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Abstract—In this research, various EEG frequency bands are 

analyzed to identify cognitive-based specific emotions with the 

help of DEAP (Dataset for Emotion Analysis using Physiological 

Signals). The demand for accurate and scalable systems for 

detecting human emotional states is increasing, particularly for 

understanding the mental status of individuals who are unable to 

communicate their emotions, like the one with disabilities or 

cognitive challenges. EEG signals are great non-invasive method 

to capture various brainwave patterns which are associated with 

distinct emotions. Previous studies have demonstrated the 

potential of EEG in emotion recognition, with the help of different 

machine learning techniques to achieve promising results. 

However, challenges remain in accuracy and scalability. Each 

frequency band are associated with specific cognitive and 

emotional states, making accurate detection of these bands 

essential for understanding the neural mechanisms underlying 

emotions. This study aims to enhance emotion recognition in 

practical applications and mental health monitoring. Advanced 

machine learning algorithms including biLSTM, are being 

utilized to classify emotions based on EEG data, with the goal of 

improving recognition accuracy. 

Keywords—EEG, DEAP, Brainwave patterns, biLSTM, 

frequency bands. 

 

I. INTRODUCTION 

Emotions are essential components of human cognition, 
influencing decision-making, behavior and overall well-
being. Recognizing emotional states is particularly crucial in 
scenarios where individuals may find it challenging to 
communicate their feelings, such as those with disabilities or 
cognitive impairments. Accurate identification of emotional 
states can provide important insights into mental health in 
individuals. 

Electroencephalography (EEG) has emerged as a powerful 
tool for studying the neural correlates of emotions due to its 
capability to monitor the brain’s electrical activity in real-
time. EEG captures various frequency bands- delta, theta, 
alpha, beta and gamma. These frequency bands are associated 
with specific cognitive and emotional states. For instance, 
Delta waves are associated with deep sleep, unconsciousness 
and regeneration process, Theta waves linked to relaxation, 
drowsiness, meditation and light sleep, Alpha waves are 
associated with relaxed but alert state, Beta waves are 
associated with active thinking, focus, alertness and cognitive 
task-like anxiety, stress or excitement and Gamma waves 
involved in higher cognitive functions like perception and 
consciousness or heightened awareness. EEG used to trace 
brain electrical activity with the help of electrodes. There is a 
standardized system to place EEG electrodes on the scalp for 

ensuring the consistent and reliable recordings. This system is 
basically a 10-20 International system which refers the fact 
that the electrodes are placed at the intervals of either 10%or 
20% of the total distance between specific anatomical 
landmarks (Nasion and Inion) on the head (shown in Fig. 1). 
In our brain there are various regions like Frontal(F), 
Central(C), Temporal(T), Parietal(P) and Occipital (shown in 
1.1). The number of electrodes placed varies in different 
individuals from 16, 32 to 64. Each electrode carries a number 
with it, odd number indicates the left side of head (like F3, 
P1), Even numbers indicate the right side of the head (like F4, 
P2) and electrodes placed along the midline of the scalp are 
marked with a Z (like Oz, Pz). 

                        

                                        Figure.1.1.  Brain Regions 

 

Fig.1. EEG Electrode Placement 10 20 Interval 
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The goal of our research is to enhance the accuracy and 
efficiency of emotion recognition by analyzing the EEG 
frequency bands linked to cognitive -based specific emotions 
with the help of well-known DEAP dataset. By studying 
distinct brainwave patterns, we aim to understand how these 
frequencies correspond to emotions such as happiness, 
sadness and fear, with the ultimate objective of building more 
accurate system. To structure our emotion analysis, we are 
going to use Russell’s Valence-Arousal Scale, a great 
accepted model for categorizing emotions which include 
Valence and Arousal. Valence depicts how positive or 
negative a model is and Arousal depicts the intensity of an 
emotion. By mapping emotions into valence and arousal we 
can interpret EEG patterns linked to emotional states with 
greater precision like excitement (high arousal and positive 
valence) and sadness (low arousal, negative valence). In our 
research paper we are using machine learning workflow with 
the focus on leveraging the DEAP dataset which is a well-
established resource that provide the EEG recordings and 
peripheral physiological signals label data. The workflow of 
our research paper includes data collection, preprocessing, 
feature extraction, emotion classification using valence-
arousal model, validation and accuracy. By incorporating 
Russell’s Valence -Arousal Scale and leveraging the extensive 
EEG data from the DEAP dataset, this research aims to 
develop a scalable, high accuracy system for emotion 
detection. This system has potential applications in brain 
computer interfaces (BCI), mental health monitoring and 
emotion- aware technologies. 

 

II. LITERATURE SURVEY 

A recent study [1] introduced the ATDD-LSTM model for 
EEG-based recognition, improving upon traditional hand-
crafted feature methods. The deep learning model integrates 
an Attention-based LSTM to capture spatial features and 
prioritize EEG channels linked to emotions. In another study 
[2], the authors proposed an optimized deep CNN for emotion 
recognition, utilizing a hybrid hunt optimization technique. 
The approach adjusts CNN hyperparameters and selects 
informative EEG electrodes based on brain activity, 
enhancing model performance.  This optimized model 
achieved high accuracy rates of 96.60% and 95.80% across 
two datasets. This contribution highlights the effectiveness of 
hybrid optimization in improving emotion detection through 
deep learning. 

If we discuss the different frequency bands and their 
distinct characteristics, they play a crucial role. Various 
studies indicate that Delta waves, generally linked to deep 
sleep and also have been found to have a role in emotion 
regulation and cognitive function during awake states. 
Research by Knyazev [3] indicated that delta activity is 
associated with motivation and emotional arousal. Studies 
have shown a correlation between high delta wave and 
emotional states like sadness and calmness. Additionally, 
delta waves have been found to influence decision -making 
and self -regulation, highlighting their role in emotional 
processing. If we discuss about the theta frequency band, they 
are majorly known for their involvement in memory and 
learning. A study by Klimesch [4] demonstrated that the theta 
activity increases during the tasks that demand emotional 
regulation and cognitive load. Theta band oscillations are 
essential for linking emotional valence to cognitive processes. 
For instance, research by Aftanas and Golosheykin [5] 

observed a arise in the theta activity in subjects experiencing 
high emotional engagement, suggesting a strong relationship 
between theta waves and emotion-driven cognitive 
processing. Regarding the alpha frequency band, it is 
primarily associated with the relaxation and cognitive rest but 
also plays a key role in emotional regulation. Studies like 
those by Coan and Allen [6] have shown that alpha 
asymmetry, particularly in frontal brain regions, serves as a 
reliable indicator of emotional states. Specifically, increased 
right-frontal alpha activity has been linked to negative 
emotions, while left- frontal alpha corresponds to positive 
emotional states. This emphasizes the importance of alpha 
waves in differentiating emotional responses. Beta waves, on 
the other hand, are linked to alertness, concentration and 
cognitive functioning, often rising during heightened 
emotional arousal.  

Ray and Cole [7] found that greater beta activity correlates 
with emotional excitement and anxiety. Beta waves have also 
been observed during the expression of emotions like 
happiness and anger, making them crucial for understanding 
the intensity of emotions and cognitive alertness during 
emotional experiences. Gamma waves, which operates at the 
highest frequency, are key to high-level cognitive processing 
and have a strong connection to emotional responses. 
Research by Keil et al. [8] found that gamma oscillations are 
associated with emotional arousal and attention, especially in 
tasks requiring the integration of sensory and emotional 
stimuli. Gamma band activity also increase during 
emotionally intense moments, highlighting its significance in 
analyzing complex emotional states. Recent studies often 
combine different frequency bands for a more comprehensive 
approach to emotion recognition. For example, Murugappan 
et al. [9] developed an EEG-based emotion recognition system 
that utilized delta, theta, alpha, beta and gamma bands to 
improve classification accuracy. Their findings revealed that 
specific combinations, particularly theta and beta, offers 
valuable insights into the interplay between cognitive load and 
emotional responses. 

Koelstra et al. [10] introduced the DEAP dataset, a widely 
used resource of emotion analysis through physiological 
signals like EEG and peripheral signals. The dataset includes 
recordings from 32 participants watching 40 one- minute 
music videos. EEG signals were recorded from 32 electrode, 
with emotions rated using valence, arousal, dominance and 
liking scales. The DEAP dataset has become a benchmark for 
emotion recognition models and is commonly used to test 
algorithms aimed at emotion analysis. Zhang et al. [11] 
applied a CNN-based framework for attention recognition 
using DEAP dataset, focusing on EEG signal analysis. While 
the study primarily examined attention, it demonstrated the 
potential of deep learning models to identify cognitive states 
from EEG data, with the possibility of extending this approach 
to emotion recognition tasks. 

 

III. METHADOLOGIES 

In order to identify and categorize various emotions, the 

approaches used in our study paper concentrate on examining 

various frequency bands in EEG signals. We are aiming to 

analyse these signals and identify the emotions using 

Russell's valence and arousal with the aid of the 

comprehensive and well-known DEAP dataset, which 
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contains a variety of physiological signal data. To categorize 

and predict emotions depending on various states, we will use 

both machine learning and deep learning approaches in our 

case. These techniques include machine learning classifiers 

and biLSTM. 

The Methodologies that we employ in our work include data 

preprocessing, feature extraction, classification, prediction 

and model evaluation, shown below in Fig.2. 

 

 

Fig.2. Proposed Model 

 In order to execute our model first we have to utilise DEAP 

dataset for data preprocessing, which is the initial step where 

we use to prepare raw EEG data for analysis and 

classification, the raw EEG data have their EEG signals and 

labelled ratings. The data used to get reshaped and organized 

into NumPy arrays also in sideline artifacts removal and 

filtering happen for initiating efficient processing. Moving 

forward as a part of feature extraction the primary goal is to 

extract the band power of each frequency band which 

represents the strength of a particular frequency range within 

a signal. After extracting the pertinent features, we will 

proceed to the next step,  where we grouped our features 

into four emotional categories which are HAHV, LAHV, 

HALV, LALV .These four categories are decided based on 

the ratings of valence and arousal median splits. In order to 

classify emotions, we use various machine learning 

classifiers like SVM, KNN and MLP where the classifiers are 

trained on a portion of data which is training dataset to 

analyse the pattern and relationship between EEG 

features(band power) and labels. After analysing the pattern, 

it shows that KNN works great for valence data(62%) and 

MLP works great for Arousal data(68%) due to its temporal 

dynamics. For prediction BiLSTM model works well due to 

their advance techniques like processing data from both 

directions (forward and backward). 

A. DEAP Dataset 

DEAP stands for “Dataset for Emotion Analysis using 

Physiological Signals”[12]. It’s a well-known high-quality 

dataset used for studying various human emotional states 

based on EEG and various peripheral physiological signals. . 

EEG is one type of data in DEAP. which has 32 

participants(16 male, 16 female), ranging in age from 19 to 

37. Every participant viewed a music video designed to make 

them feel different kinds of emotions. These responses are 

gathered using electrodes(32 channels) positioned on the 

head in various areas (such as the frontal and occipital 

regions) in accordance with the 10–20 interval scheme. A 

sample of the response signals is taken at 128 Hz. We will 

now extract frequency bands for each trial by using bandpass 

filters. Bands of frequencies such as deta, gamma, theta, 

alpha, and beta , shown in Table.2. In our research we have 

used a portion of DEAP dataset, where we have used 5 

subjects. The dimension of our data is shown below in 

Table.1. 

 
TABLE 1. DATA DIMENSION

 

TABLE 2.  FREQUENCY BANDS RANGE

 

B. BiLSTM 

An enhanced form of LSTM, bidirectional long short term 

memory (BiLSTM) network which works on sequential data 

like LSTM, but it works in both directions: forward and 

backward which help them to record both past and future 

dependencies.[13] BiLSTM network is formed using two 

parallel LSTM layers(forward LSTM and backward LSTM) 

shown in Fig.3. Forward LSTM processes the input sequence 

from the beginning to the end and the backward LSTM 

processes it in reverse manner. At last, the output from these 

two layers get concatenated at each timestep giving a more 

comprehensive representation of the input by taking the 

whole context into account.BiLSTM foundation is the LSTM 

network, which was created to work on sequential data by 

solving vanishing gradient problem which traditional RNNs 

experience.[14] The LSTM supports the network to learn and 

sustain long term relationships in sequences via the addition 

of memory cell and three gates: forget, input and output gates 

which controls the information flow .The forget gate controls 

which memory(data) need to be discard from previous 

memory(cell state), the input gate decides which information 

to add and output gate decides which data must be passed to 

next timestep,shown in Fig.4. 

While LSTMs are good at learning correlations over time, 

they can only learn in one direction. This may limit their 

capacity to utilize the context to its fullest, especially during 

activities where relevant insights are obtained from future 
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knowledge. By combining the benefits of forward and 

backward LSTMs, BiLSTM overcome this constraint by 

processing the sequence in both directions.  

The mathematical intuition behind BiLSTM is shown below. 

In Forward Pass, let X be an input sequence 𝑋 =
[𝑥1, 𝑥2, 𝑥3, 𝑥4 … 𝑥𝑡] ,the input sequence is processed by the 

forward LSTM from t = 1to t = T. At each time step t. 

Below  𝑓𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 represents forget gate, 𝑖𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 represents 

input gate, 𝑂𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 represents output gate, �́�𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 

represents candidate memory(it stores potential important 

information which can be added to cell state), 𝐶𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 

represents cell state(long-term context) and ℎ𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 

represent hidden state(short-term context) in forward LSTM. 

 

𝑓𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝜎(𝑊𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ [ℎ𝑡−1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝜎(𝑊𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ [ℎ𝑡−1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, 𝑥𝑡] + 𝑏𝑖) 

�́�𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝜎(𝑊𝐶
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ [ℎ𝑡−1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

=  𝑓𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅  𝐶𝑡−1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 +  𝑖𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ �́�𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 

𝑂𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝜎(𝑊𝑂
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ [ℎ𝑡−1
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, 𝑥𝑡] + 𝑏𝑂) 

ℎ𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝑂𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

) 

 

In Backward Pass, the input sequence is processed in reverse 

order by the backward LSTM.  

Below 𝑓𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  represents forget gate, 𝑖𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑represents 

input gate, 𝑂𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 represents output gate, �́�𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

represents candidate memory(it stores potential important 

information which can be added to cell state), 𝐶𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

represents cell state(long-term context) and ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

represent hidden state(short-term context) in backward 

LSTM. 

 

𝑓𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝜎(𝑊𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅ [ℎ𝑡−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝜎(𝑊𝑖

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅ [ℎ𝑡−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , 𝑥𝑡] + 𝑏𝑖) 

�́�𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝜎(𝑊𝐶

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅ [ℎ𝑡−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 =  𝑓𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅  𝐶𝑡−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  +  𝑖𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

⋅ �́�𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 

𝑂𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝜎(𝑊𝑂

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅ [ℎ𝑡−1
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , 𝑥𝑡] + 𝑏𝑂) 

ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝑂𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) 

At last, while predicting the result of BiLSTM the output 

from the forward and backward LSTM are concatenated. 

ℎ𝑡
𝐵𝑖𝐿𝑆𝑇𝑀 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ℎ𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
, ℎ𝑡

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) 

Above ℎ𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 represents the output which we get from 

forward LSTM, ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑  represents the output which we 

get from backward LSTM and ℎ𝑡
𝐵𝑖𝐿𝑆𝑇𝑀  represents what we 

get at the end as the result by concatenating both forward and 

backward LSTM output. 

Fig.3. Bidirectional Long-Short Term Memory Model (BiLSTM) 
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IV. RESULTS 

The deployed models’ strengths in EEG-based emotion 

recognition are highlighted by the performance evaluation. 

Using it ease of use and ability to detect localized patterns, 

the K-Nearest Neighbours(KNN) method performed 

exceptionally well in valence classification because of its 

capacity to learn intricate non-linear relationships, the Multi-

Layer Perceptron(MLP) performed better than other models 

in the classification of arousal levels. Furthermore, the 

Bidirectional Long Short-Term Memory(BiLSTM) model 

demonstrated skills by capturing temporal relationships in 

EEG data, achieving a training accuracy of 92% and a testing 

accuracy of 85%, shown in Fig.5 and Fig.6. This analysis 

highlights the complimentary characteristics of these models, 

where KNN offers interpretability, MLP manages non-linear 

data successfully and BiLSTM succeeds in sequential pattern 

learning. 

The comparative effectiveness of three approaches for EEG-

based emotion recognition is shown below in Table.3. Our 

approach demonstrated good generalization with 92% 

training and 85% testing accuracy. The training accuracy in 

Huang et al.’s [15] paper is approximately 85% whereas the 

testing accuracy is around 78%. The intricacy of feature 

extraction and difficulties with inter-subject variability are 

the reason for their study’s poorer accuracy. The training 

accuracy of Zhu et al.’s study[16] is approximately 83% 

whereas the testing accuracy is around 77%. Once more, 

these numbers are lower than ours, most likely as a result of 

variations in the model architecture and comparable 

difficulties in feature extraction. While both trials show 

encouraging outcomes overall, their performance is slightly 

less favourable than ours. Although the stated accuracy 

suggest that additional feature selection and model 

modification may be necessary to attain higher performance, 

especially in testing phases, the usage of CNN, Bi-LSTM and 

attention mechanisms in their investigations offers valuable 

insights. Our method’s better testing accuracy indicates that 

the feature extraction techniques and network architectures    

 

chosen may have been more resilient when processing the 

EEG signals for emotion recognition. 

TABLE 3 . RESULTS COMPARISON

 

 
Fig.5. Training, Validation and Test Accuracy 

 
Fig.6. Training, Validation and Test Loss 

 

V. CONCLUSION 

In this work, we implement a BiLSTM (Bidirectional Long 

Short-Term Memory) model to examine EEG-based emotion 

recognition. Our model showed a great capacity to generalize 

across unseen data, achieving 92% accuracy on the training 

dataset and 85% accuracy on the testing dataset. Several 

current approaches, including those Huang et al. (2023) and 

Zhu et al. (2024), which stated lower testing accuracy, 

perform worse than these results. The benefit of using 

         Fig.4. Long Short-Term Memory Model (LSTM) 
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sequential data and capturing temporal connections in EEG 

signals for emotion recognition is demonstrated by the 

success of our BiLSTM model. Despite these encouraging 

findings, issues like subject- specific variability and the 

intricacy of interpreting EEG signals still exist. Better 

performance may be attained with further feature extraction 

and model optimization techniques, which would make our 

method a strong contender for practical use in emotion 

identification systems. 
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