

Patient Management System using Next.js

Bhavna Sharma
Department of Computer Science and
Engineering
Galgotias University, Greater Noida,
Uttar Pradesh, India
mail2bhavnasharma7@gmail.com

Ayushman Singh Rajawat
Department of Computer Science and
Engineering
Galgotias University, Greater Noida,
Uttar Pradesh, India
rajawatayushman17@gmail.com

Dr. Ajay Shanker Singh
Department of Computer Science
and Engineering
Galgotias University, Greater Noida,
Uttar Pradesh, India

drajay.cse@gmail.com

Abstract— This paper proposes the development of a patient

management system (PMS) using modern web technologies such as

Next.js, TypeScript, Twilio, and TailwindCSS. The system aims to

streamline healthcare by providing an efficient interface to manage

patient records, schedule appointments, and enable doctor-patient

communication Twilio has been integrated to handle SMS

notifications use, and build the interface with TailwindCSS for a

more modern design. The program uses TypeScript to ensure type

safety and improve development performance. This paper discusses

the design, implementation, and benefits of using this tech stack for

healthcare applications. The results of this work are important

because they provide an efficient, reliable, and user-friendly way to

manage patient data, ultimately contributing to better health care

and patients’ satisfaction.
Keywords— Patient Management System, Next.js, TypeScript,
Twilio, TailwindCSS, Web Application

I. INTRODUCTION

A. General Introduction

Healthcare systems around the world are increasingly turning
to digital solutions to improve patient care and streamline
business processes. Patient management systems are one such
digital platform that provides healthcare professionals with tools
to better manage patient information, planning and
communication. These programs digitize patient records,
schedule appointments, and improve clinical efficiencies
through developed web technologies that enable high-
performance, flexible and responsive, healthcareenabled PMS
services employees are able to deliver better services while
reducing operational inefficiencies Patient management systems
include Next.js , Modern web technologies such as The
combination of TypeScript, Twilio, and TailwindCSS delivers
what is essential to improved productivity and user experience
These technologies allow for increased productivity, type safety,
seamless interaction, and responsive interaction , it’s mobile-
friendly. The aim of this paper is to discuss such a systematic
implementation of this tech stack and its usefulness in a
healthcare setting.

B. Problem Statement

Traditional methods of patient management, such as manual
records and planning, are often inefficient, error-prone, and
inflexible. Many health care professionals still rely on paperbased
systems on or on outdated software not accompanied by modern
communication tools, resulting in poor patient engagement and
increased administrative burden. Appointment reminders and
other failures to communicate in a timely manner can lead to
missed appointments, which can result in healthcare provider care
deterioration and loss of revenue.

C. Objectives of the project

The following are the main goals of a patient management
system built with Next.js, TypeScript, Twilio, and
TailwindCSS.

1) Enhance patient management: Provide a platform for
healthcare professionals to better manage patient
records, charts, and medical histories.

2) Integrate SMS-based communication: Use Twilio to
send automated SMS notifications for appointment
reminders to reduce missed appointments and provide
patient autonomy insertion has been improved.

3) Improve user experience: Use TailwindCSS to create
responsive, modern and intuitive designs that evolve
well for devices including desktop and mobile
platforms

4) Ensure scalability and performance: Use Next.js for
server-side rendering and static site generation to
ensure PMS performance and scalability.

5) Improve code reliability: Use TypeScript for type
safety, reduce potential errors and improve system
maintainability over time.

D. Current Scope

The current scope of the project focuses on developing a
Patient Management System that addresses the core needs
of healthcare providers in managing patient data,
appointments, and communication. The system will offer:

1. User roles: Different interfaces for patients, doctors,
and administrators, each with its own set of
functionalities.

2. Appointment management: Patients can book
appointments, and doctors can confirm or
reschedule them.

3. SMS notifications: Twilio will handle SMS
reminders and alerts for patients about their
appointments.

4. Medical records: Patients and doctors can securely
access and update medical records.

5. Responsive design: The system will be fully
responsive, ensuring an optimized user experience
across all devices.

Future expansions may include integration with email
notifications, enhanced security features, and
interoperability with other healthcare systems,
depending on the evolving needs of the healthcare sector.

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1796

.

II. RELATED WORKS
The healthcare sector has seen the proliferation of various digital
platforms aimed at improving patient care. Several webbased PMS
solutions have been developed over the years, which provide
comprehensive management of patient data. : EPIC excels
providing accurate/connected information virtually in real time
with which to adjust medical practice. However, hidden costs are
associated with EPIC, including expensive vendor support and
add-on programs, “technological somnambulism,” increased data
entry “after-hours tax,” and training. Nevertheless, EPIC can
enhance patient safety, monitoring, tracking, continuity of care,
and patient involvement. It also has promise as a medical
education tool [1]. OpenMRS is an open-source, robust electronic
health record (EHR) platform that is supported by a large global
network and used in over forty countries [2]. Hospital information
system (HIS) is used as a comprehensive, integrated information
system designed to manage the administrative, financial, and
clinical aspects of a hospital in urban India [3].

III. DESIGN

The proposed Patient Management System (PMS) follows a
microservice architecture where different components such as
patient records, appointments, and communication are
modularized for maintainability and scalability.

A. Architecture Design

The architecture of the proposed Patient Management System
(PMS) follows a modular microservice-based design, ensuring
scalability, maintainability, and flexibility. The system is divided
into three primary layers: the frontend (client), the backend (API
layer), and the communication layer.

• Frontend: The frontend built with Next.js uses serverside
rendering (SSR) and static site generation (SSG)
throughout TailwindCSS for data-heavy pages like
patient records and appointments to make performance
and load times dashboards fly effective Integrated
devices for responsive, modern UI interface.

• Backend: The backend consists of RESTful APIs that
manage patient data, configuration, and user activities. It
is built with Node.js and TypeScript to ensure type safety
and easy maintenance. The API interfaces with a
relational database (e.g., PostgreSQL or MySQL) to store
and manage medical records, user profiles, and policies
securely.

• Communication Layer: Twilio handles SMS
notifications and reminders. This layer is responsible for
sending appointment confirmations, reminders, and
updates, which are triggered by changes in appointment
status or upcoming schedule.

 Both front-end and back-end communications are secured using
HTTPS using JSON Web Tokens (JWT) for user authentication
and authorization. This ensures that sensitive patient information
is protected in compliance with HIPAA and other healthcare
regulations.

Fig 1. Basic architecture of system

B. System Design

The system design focuses on the core functionalities of the
PMS and the interaction between different components.

1. User Roles: The system supports three types of
users—patients, doctors, and administrators—with
role-based access control.

o Patients can book, view, and cancel
appointments, view medical history, and
receive SMS notifications for upcoming
appointments.

o Doctors can manage their availability,
confirm, or reschedule appointments, and
review patient medical records.

o Administrators manage system settings,
user roles, and ensure smooth functioning
of all communication channels.

2. Database Design: The database includes tables for
patients, doctors, appointments, and messages.

o The patient table stores personal and
medical information.

o The appointment table tracks
appointment details such as patient ID,
doctor ID, date, and status (e.g., pending,
confirmed).

o The message table logs all SMS
notifications sent through Twilio.

3. Appointment Management: Dynamic appointment
scheduling is enabled through Next.js dynamic
routing and state management. Patients can view
available slots based on doctor schedules and book
appointments. Doctors can approve or modify
these appointments in real time.

4. SMS Notification System: Integrated with Twilio,
the PMS automatically sends SMS alerts when
patients book or modify appointments. Reminders
are also sent 24 hours before the scheduled time to
reduce noshows. The system records the status of
these notifications for monitoring.

The figure displays the relationship between the entire system.

(Fig 2)

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1797

Fig 2. System Design for the platform

C. Data Flow

 The data flow in the Patient Management System outlines the
processing and transferring of data between various
components. Here is an overview of the data flow:

1. User Registration/Login:

a. Input: User enters credentials (username,
password).

b. Process: The client sends a request to the
authentication API.

c. Output: The server verifies credentials, responds
with a success/failure message and a JWT token
(for authenticated sessions).

2. Patient Data Management:

a. Input: Healthcare provider inputs new patient
data or updates existing records.

b. Process: The client sends a request to the patient
management API to create or update records in
the database.

c. Output: The server processes the request,
updates the database, and returns a confirmation
message.

3. Appointment Scheduling:

a. Input: Patient selects an available appointment
slot.

b. Process: The client sends an appointment
request to the scheduling API.

c. Output: The server verifies the slot, reserves it
in the database, and responds with appointment
details.

4. Notifications:

a. Input: Scheduled appointment triggers
notification setup.

b. Process: The server sends an SMS notification
via Twilio.

c. Output: Patients receive reminders about their
upcoming appointments.

5. Feedback and Reporting:

a. Input: Patients and providers can submit
feedback.

b. Process: The client sends feedback data to the
feedback API.

c. Output: The server processes and stores
feedback for future analysis and system
improvements.

IV. DEVELOPMENT TECHNOLOGIES

A. Next.js

Next.js is a React-based framework that enables server-side
rendering (SSR) and static site generation (SSG), improving
performance and SEO optimization [4]. In the context of
PMS, Next.js helps pre-render pages such as the
appointment list and patient dashboard, ensuring faster load
times.

B. TypeScript

TypeScript is a statically typed superset of JavaScript that
enhances code quality by catching errors at compile time.
Using TypeScript in the PMS ensures type safety, reduces
bugs, and improves code maintainability. TypeScript is an
extension of JavaScript intended for easier development of
large-scale
JavaScript applications.[5]

C. Twilio

Twilio provides APIs for SMS, voice, and video
communications. Integrating Twilio into the PMS allows us
to send SMS reminders for upcoming appointments and other
important notifications, thereby improving patient
engagement and reducing no-shows.

D. TailwindCSS

TailwindCSS is a utility-first CSS framework that allows for
rapid UI development with a responsive design. Using this
we created an intuitive, modern, and mobile-friendly
interface, essential for both patients and healthcare
professionals

V. IMPLEMENTATION

A. User Interface Design

The user interface (UI) of the PMS was developed using
TailwindCSS, ensuring a clean, responsive, and mobile-
friendly experience. The interface is designed to
accommodate different user roles—patients, physicians, and
administrators—by assigning them specific functionality:

1) Patient Dashboard: Displays upcoming appointments,

medical records, and SMS notification history.

2) Physician Dashboard: Allows physicians to manage their
appointments, view patient history, and see
appointments.

3) Admin Panel: Enables administrators to view system
users, appointments, and communication logs.

B. Appointment Management

Built with Next.js' dynamic routing and state management
techniques, the appointment management system allows
patients to register, and physicians to confirm or reschedule
appointments Integration with Twilio ensures patient hand
will include an SMS notification of a confirmed appointment.

C. SMS Integration with Twilio

The system integrates Twilio’s SMS functionality to send
appointment reminders, confirmations, and follow-up
messages. Twilio’s API was used to schedule and trigger

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1798

messages based on changes in appointments, reducing the
chances of missed appointments.

D. TypeScript Integration

TypeScript was used throughout the application for type safety
and development best practices. By using TypeScript, we were
able to reduce runtime errors and achieve better maintained code.

 VI. INCORPORATING ARTIFICIAL INTELLIGENCE FOR
PERSONALIZED PATIENT SUPPORT

Integrating artificial intelligence (AI) into patient management
systems (PMS) opens possibilities for creating chatbots that
improve patient engagement and support, these AI-powered
chatbots can be used to input patient data on to obtain
personalized support for various aspects of health care delivery.
Key Features and Benefits:

a. Personalized Treatment Guidance: By using a patient’s
medical history and appointment information, the
chatbot can provide personalized advice on treatment
regimens, including medications or treatment times
including a reminder.

b. Optimized patient appointments: Patients can schedule,
change, cancel or interact with the chatbot in real time,
streamlining administrative tasks.

c. Round-the-Clock Support: Chatbots can act as virtual
assistants, answering patients’ questions and providing
healthcare advice based on their medical records,
improving patient satisfaction, and reducing reliance on
human staff.

VI. CONCLUSION AND FUTURE WORK

The proposed system demonstrated efficiency in managing
appointments and enhancing patient-doctor communication.
Owing to the problems faced by healthcare institutions in
accessing and maintaining large amounts of data that they have to
deal with [7], Future work will focus on enhancing security
measures, integrating more communication channels (e.g.,
email), and improving growth in larger healthcare facilities.

 VIII. REFERENCES

[1] Johnson III RJ. A Comprehensive Review of an
Electronic Health Record System Soon to Assume
Market Ascendancy: EPIC®. J Healthc Commun.
2016,

1:4.

[2] Mohammed-Rajput NA, Smith DC, Mamlin B,
Biondich P, Doebbeling BN; Open MRS
Collaborative Investigators. OpenMRS, a global
medical records system collaborative: factors
influencing successful implementation. AMIA Annu
Symp Proc. 2011;2011:960-8. Epub 2011 Oct 22.
PMID: 22195155; PMCID: PMC3243141.

[3] Mohapatra, S. (2015). Using integrated information
system for patient benefits: a case study in India.
International Journal of Healthcare
Management, 8(4), 262–271.

https://doi.org/10.1179/2047971915Y.0000000007

[4] Lazuardy, Mochammad Fariz Syah, and
 Dyah
Anggraini. "Modern front end web architectures with
react. js and next. js." Research Journal of Advanced
Engineering and Science 7.1 (2022): 132-141.

[5] Bierman, G., Abadi, M., Torgersen, M. (2014).
Understanding TypeScript. In: Jones, R. (eds)
ECOOP 2014 – Object-Oriented Programming.
ECOOP 2014. Lecture Notes in Computer Science,
vol 8586. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-

44202-9_11

[6] https://scholar.google.com/

[7] A. Dwivedi, R. K. Bali, A. E. James and R. N. G.
Naguib, "Workflow management systems: the
healthcare technology of the future?," 2001
Conference

Proceedings of the 23rd Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society, Istanbul, Turkey, 2001, pp. 3887-
3890 vol.4, doi: 10.1109/IEMBS.2001.1019689.

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1799

https://doi.org/10.1179/2047971915Y.0000000007
https://doi.org/10.1179/2047971915Y.0000000007
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://scholar.google.com/
https://scholar.google.com/

