
ROBOTA: THE AI VIRTUAL ASSISTANT

P Selvaraj, Bhavya Singhal, Kushagra Sharma
Department of Computer Science, Galgotias University, Greater Noida

 
 
KEYWORDS  ABSTRACT

Text – to - speech
Voice Control
Visually Impaired
Speech Recognition
 

 
It has been found through research that visually impaired people face a lot of
difficulties while accessing the Internet compared to people with other disabilities.
The number of visually impaired users is so large that most of them have to depend
on the help of others to complete any task on the Internet. This paper introduces
software that enables visually impaired people to do various Internet-related
activities independently. This software will enable them to surf the Internet as
smoothly as any other normal user. Sending messages, calling, or going to YouTube-
everything is a big headache for a blind user in this fast-moving world. This
software overcomes such challenges by enabling the visually impaired to do these
types of things with voice commands to turn on Assistant or keys on Braille
keyboards. This input, therefore, goes through the assistant, which then performs the
required operations and gives output to the user. It uses a speech-to-text recognition
module to understand commands and execute tasks for revising results. In sending
text, for instance, it could use the database to check whether the contact is available
and whether the message has been sent. It is also available for all seeing users via a
text input field. It can revolutionize the use of the Internet for visually impaired
users and greatly extend their abilities in acting within the digital world.
 

�

1 Introduction

WHO estimates that 2.1 billion people currently have near or distance vision impairment, when at least 1 billion
could also have been prevented by treatment that are yet to get it, in which the percentage keeps growing to date due
to rising aging population. [1]. To them, it is the "Internet" that brings all those open avenues for communication,
education, and employment opportunities. At a time when the digital technologies were growing phenomenally, the
visually impaired face immense difficulties in accessing the net. Everything can be done online now-from watching
a video to ordering food to messaging someone online. For almost everything online, facilities that a person needs
require the use of the Internet. While using the Internet may be a somewhat trivial task for most people, this has
been quite a challenge for the blind and visually impaired. Thus, we wanted to find some unique way of allowing
Visually impaired people to access the internet. The Internet is a very visual form of various types of websites may
offer different accessibility barriers, as compared to the others where accessibility could be guaranteed by putting in
a ramp Wheelchairs or Braille interfaces.
We overcome this limitation by underlining exactly where visually impaired users differ from regular users
concerning problems they experience using the Internet. In this paper, we presented a virtual assistant software that
lets the blind would not need to learn keyboard shortcuts. On the other hand, it can be used manually by simply
typing in an input field by the normal user. It can be initiated with a wake word or simply by using the keyboard,
adding a query directly into the input field. The software uses a speech-to-text module, which helps in converting
the input voice to text and proceeds with the problem. It lets the user know what action they are doing once the
command has been given to the software. For example, if the user says, "Open YouTube," then the software replies
whether YouTube has been opened or not. The same thing happens with everything else.
The American Foundation for the Blind [2] estimated that people with visual impairments are over 31% less likely
to report going online and over 35% less likely to use a desktop computer than people without disabilities. Though
various solutions exist today, such as screen readers or magnification tools, these have their own limitations. Most
screen readers, for example, require users to commit complex keyboard shortcuts to memory. Moreover, they may
not work properly for non-standard web interfaces or for websites whose design is updated often, which would then
create usability problems. The gap between accessibility guidelines and the real world makes it difficult for visually
impaired people to surf the internet independently.

  
Figure 1: Flow Diagram of Solution

Figure 1 illustrates how our software works. The input speech is identified through the speech-to-text module and
then further processing for the accomplishment of the tasks to provide the required output.

http://ymerdigital.com

Page No:1

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 06 (June) - 2025



The big challenge in this project is to enable voice control to let users-even visually impaired or normal-enable
performance. Performance is also based on the OS the user operates on. Implementation of software modules is
presented that automates the most frequently used applications/websites by the users, namely YouTube, WhatsApp,
any system application, and anything you ask from AI. By this, we aim to cater to the maximum possible needs of
the user.

2 Literature Review

For example, Muller et al. [5] reported economic and technical capabilities as major issues of the internet's
accessibility to visually impaired users. Similarly, Kirsty et al. [6] have reported that these problems are exacerbated
further by poorly written HTML code and reliance on PDFs despite W3C guidelines. Pilling et al. [3] researched
whether the internet acts as an enabling resource for the disabled or an extension of social exclusion; they concluded
that without assistive tools, this resource is less than ideal. Sinks and Kings [4] indicated that few studies are
conducted to find out what the reasons are for which disabled persons cannot use the internet like others and called
for directed studies.
Power et al. [7] discovered that only 50.4% of issues encountered by users were covered by WCAG 2.0 Success
Criteria, and even then, guidelines, when implemented, often did not solve important problems: for example, one of
the respondents in the study of Pilling et al. [3] pointed out, "Without the software, there is no access for blind
people," emphasizing dependence on special tools like JAWS. On the other hand, Ferati et al. [10] believe that even
JAWS cannot provide personalized support for people suffering from different extents of visual losses. The authors
would suggest adopting modular, plugin-based systems in reducing direct keyboard interactions but with greater
ease of accessibility. Lastly, Porter [8] pointed out the empowerment brought about by the internet to people with
visual impairment in selecting the materials themselves instead of prepared materials, which is what happens when
Braille newspapers are used.

3 System Overview and Design

It basically provides four important functions. It can open system applications using a database of installed
applications, and using the command prompt in the case of pre-installed applications. Opening websites is done
efficiently using a database of major websites to load them quickly. Similarly, applications like WhatsApp would use
the database, too, since such applications are installed by users themselves based on their needs. For the rest of the
tasks, it has an integrated AI chatbot working with the cookies provided by the open-source community.

  
Figure 2: System Architecture

Figure 2 presents so-called system architecture of our software. User comes to the software via main menu and starts
virtual assistant there. Then speech-to-text module will translate his speech into text format. Then it will be told to
the user if his request will be processed or not. The model runs in response to a request by the user, through the
functionality that is captured by Figure 2. This will send output back to the user via a Text-to-Speech module; this is
an overview of software.

4 Methodology

A. main.js
The main.js file defines the functionality for the virtual assistant's interface in JavaScript. It handles text animations,
including the "bounce-in" effect using Textillate.js, and basic fade-in/fade-out effects. Additionally, it provides a
dynamic wave animation for audio input and response through SiriWave. The file manages user interactions with
various buttons, such as the MicBtn for activating the microphone and sending audio commands via eel, or the send
button for submitting text input. It also handles event toggling to show or hide UI elements, ensuring smooth
transitions between input fields and buttons for a seamless user experience. Moreover, it listens for specific
keyboard shortcuts to further enhance the user's interaction with the assistant.
B. index.html
This is the main HTML file for the project, giving the basic skeleton needed to build the web interface. This
template includes Bootstrap for responsive design and layout, jQuery for DOM manipulation, and several animation
and visualization libraries. It provides an appealing input interface with buttons to activate the microphone, send
messages, and settings. It has a canvas inside it for graphical effects like particle animation and also includes the
SiriWave.js library for showing a dynamic waving waveform. In order to provide more interaction and style with it,
it also has a number of CSS and JavaScript dependencies.
C. script.js
The script.js file defines the functionality and visualization for a 3D particle animation to be rendered on an HTML5
canvas. It realizes a 3D spinning sphere by the application of mathematical transformations, which define every
point in 3D Cartesian space where a point should be displayed. Global variables are declared at the top, which will
be used to control parameters later on, such as the properties of the particles: position, velocity, alpha, and
acceleration in general. It runs in a timed loop with setInterval; it updates the positions of all the particles and draws
them with depth effects. Field of view blur is also simulated with alpha blending to further enhance the realism.
D. controller.js
The controller.js file mediates between the user interface and the back-end of the controller. It provides
asynchronous communication with the server, including fetching data, sending commands, and receiving responses.
It uses AJAX calls and WebSocket connections to provide real-time updates with least latency. Further, it may

http://ymerdigital.com

Page No:2

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 06 (June) - 2025



include features dealing with network interruptions gracefully, for example, by retrying requests or showing
informative error messages in case retries failed. It also supports progressive state management through which the
frontend can maintain user preferences and context across interactions. So, for example, controller.js does support
transitions from text input to voice input and vice versa while maintaining session data in between.
E. style.css
In style.css, making the virtual assistant more attractive to both user and modern outlooks is supposed to be styled. It
designates the visual of backgrounds, buttons, input fields, and various animations using Gradients, Shadows,
Transitions, or other CSS-based designing methods. This file edits button styles and hover effects while adapting
different window size issues in the settings of input areas and chat area disposition. Furthermore, it realizes
animation effects, making transitions smooth and providing interactive feedback that helps in enhancing the
aesthetic and functional aspects of the application.
F. features.py
The script feature.py has some very key functionalities. This script will interface with the OS for features that
involve media player features, looking up contact names, and handling conversations of the chatbot. It then
interfaces with the database for getting information about which application or websites it opens and for launching
specific programs or YouTube videos. The hotword detection for words like "Jarvis" or "Alexa," the support of voice
command through PyAudio, does audio processing in real time. It allows users to search for contacts and send
messages or call or video call them through WhatsApp. For user queries, these respond to chats using the HugChat
framework.

  
Figure 3: Working of features.py module

G. command.py
The command.py script is very important for handling Voice and Text commands. It uses pyttsx3 for text-to-speech
and speech_recognition for speech-to-text. This script speaks text and also sends it to the frontend using the eel
library, allowing Python to communicate with JavaScript. The takeCommand basically listens for audio input via the
microphone, processes the audio through Google's Speech Recognition API, and returns text that the program
recognizes. Another exposed function within the script processes commands; this is how it provides the variable
allCommands to handle different tasks. These are voice commands given by the user or coming from the frontend to
perform the task or action, like opening an application, YouTube video, sending WhatsApp messages or calls, and
video calls. The script does include a feature of a query for a chatbot in case a user request is complex; it also treats
errors to exit gracefully in case something goes wrong. This contains the eel.DisplayMessage and eel.ShowHood
functions, enabling the interaction and feedback with the user.

Figure 4: Working of command.py module

5 Result

Text-to-speech synthesis is performed by a Python program using the Speech Synthesis module called pyttsx3,
which is integrated with Google's Speech Recognition library. The integration provides remarkable accuracy and is a
very fast and efficient technique of converting text to speech. The recognition rate of the text-to-speech is about
96.25% based on 4 different speech samples and 20 different inputs, all tested in moderate to quiet environments.
The results indicated that our software can handle popular tasks such as YouTube, WhatsApp, AI Chatbot, and
launching applications. Each of these functions was tested independently with the software. The software can play
any video on YouTube with user controls. It also responds to whatever question a user may have with the use of a
chatbot. It can even send WhatsApp messages via the software; a tool can, therefore, be developed which helps a
visually impaired user to easily and efficiently access the internet.

6 Conclusion

It suggests a framework for virtual assistants that comprises modular backend functionality integrated with a
comfortable-to-operate frontend. The proposed system will solve critical problems of scalability, adaptability, and
user satisfaction by integrating state-of-the-art robust database management with seamless application logic. It is
designed modularly to ensure it is easy to maintain and upgrade as new technologies unfold, thus keeping the
framework well into the future. Experimental deployments of the framework have already shown significant gains in
efficiency, scalability, and reliability. This work is presented as an indication of how the use of emotionally
intelligent interactions can be explored with federated learning to advance privacy in training sets and extend
multimodal capabilities to gestures and facial recognition. It would be possible to further develop this framework

http://ymerdigital.com

Page No:3

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 06 (June) - 2025



toward more personalized and interactive user experiences with intelligent virtual assistants.

7 Future Enhancement

This may be subject to numerous changes in future updates, including various languages. Planned features include
Face Recognition and the ability to open sites with summaries, among many others. Other development will
continue regarding video and educational content being made available in a way for visually disabled users to
consume information they want to as properly and fully as fully sighted users do.

8 References

[1] Global data on visual impairments 2010 by World Health Organization (WHO) -
https://www.who.int/blindness/GLOBALDATAFINALforweb.pdf?ua=1
[2] The website for American foundation for the blind https://www.afb.org/about-afb/what-we-do/afb-
consulting/afbaccessibility-resources/challenges-web-accessibility accessed in April 2020
[3] Pilling, D., Barrett, P. and Floyd, M. (2004). Disabled people and the Internet: experiences, barriers and
opportunities. York, UK: Joseph Rowntree Foundation, unpublished.
[4] Sinks, S., & King, J. (1998). Adults with disabilities: Perceived barriers that prevent Internet access. Paper
presented at the CSUN 1998 Conference, Los Angeles, March. Retrieved January 24, 2000 from the World Wide
Web.
[5] Muller, M. J., Wharton, C., McIver, W. J. (Jr.), & Laux, L. (1997). Toward an HCI research and practice agenda
based on human needs and social responsibility. Conference on Human Actors in Computing Systems. Atlanta,
Georgia, 22–27 March.
[6] Kirsty Williamson, Steve Wright, Don Schauder, Amanda Bow, The internet for the blind and visually impaired,
Journal of Computer Mediated Communication, Volume 7, Issue 1, 1 October 2001, JCMC712
[7] Power, C., Freire, A.P., Petrie, H., Swallow, D.: Guidelines are only half of the story: accessibility problems
encountered by blind users on the web. In: CHI 2012, Austin, Texas USA, 5–10 May 2012, pp. 1–10 (2012)
[8] Porter, P. (1997) ‘The reading washing machine’, Vine, Vol. 106, pp. 34–7
[9] JAWS-https://www.freedomscientific.com/products/software/jaws/accessed in April 2020
[10] Ferati, Mexhid & Vogel, Bahtijar & Kurti, Arianit & Raufi, Bujar & Astals, David. (2016). Web accessibility
for visually impaired people: requirements and design issues. 9312. 79-96. 10.1007/978-3-319-45916-5_6
[11] Ryle Zhou, Question answering models for SQuAD 2.0, Stanford University, unpublished.

 
 
 
 
 
 
 
 

http://ymerdigital.com

Page No:4

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 06 (June) - 2025


