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Abstract:
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some applications these are the generalizations of the results of the Hemant Kumar Nashine
and Wasfi Shatanawi [4].
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1. Introduction:

Fixed point theory shows a important role in many branches of mathematical analysis and its
applications, mainly in the study of nonlinear analysis, differential equations, and dynamic
systems. In recent years, significant attention has been devoted to the development of fixed
point results in partially ordered metric spaces, especially for mappings that exhibit
monotonicity properties.

A notable contribution in this direction was made by Hemant Kumar Nashine and Wasfi

Shatanawi [4], who established several fixed point theorems for mixed monotone mappings
using the concept of altering distance functions. Their results extended and unified many earlier
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fixed point theorems, providing a powerful framework for analyzing the existence of fixed and
coupled fixed points under weaker contractive conditions.

Motivated by their work, we aim to further generalize these results by developing new coupled
fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Our
approach is based on refined contractive conditions involving altering distance functions and
leverages the mixed monotonicity of the mappings. We also provide illustrative examples and
applications to demonstrate the validity and utility of the main results. These generalizations
not only encompass the findings of Nashine and Shatanawi but also contribute to the ongoing
development of fixed point theory in more generalized settings.

Recently established Hemant Kumar Nashine and Wasfi Shatanawi some fixed point

theorems for mixed monotone mappings by using altering distances function [4].
Hemant Kumar Nashine and Wasfi Shatanawi [4] established the following

Theorem 1.1.[4] Let (X, d, <) be an ordered metric space. Let F: X X X - Xand g: X - X
be mappings such that F has the mixed g-monotone property on X such that there exist two
elements x,, yo € X with g(xy) < F(x9,¥0) and g(vy) = F(yo, x9) -Suppose there exist
non-negative real numbers «, 5, L with « + 8 < 1 such that

d(F(x, v),F(u, v)) < [amin{d(F(x, y),g(x)), d(F(u, V), g(x))} +
pmin{d(F (x,y),gw)),d(F(w,v), g(w))} + Lmin{d(F(x,y), gw)),d(F (w,v), g(x))}]

forall (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v). Further suppose
F(X xX) € g(X) and g(X) is a complete subspace of X. Also, suppose that X satisfies the
following properties

1. If anon-decreasing sequence {x,} in X convergesto x € X then x,, < x for all n,

2. Ifanon-increasing sequence {y,} in X convergesto y € X ,then y,, > y for all n.
Then there exist x, y € X such that F(x,y) = g(x) and F(y,x) = g(y) thatis, F and
g have a coupled coincidence point (x,y) € X X X

Similarly we generalize the remaining results of Hemant Kumar Nashine and Wasfi Shatanawi

[4]

Delbosco[1] and Skof[3] introduced a new concept known as altering distances
Definition 1.1.([1] and[3])

A function y: RT —» R* s said to be an altering distances function if the following properties
are satisfied

1. 1 is continuous and strictly increasing on R*,

2. Y(t) = 0 ifand only if t=0 and
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3. Y(t) = MtH for every t > Owhere u > 0 and M > 0 are constants.
Note that such v is not necessarily a metric.

For example, ¥ (t) = t?

Definition 1.2 ([ 2]). Let (X, <) be a partially ordered set and F: X x X — X. The mapping F
said to have the mixed monotone property if F(X,Y) is monotone non-decreasing in X and

monotone non-increasing in y,that is, for any x,y € X,
x1, %2 €X, X Sxp = F(x1,y) S F(x2,))
and

Y1, Y2 €X, V1 SY2 = F(x,y1) < F(x,¥2).

Definition 1.2 ([2]). An element (x,y) € X X X is called a coupled fixed point of the mapping
F:XxX->XifF(x,y)=xand F(y,x) = y.

Theorem 1.3([4]). Let © denote the class of those functions 6:[0,+)? — [0,1) which

satisfies the condition for any sequences {t,,} , {s,} of positive real numbers
0(t,, sp,) = 1implies t,,s, = 0.

Definition 1.4. Let (X, d) be a metric spaceand F: X x X — X and g: X — X be mappings. We say
F and g commute if F(g(x), g(»)) = g(F(x,y)) forallx,y € X.

2. Main Results

Theorem 2.1. Let (X, d, <) be an ordered metric space. Let F: X x X - X and g: X — X be
mappings such that F has the mixed g-monotone property on X such that there exist two
elements x,, yo € X with g(xq) < F(x0,¥0) and g(yo) = F(yg, x¢) -Suppose there exist
non-negative real numbers «, 8, L with « + § < 1 such that

d(F(x,y),F(w,v)) + d(F(y,x)), F(v,u)) <

6 (d(g(), ), d(g(), g))) [a(min{d(F (x, ), 9()), d(F(u,v), g(x))} +
min{d(F(y, x), g(v)), d(F(v, u), g(v))}) + ﬁ(min{d(F(x, ), g(u)), d(F(u, V), g(u))} +
min{d(F(y, x), g(v)), d(F(v, u), g(v))}) +L (min{d(F(x, y), g(u)), d(F(u, V), g(x))} +
min {d (F(y, x), (g(v))) , d(F(v, u), g(y))})] (2.1.1)
forall (x,y), (u,v) € X x X with g(x) < g(u) and g(y) = g(v). Further suppose

F(X xX) € g(X) and g(X) is a complete subspace of X. Also, suppose that X satisfies the
following properties
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1. If anon-decreasing sequence {x,} in X convergesto x € X then x,, < x for all n,

2. Ifanon-increasing sequence {y,} in X convergesto y € X ,then y,, > y for all n.
Then there exist x, y € X such that F(x,y) = g(x) and F(y,x) = g(y) thatis, F and
g have a coupled coincidence point (x,y) € X X X

Proof: Let xy, yo € X be such that g(x,) < F(xq,y0) and g(vy) = F (o, Xo)
Since F(X x X) € g(X)

We can choose x;,y; € X suchthat g(x;) = F(xq,y,) and g(y,) = F(¥g,Xo)
In the same way we construct

g(xz) = F(xy,y1) and g(yz) = F(y1,x1)

Continuing in this way we construct two sequences {x,} and {y,,} in X such that

9(xne1) = F(xnyn) and g(yp41) = F(yn, x,,) foralln >0
(2.1.2)

Now prove that forall n > 0

9(xn) < g(xn41) (2.1.3)
and
9Wn) = g(Yn+1) (2.1.4)

We shall use the mathematical induction
Let n = 0 since g(xy) < F(x0,¥0) and g(yo) = F (o, x0)
In view of g(x;) = F(x0,¥0) and g(y;) = F(¥o, %)

We have g(xo) < g(x1) and g(yo) = g(v1)
That is (2.1.3) and (2.1.4) hold forn = 0

We assume that (2.1.3) and (2.1.4) hold for some n > 0

As F has the mixed g-monotone property and (x,) < g(xn+1) » 9On) = g(Vny1) from

(2.1.2)

we get

9(Xn41) = F(xn, ¥n) < F(Xns1, Yn) (2.1.5)
and

F(Yn+1,%n0) < F(n, %) = g(Vn+1) (2.1.6)
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Also for the same reason we have

g(xn+1) = F(xn+1: yn+1) = F(xn+1» yn) (2-1-7)
From (2.1.5) and (2.1.7)

9(xnt1) < g(xpi2)

and

FYns1%n) = Fns1 Xne1) = 9(Vns2) (2.1.8)
From (2.1.6) and (2.1.8)

9Wn+1) = 9(Vn+2)

Thus by the mathematical induction, we conclude that (2.3) and (2.4) hold forall n >0
We check easily that

g(xe) < g(x)) < g(x) <...< g(xpyq) o
and

9o 29) =2 9g(2) =...2 g(ns1) -
Assume that there is some r € N such that

d(g(x), gCer—1)) + d(g ), g(r-1)) = 0

Thatis g(x,) = g(xr—1) and g(y) = g(yr-1)
Then g(x;) = F(xy—1, ¥r-1) = g(x-1)
Therefore F (x,_1, yr—1) = g(%,_1)
and g() = F(yr—1, 1) = g(¥r-1)
Therefore F(yy_1, %r-1) = g(¥r_1)
That is F and g have a coupled coincidence point.
Now, we assume that d(g(x,), g(xn-1)) + d(9(0), g(¥n—1)) # 0

Since g(xp_1) < g(x,) and g(y,—1) = g(y,), form (2.1.1) and (2.1.2) we have

d(9(xXn+1), 9(6n)) + d(gWne1), 9O))
= d(F(xnfyn): F(xn—lfyn—l)) + d(F(Yn' xn))’F(yn—lﬁxn—l))
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< 0(d(g0xn), 9Ctn-1)), A(gO) g ¥n-1)) ) @(min{d(F (tn, y), 9 (), A (F (-1, Y1), ()}
+ min{d(F (Vn, Xn), g Vn-1)), A(F Wn-1,Xn-1), §n-1))})

+ B(min{d(F (xn, ¥n), 9(Xn-1)), d(F (X1, Yn-1), g (xn-1))}

+ min{d(F (Vn, %), 9Vn-1) ), d(F Wn-1, X-1), g Wn-1))})

+ L(min{d(F (xn, 1), g (tn-1)), d(F (X1, Yn-1), g (xn)) }

+ min{d(F (Yn, %), 9 (Vn-1) ), d(F Wn1, X-1), g¥)) })

6 (d(gCen), 9(xn-1)), (g0, g Y1) ) [a(min{d (g (tnsr), 9 (), d (g (), g ()}
+min{d(gWns1), 9Wn-1)), A9, 9Vn-1))})
+ B(min{d(g(xn41), 9(xn-1)), d(g(xn), g (xn-1))}
+min{d(gWn+1), 9 Wn-1)), (9O, 9 Vn-1))})
+ L(min{d(g(xns1), 9(n-1)), d(g (), 9 (x2))}
+ min{d(g(n+1), 9Wn-1)), d(g ), g))})]
=0/ (d(g(xn), 9(tn-1)), A(GOR), g ¥n-1)) ) [2(min{d (g Vns1), 9On-1)), (g D), g Fn-1))})
+ p(min{d(g(xn+1), 9(xn-1)), d(g ), 9 (tn-1))}
+min{d(gWn+1), 9Wn-1)), d(9 (), 9n-1))})]
=0 (d(g0en), 9Gtn-1)), A(9Om), g V=) ) [ad (g G, g Y1) + (9 (), 9 (1))
+Bd(9(), 9 n-1))]
=0 (d(g0n), 9(tn-1)), d(gO), g (¥n-1)) ) [2d (9 (3r), 9 (¥n-r))
+ Bd(g(xn), g(xn-1)) + Bd(9 (W), 9 (Yn-1))]
= 0 (d(g(tn), 9Ctn-1)), d(g ), 9m-1)) ) [2d (g G), 9 (¥n-1))

+ 8 (a9, 9(ta-1)) + d(g ), g ¥n-)))]
[(a + B)d(9 (), gn=1)) + Bd(g(x1), g (xn-1))]
[(@+ Bd(gm), gn-1)) + (a + B)d(g(xn), g(xn-1))]
= (a + A[d(gOn), gn-1)) + d(g(xn), g (xn-1))]

Set py, = d(g(xns1), 9(x)) + d(g(Vns1), 9(¥n)) @nd & = (& + B) then sequence {p,} is
decreasing as

<
<

0<pp<6pp_1 <6°ppz.. <8Py

Which implies
lim p, = lim d(g(n+1), 9(tn)) + d(g(Yne1), gOm)) = 0 (2.1.8)
Thus,

lim d(g(xn41), 9(n)) = 0
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and
Al_glo d(g(yn+1)' g()’n)) =0

We shall prove that {g(x,)} and {g(y,)} are Cauchy sequences

For each m > n, we have

d(g(xm), g(xn))
< d(g(em), 90en-1)) + d(g(xm-1), 9(tm-2)) + - + d(g(xns1), g(xn))

and

d(gm), 9(m))
< d(gm), 9Vm-1)) + A(GOm-1), Im-2)) + -+ d(gVns1), 9Om))

Therefore

d(g(xm);g(xn)) + d(g(ym)i g(yn)) S pm_l + pm_z + A + pn
S @™+ EMm 244+ 8M)pg

671
<
15"

Which implies that
Jim d(gCem), 9Gen)) + d(gOm), 9Om)) = 0 (2.1.9)

This imply that {g(x,,)} and {g(y,,)} are Cauchy sequence in g(X).

Since g(x) is a complete subspace of X. There exists (x,y) € X x X such that g(x,,) —
g(x) and g(yn) = g).

Since {g(x,)} is a non decreasing sequence g(x,) = g(x) and as {g(y,,)} isanon
increasing sequence g(y,) — g(v), by assumption we have g(x,) < g(x) and g(y,,) =
g(y) forall n.

Since d(g(xp41), F(6, ) + d(G(n+1), F(, %)) = d(F (% yn ), F(x,¥)) +
d(F(yn xn ), F(7,%))

< 6 (d(gCr), 90)), d(gO), 90) ) [a(min{d (F Cen, y), (), A(F (1, 3), 9 Gxn))}
+ min{d(F (yn, %), g()), d(F (v, %), g () })
+ B(min{d (F (xy, y), 9(x)), d(F (x,¥), g(x))}
+ min{d(F (yn, %), (), d(F v, %), g(0))})
+ L(min{d(F (xn, y), g(x)), d(F (x,¥), g (x,))}
+ min{d(F (yn, %), 9()), d(F (7, %), g(v))})]
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Taking the limit as n — oo in the above inequality

We get d(g(x), F(x,¥)) + d(g(y), F(y,x)) =0

Hence g(x) = F(x,y) and g(¥) = F(y,x)

Thus we proved that F and g have a coupled coincidence point.

Theorem 2.2. Let (X, <) be a partially ordered set and suppose there is a metric d on X such
that (X, d) is acomplete metric space. Let F: X X X — X and g: X — X be mappings such that
F has the mixed g-monotone property on X such that there exist two elements x,, y, € X with
g(xo) < F(xg,¥0) and g(vy) = F(yy,xo) . Suppose there exist n € & non-negative real
numbers a, 8, L with @ + 8 < 1 such that

d(F(x,y), F(w,v)) + d(F(y,x)), F(v,u)) <

6 (d(9(), 9),d(9(), g))) [a(min{d(F(x, ), g(x)), d(F(w,v), g(x))} +
min{d(F(y,x), g(v)),d(F (v,u), g))}) + B(min{d(F(x,y), gw)), d(F (w,v), g(w))} +
min{d(F(y, x), g(v)), d(F(v, u), g(v))}) +L (min{d(F(x, y), g(u)), d(F(u, V), g(x))} +
min {d (F(y, x), (g(v))) ,d(F(v,w), g(y))})] (2.2.1)

for all (x,y), (u,v) € X with g(x) < g(u) and g(y) = g(v). Further suppose F(X X X) <
g(X) and g is continuous non decreasing and commutes with F. and also, suppose either

a. Fis continuous or
b. X has the following property
i.  Ifanon-decreasing sequence {x,} in X convergesto x € X then x,, < x for
all n.
ii.  Ifanon -increasing sequence {y,} in X convergesto y € X then y, >y for
all n.

Then there exist x, y € X such that F(x,y) = g(x) and F(y,x) = g(y) thatis, F and g have
a coupled coincidence point (x,y) € X X X

Proof: Following the proof of Theorem 2.1we will get two Cauchy sequences {g(x,)} and
{g(yn} in X such that {g(x,)} is a non decreasing sequence in X {g(y,)} IS a nonincreasing
sequence in X. Since X is a complete metric space , there is (x,y) € X x X such that

g(x,) = x and g(y,,) — y. Since g is continuous, we have g(g(x,)) —» g(x) and

9g(gm)) = g).

First , suppose that F is continuous,

Then F(g(xn), () = F(x,y) and F(g(yn), g(xn)) = F(y, ).
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On other hand , we have F(g(x,), (%)) = g(F(Xn, ) = 9(g(xn+1)) = g(x) and
F(9(m), 9(x1)) = g(F(rn, xn)) = 9(g(¥n+1)) = g(¥).By uniqueness of limit, we get
g(x) = F(x,y)and g(y) = F(y,x).

Second, Suppose that (b) holds. Since {g(x,} is a non decreasing sequence in X such that

g(xn) = x, {g(y,)} is anon decreasing sequence in X such that g(y,,) = y,and gisa
nondecreasing function, we get that g(g(x,)) < g(x) and g(g(y,)) = g(y) hold for all n €
N by(2.2.1), we have

d(9(9Cen+1)). F6, ) + d(g(g(ns1)). F(, %))
=d (g (F(nyn)), F)+ d(g(Flmxn)) F2))

( (F(9xn,99)), F(x, y)) +d ((F (99n,9%0)), F(, x))

g@( g(g(xn)) g(x) (g(g(yn)),g(y)))
|a (min{d (F(g2a gyn). 9(9(x))) . d (F(x,), 9(g(xn)) )}

+min {d (F(gyn g2n), 9(gOm)) ) A(F (3,20, 9())})
+ B(min{d(F (gxn, g¥n), 9(0)), d(F (x,¥), g ()}

+ min{d(F (gyn, 9%2), 90)), d(F (v, %), g))})

+ L (min {d(F(gxn, g3), 9)), d (F(x, %), g(9(xa)) )}

+ min {d(F(gyn, 9%n), 9)), d (F (v, %), g(g(yn)))})]
<6 (d (9(g0en)) 9(0)) . d (g(g(yn)),g(y)»
| (min{d (9(gCens1)) 9(9(x))) . d (F (1), 9(gCxn)) )}
+min{d (g(g(n1)), 9(a0m) ), A(F (3, %), g)})
+ 8 (min{d (9(g(xns1)), 9)), d(F (x, ), 9(0))}
+mm{ (9(9Gmi).900),d(F, ), 9)})
(mm{ (g(g(xn+1)),g(x)), (F(x, Y)'g(g(xn)))}

+min{d (9(9me1)). 90)), a (F,20,9(9Gm))})]
Letting n —» 4+ we get d(g(x), F(x,y)) + d(g(y),F(y,x)) = 0 and

hence g(x) = F(x,y)and g(y) = F(y,x)

Thus we proved that F and g have a coupled coincidences point.
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Theorem 2.3:

In addition to the hypotheses of theorem 2.1. Suppose that L =0 and for every
(x,y),(x*,y") € X x X there exists a (u,v) € X xX such that (F(uv), F(v,u)) is
comparable to (F(x,y),F(y,x)) and (F(x*,y*),F(y*,x*)).Then F and g have a unique
coupled common fixed point, that is there exists a unique (x,y) € X X X suchthatx = g(x) =
F(x,y)andy = g(y) = F(y,x).

Proof:

From Theorem 2.1 the set of coupled coincidence points of F and g is non-empty. Suppose
(x,y) and (x*, y™*) are coupled coincidence points of F, that is g(x) = F(x,y) and g(y) =
F(y,x),

g(x*) =F(x",y")and g(y*) = F(y",x") then g(x) = g(x*) and g(y) = g(¥").
(2.3.1)

By assumption, there exists (u, v) € X x X such that (F(u, v),F(v, u)) is comparable to
(F(x,y),F(y,x)) and (F(x*,y*),F(y*,x*)). Put uy = u, v, = v and choose u,, v, € X s0
that

g(uy) = F(uy, vy) and g(v1) = F(vy, ue) then similarly as in the proof of Theorem 2.1, we
can inductively define sequence {g(u,)} , {g(v,)} suchthat g(u,.1) = F(u,, v,) and
J(Wni1) = F(vy, uy) foralln.

Further , set xo = x,yo = y,x" = x", y*, = y" and , on the same way, define the sequence
{g(x)} {gOm)}and {g(x*n)} {g(y*, )} Then it is easy to show that

g(xn) = F(x,)

gm) = F(y,x)

g(x*n) = F(x",y7)

g(y*,) = F(y*,x*) foralln > 1

(F(x, ), F(y,%)) = (F (x0,%0), F 0, %0)) = (g (x1), 9(v1)) = (9(x), 9(»))

and

(F(u,v), F(v,w)) = (g(uy),g(v,)) are comparable, then g(x) < g(u,) and g(y) = g(v,)
it is easy to show that(g(x), g(v)) (g(u,),g(v,)) arecomparable thatis g(x) < g(u,)
and g(y) = g(vy) forall n > 1 thus from(2.1.1) , we have

d(g(x): g(un+1)) + d(g(y),g(vn+1)) = d(F(x’ y)'F(un'vn)) + d(F(y' x);F(vnvun))
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<0 (d(g(x),g(un)), d(g(y),g(vn)))

[a(min{d (F(x, y), g(x)), d(F (un, vn), g(x))} +
min{d(F (y,x), g(vn)), d(F (Vn, ur), g(vn))}) +
B(min{d(F(x,y), g(un)), d(F (v, un), g(un))} +
min{d(F (y, x), g(vn)), d(F (Vn, un), g (v)) D]

<8 (d(9(0), 9, d(9 ), () ) [a(min{d(g(x), g(x)), A(F (uy, ), g ()}

+ min{d(g(y), g(vy)), d(F (v, uy), g(vn))})
+ B(min{d(g(x), g(u,)), d(F (vn, up), g(un))}
+ min{d(g(y), g(n)), d(F (v, up), g(n))}]

= (a +B)d(g(), g(v)) + Bd(g(x), g(un))

< (a+B)d(g(), g(wn)) + (a + B)d(g(x), g(un))
< (a+P)[d(g(x), g(un)) + d(g ), g(wn))]

< (a+B)*[d(g(x), g(un)) + d(g (), g(vn))]

< (a+p)"d(g(x), g(wn)) + d(g (), g(vy)]

Taking the limitas n — co we get

lim d(g(x), g(w,)) +d(g (), g(w)) = 0

lim d(gG,g@)) =0, lim d(g(),9(v)) = 0 (232)
Similarly, we show that

lim d(gG),g@)) =0, lim d(g(y),g(v)) =0 (233)
By the triangle inequality (2.3.2) and (2.3.3)

d(g(x), g(x")) < d(g(x), g(uns1)) +d(g(x"), g(Uns1)) = 08 n - oo

d(g(.90r) < d(g¥), gWn+1)) + d(g(r*), g(Wns1)) > 0 as n > oo
we have g(x) = g(x*) and g(y) = g(¥")

This implies that d(g(x), g(»)) = d(g(x*),g(»")

Since g(x) = F(x,y) and g(y) = F(y,x)

VOLUME 23 : ISSUE 11 (Nov)- 2024 Page No:1508



YMER || ISSN : 0044-0477 http://ymerdigital.com

g(g(®) = g(F(x,¥) =F(g(x),9(»)) and g(g») =g(F . x) =F(g(), g(x))
(2.3.4)

Denote g(x) =zand g(y) =w

Then g(z) = F(z,w) and g(w) = F(w, 2) (2.3.4)
Thus (z,w) is a coupled coincidence point.

Then from (2.3.3) with x* = zand y* = w it follows g(z) = g(x) and g(w) = g(y).
Thatis g(z) = zand g(w) = w. (2.3.5)
From(2.3.4) and (2.3.5)

z=gz)=F(zw)andw = g(w) = F(w, 2)

Therefore (z,w) is a coupled common fixed point of F and g.

To prove the uniqueness, assume that (p, q) is another coupled common fixed point .
Then by (2.3.4) we have p = g(p) = g(z) =zand q = g(q) = g(w) = w.

Therefore (z,w) is a unique coupled common fixed point of F and g.

Theorem 2.4: In addition to hypotheses of Theorem 2.1, if gx, and gy, are comparable and
L =0, then F and g have a coupled coincidence point (x,y) such that gx = F(x,y) =

F(y,x) =gy .

Proof: By Theorem 2.1 we construct two sequences {x,} and {y,} in X such that gx, — gx
and gy, — gy where (x,y) coincidence point of F and g. Suppose gx, < gy, , then
inductively

gxn < gy, andforalln e N U {0}.

Thus, by (2.1.1) we have

A( gxn, gyn) + A(gYn, 9xn) = A(F (Xp-1,Yn-1) F Yn-1,%n-1)) +
d(F(yn—l'xn—l)'F(xn—llyn—l))

< 0 (d(9(tn-1) 9n-1)) d(gFn-1), 9(xn-1)))

[a(min{d (F (xp-1, Yn-1), 9 (Xn-1)), A(F V-1, Xn-1), 9 (Xn-1))}
+ min{d(F (Yn—1, Xn-1), 9 (Xn-1)), A(F (Xn—1, Yn-1), 9 (Xn-1))})
+ B(min{d(F (xn-1, Yn-1), 9Wn-1)) A(F Vn-1, Xn-1), (Yn-1))}
+ min{d(F (Yn—1, Xn-1), 9 (Xn-1)), d(F (Xp-1, ¥n-1), g (xn-1))})]
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< 0 (d(9Gitn-1), 9¥n-1)), d(gYn-1), 9 (tn-1)) ) [€(min{d (g (), g (¥n-1)), A(G (), 9 (n-1))}

+ min{d(g(vn), 9(xn-1)), d(g(x), g(xn-1))})
+ p(min{d(g(xn), g(Vn-1)), d(g V), g(Yn-1))}
+ min{d(g(yn), 9(xn-1)), d(g (%), gYn-1)}]

Taking the limitas n — 4+oco we get
d(gx,gy) + d(gy, gx) < Bd(gx, gy)

2d(gx, gy) < pd(gx,gy)

d(gx,gy) =0

gx =gy

Hence F(x,y) = gx = gy = F(y,x)

A similar argument can be used if gy, < gx,.
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