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Abstract: - 

 

Well-defined copper oxide (CuO) nanoparticles were synthesized through the thermal 

breakdown of a Cu(II) complex at 400°C for three hours. The nanoparticles possess uniform 

forms of diverse sizes and were studied using SEM and TEM techniques. CuO nanoparticles 

are combined with graphene oxide (GO) to create a composite nanosystem, which was 

investigated for its application in supercapacitors. The specific capacity of the CuO-GO 

electrode is enhanced when spherical GO nanoparticles are tightly coiled on the surface of 

CuO nanoparticles, resulting in composites with an expanded surface area. The cyclic 

efficiencies of these electrodes after 2000 cycles were 88.3%, 95.5%, and 98.7%, 

respectively. Specifically, at 5 A g-1, CuO-GO exhibits a specific capacitance of 395 F g-1, 

significantly surpassing the values of GO (115 F g-1) and CuO (235 F g-1). This study 

presents a straight forward and reproducible method for synthesizing a CuO/GO 

nanocomposite for energy storage applications. 

 

Keywords: Copper (II) complex; CuO/GO nano composite;  electrochemical studies, 

supercapacitor. 

 

 

1. INTRODUCTION 

 

The demand for increasingly compact and powerful devices and electric cars is propelling 

advancements in high-density energy storage. [1,2]. Supercapacitors are a sort of 

electrochemical energy storage devices distinguished by their capacity to rapidly store 

substantial amounts of energy (high power density) and discharge it swiftly (fast 

charging/discharging). They possess an extended longevity (cycle life) and reliable 

performance [3,4]. Choosing the appropriate electrode material is vital for increasing the 

electrochemical behaviour of supercapacitors. The often utilized transition metal oxides and 

hydroxides include NiO, CoO, mixed oxide complexes, RuO2, manganese oxide, among 

others, as well as carbonaceous materials such as carbon nano-onions, carbon nanotubes, 

graphene and activated carbon. Research on supercapacitors is investigating copper oxide 
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(CuO) because of its affordability and straightforward manufacture. Graphene oxide (GO), 

characterized by its extensive surface area and advantageous redox characteristics, presents 

itself as a possible candidate. Electrodeposition, an economical and uncomplicated method, is 

widely utilized for the fabrication of these supercapacitors. [15-20] 

 

In the past decade, methodologies for synthesizing CuO nanoparticles have been investigated, 

including the sol-gel method [21], sonochemical approach [22], one-step room-temperature 

solid-state reaction technique [23], and electrochemical process [24]. Thermal decomposition 

is an innovative method in the midst of the several methods discovered for the production of 

stable monodisperse Cu and CuO nanoparticles, as well as for the co-implantation of oxygen 

ions and metals. The fabrication of coordination supra-molecules or polymer chains with 

coordination has recently become a potent and adaptable method for manufacturing metallo-

polymers [27-28]. Coordination supramolecules are distinguished from conventional covalent 

polymers by their reliance on metal-ligand coordination bonding [29-30]. Supramolecular 

coordination complexes possess extensive potential applications in nanotechnology, as 

nanoscale materials frequently display fascinating size-dependent chemical and physical 

properties absent in their bulk counterparts.  

 

Graphene Oxide (GO), an innovative material in the realm of renewable energy, 

possesses a substantial surface area and exhibits advantageous redox properties [31]. Besides 

water purification, these carbon nanostructures shown efficacy in other applications, 

including light-emitting diodes, fuel cells, sensors, batteries, nanoantennas, touch screens, 

liquid crystal displays and sound transducers [32]. This research presents the synthesis of  

new copper coordination complex with the formula [(Cu(3,5-dnb)2(3-pymc)2(H2O)2], 

followed by calcination to yield CuO nanocrystals. A novel nanocomposite system has been 

developed by combining graphene with synthesized copper oxide, and its use for energy 

storage has been examined. 

 

2. EXPERIMENTAL SECTION 

 

Materials and Methods 

 

3,5-Dinitrobenzoic acid and methyl carbazate (methyl hydrazinecarboxylate) were of 

analytical standard and procured from Sigma-Aldrich. Ethanol, phosphoric acid, H2O2, 

KMnO4, and HCl were acquired from TCI Chemicals, each with a purity of 99%. NaOH, 

H2SO4, and graphite powder were procured from Avra Chemicals, with stated impurities of 

99% and no additional purification conducted. All compounds were utilized in their unaltered 

state. 

 

Synthesis of [(Cu(3,5-dnb)2(3-pymc)2(H2O)2](1) & [Cu3 (3,5-dnb)6(CH3OH)2]  

 

The production, characterisation, and crystallographic examinations of the title complexes 

have been documented in our prior research [33]. Figure 1 illustrates the chemical structure 

of the complex. 
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Figure 1. Chemical structure of Cu complex 

 

2.4. Synthesis of Graphene Oxide (GO) 

 

In a standard procedure, pure graphite powder was transformed into graphene oxide (GO) by 

a modified Hummers method. This technique entailed the amalgamation and agitation for 

many minutes of 27 milliliters of sulfuric acid  and 3 milliliters of H3PO4 in a quantity ratio 

of 9:1. Afterwards, 225 mg of graphite was included into the fusion under agitation. Then, 

1.32 g of KMnO4 was incrementally introduced to the content. The reaction mixture became 

dark green in colour after 6 hours of strong agitation of the content. 0.675 ml of H2O2 was 

incrementally introduced and agitated for 10 minutes to eliminate the excess potassium 

permanganate. Subsequent to the exothermic process, permit it to cool. The graphene oxide 

produced was rinsed with 30 ml of deionized water and 10 ml of hydrochloric acid. 

 

2.4. Electrochemical behaviour of CuO/GO composites 

 

 The working electrodes was fabricated by combining the active component (80 wt.%), 

polyvinylidene fluoride (10 wt.%), and carbon black (10 wt.%) in 1-Methyl-2-Pyrrolidone to 

create a uniform slurry, which was subsequently applied on nickel foam (1x3 cm²) and 

dehydrated at 80 °C for 12 hours. The measurements were conducted in a aqueous 1M KOH 

through a three-electrode technique, utilizing a saturated calomel electrode (SCE) as the 

reference electrode and platinum electrode as the counter electrode. The electrochemical 

characteristics of the synthesized materials was assessed by means of electrochemical 

impedance spectroscopy (EIS), galvanostatic charge/discharge (GCD) measurements and 

cyclic voltammetry (CV), utilizing a CHI 660 E workstation. 

 

3. Results and discussion 

 

P-XRD Analysis  

 

The P-XRD investigation, publicized in Fig. 2, validated the crystalline structure of the 

synthesized GO and CuO-GO nanocomposite. Diffraction peaks of GO nanosheets (Fig. 2b) 

are detected at 2θ = 28.48°, 30.37°, 32.37°, 42.13°, and 50.44°, corresponding to the (100), 
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(002), (101), (102), and (110) planes. They pertain to the attributes of the Hexagonal phase of 

GO (JCPDS01-076-2378). The (110) reflection peak of the multilayer GO nearly vanished. 

The diffraction peak was suggested to be imperceptible upon the exfoliation of GO. The 

PXRD pattern of CuO-GO composites reveals peaks at 2 θ = 32.41°, 35.13°, 39.13°, 53.88°, 

and 66.22°, corresponding to the (110), (002), (200), (112), (202), and (022) planes, 

respectively. The pattern signifies that the CuO is in monoclinic phase (JCPDS 00-002-1041). 

The carbonyl group of carboxylic acids and ketones on GO exhibited significant coupling 

with Cu ion, thereby forming a layer-on-layer network. 

 

 
Figure 2. The XRD patterns of (IV-b) GO, and (IV-c) GO-CuO nanocomposite. 

  

 SEM image of CuO-GO 

 

The nanocomposite SEM was obtained in powder form, and images were recorded on carbon 

tape. Figure 3(a) and (b) presents the SEM images, clearly illustrating that the morphology of 

the intercalated nanocomposite particles is indeed at the nanoscale, although the irregular 

form resulting from particle aggregation in the solution during synthesis.  

 

 
Figure 3. a-b) FE-SEM images of CuO-GO composite particles 
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HR-TEM image of GO &CuO nanoparticle 

 

The prior study unequivocally demonstrated that hydrazine hydrate is the most potent 

reducing agent in the chemical reduction of graphene oxide. TEM analyses revealed that the 

treatment of GO with hydrazine hydrate yielded high-quality, ultrathin graphene sheets. 

Substantial, dense, multilayered agglomerates of GO were found naturally flat on the surface 

of the carbon sheet (Fig. 4(a)).[34] The TEM image of GO in Fig. 4b indicates that the GO 

sheet is irregular, and the folded GO sheet demonstrates a lamellar structure and significant 

flexibility. Consequently, we can ascertain that graphene oxide with a single layer and a two-

dimensional nanoscale was successfully synthesized [35]. 

 

 

Figure 4 TEM images of CuO-GO composite particles 

 

Electrochemical analysis 

 

The example cyclic voltammetry (CV) responses for GO, CuO, and the CuO-GO 

nanocomposite, obtained at scan rates of 10, 20, 30, 50, 70, and 100 mV s⁻¹ within the 

potential range of 0.0 V to 0.7 V, are demonstrated in Figure 5(a-c). It is essential to observe 

that both the current density and the region beneath the cyclic voltammetry curve increase 

with the scan rate [36]. The potential limits were established betwixt 0.7 and 0 V, amid the 

scan rate varying starting 10 to 100 mV/s. The redox peaks are clearly discernible in all 

cyclic voltammetry responses, deviating from the rectangular behavior indicative of the 

electric double layer capacitance method. The peak separation enlarges with a rising scan 

rate, transitioning from a lower to a higher rate, for instance, from 10 to 100 mV s-1, 

attributable to the ion exchange method. The constancy of the form parameters of the cyclic 

voltammetry responses at elevated scan rates signifies the remarkable durability of CuO-GO 

electrodes [37]. The area delineated by the unit-based CuO, GO, and GO/CuO curves. The 

specific capacitance data of the CuO-GO coated Ni foam are significantly higher than those 

of the individual compounds of the bare GO and CuO coated electrodes. The specific 

capacity of the CuO-GO electrode is enhanced when spherical GO nanoparticles are tightly 

wrapped around the surface of CuO nanoparticles, resulting in composites with an increased 

surface area.[38-39]. 

 

The following CV equation is utilised to compute the specific capacitance (F g -1) of 

the deposited metal-oxides-electrodes.[40]. 
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𝐶𝑠𝑝 =
𝐴

2𝑚𝑘𝑉(𝑣2−𝑣1)
            (1) 

 

Where (m) is the quantity of the active material (g), (A) is the applied area, (k) is the 

scan rate, and (V) is the discharge potential window (v2-v1) rangs specific capacitance (csp). 

 
Figure 5. CV curve of a) GO, b) CuO, and c) CuO-GO nanocomposites. 

 

Figure 6(a-c) illustrates the GCD responses of GO, Copper oxide and CuO-GO throughout 

various current density ranges from 5 to 10 A g<sup>-1</sup>. The curves have subtly 

curved, approximately triangular shapes, signifying robust electrochemical reversibility and 

advantageous capacitive characteristics. GCD profiles demonstrated nonlinear charging and 

discharging behaviors, affirming the occurrence of Faradaic processes at the electrode 

interface. Equation 2 was employed to get particular capacitance data derived from the GCD 

responses [41]. 

 

C𝑠p =
𝐼∆𝑡

𝑚∆𝑉
               (2) 

 

where m denotes the quantity of the active material (g), V represents the discharge potential 

range (V), Δt indicates the discharge duration (s) and I signifies the applied current (A). As 

ion transport in the CuO-GO system slows at elevated current densities, a rise in current 

density clearly leads to a prompt reduction in specific capacitance (Cp). This is a 

characteristic tendency seen by all electrochemical capacitors. There is sufficient time for 

electrolyte ions to access the electrode surface and subsequently exit at reduced current 

densities. Specifically, at 5 A g-1, CuO-GO exhibits a specific capacitance of 395 F g-1, 

significantly surpassing the value of graphene oxide at 115 F g-1 and CuO at 235 F g-1. 
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Figure 6.GCD curve of a) GO, b) CuO, and c) CuO-GO nanocomposites. 

 

Electrochemical impedance analysis (EIS) 

 

Furthermore, EIS assessments were conducted to estimate the conductive properties of the 

GO, CuO, and CuO-GO nanocomposites. Figure 7a illustrates the Nyquist plot of GO, CuO 

nanoparticles and CuO-GO composite electrodes. The kinetics of charge transport in 

electroactive materials were investigated using EIS across a frequency range of 0.01 Hz to 

100 kHz. The pertinent Nyquist plot and equivalent circuit employed to model the 

experimental data for all CuO-GO electrodes are presented. The corresponding series 

resistance at the electrolyte/electrode interface decreases as the oxygen concentration of the 

CuO-GO film rises, indicates the suitability of CuO-GO electrode for supercapacitor utility. 

The parameters RΩ, CPE-T, and CPE-P were derived from impedance plots utilizing the 

equivalent circuit [42]. The charts were fitted utilizing equivalent circuit fitting [43]. 

 
Figure 7. (a) EIS spectrum, and (b) Capacitance retention for 2000 cycles. 
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The cyclic stability of GO, CuO, and CuO-GO electrodes was assessed during 2000 cycles at 

a current density of 5 A.g-1. Figure 7b illustrates that the cyclic efficiencies of these 

electrodes after 2000 cycles were 88.3%, 95.5%, and 98.7%, respectively. The results 

highlight the enhanced cyclic stability of CuO-GO relative to the other samples, as indicated 

by electrochemical analyses. 

 

CONCLUSION 

 

We synthesized CuO using a coordination complex as a precursor and blended it with 

graphene oxide to serve as an electrode for supercapacitor utility. The specific capacity of the 

CuO-GO electrode is enhanced when spherical GO nanoparticles are tightly coiled on the 

surface of CuO nanoparticles, resulting in composites having improved surface area. The 

cyclic stability of GO, CuO, and CuO-GO electrodes was assessed to have a current density 

of 5 A.g-1 during 2000 cycles. After 2000 cycles, the cyclic efficiencies of these electrodes 

were 88.3%, 95.5%, and 98.7%, respectively. Specifically, at 5 A g-1, CuO-GO exhibits a 

specific capacitance of 395 F g-1, significantly surpassing the valye of graphene oxide (115 F 

g-1) and CuO (235 F g-1). This study presents an efficient and reproducible method for 

fabricating a CuO-GO nanocomposite layer and the promising results reveals the suitability 

of this composite towards supercapacitor applications. 
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