations translated 

into real benefits, with a significant reduction in manufacturing time (9.77%) and material 

consumption (0.11%) while achieving the desired mechanical strength. These results have 

far-reaching implications and provide valuable insights for engineers, researchers, and 

practitioners in the field. They shed light on the crucial role of parameter optimization in 

achieving the desired mechanical properties for technical components and contribute to the 

continuous development of additive manufacturing in technical applications, which 

ultimately improves resource efficiency and cost efficiency in the technical industry. 
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Figure legends 

 

Figure 1 Engineering applications of EAM 

Figure 2 Dimensions of specimen 

Figure 3 Setups (a) EAM machine (b) Extruder mechanism processing tensile sample (c) 

fabricated tensile sample (d) Mechanism processing gear train (e) UTM for tensile test 

Figure 4 ANN architecture 
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Figure 5 Regression plots corresponding to optimal training algorithm (a) TS (b) MT and (c) 

MW 

Figure 6 Multi Objective Genetic Algorithm 

Figure 7 Tensile strength corresponding to optimized parameters 

 

Table Captions 

 

Table 1 Experimental conditions and corresponding responses 

Table 2 Result confirmation 
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