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Abstract:   

 

Maintaining the Polymer Electrolyte Membrane Fuel Cell made of nano 0.5 wt% CeO2 doped 

anode material under the optimum operating condition is a challenging task, which requires 

the careful design of efficient controllers for most significant parameters. Identification of the 

most relevant set of parameters for control and its validation is very critical in developing 

stable and improved hydrogen separation via 0.5 wt.% doped CeO2 anode reliable PEM FC 

systems. This work involves the implementation of 0.5 wt.% CeO2 doped anode and 

validation of optimum input parameter values obtained from a set of Neuro Fuzzy Controllers 

designed for a 500W PEMFC. The mathematical model is developed in Matlab/Simulink 

platform and simulated under various operating conditions to study the effect of various input 

parameters. Validation is done using the machine-learning algorithm, Tertius. The basic 

design for validation was developed in WEKA (Waikato Environment for Knowledge 

Analysis) platform and the same was implemented in a java environment. As being a single 

attribute oriented algorithm in machine learning suite, Tertius validates the designed model 

and provides accurate prediction. Performance of the model has also been analyzed using the 

area under the ROC curve and thus provides a validation to the model and the predicted set of 

input parameters which will give the desired electrical performance and efficiency. 

 

Keywords: PEMFC; CeO2 nano oxide; Stack voltage; Tertius algorithm, Machine learning 

tool.  
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1. Introduction:  

 

The proton exchange membrane fuel cell equipped with doped CeO2 (PEMFC) which 

uses a solid thin polymer as the electrolyte is a promising candidate as a green source of 

power for future. PEMFC is an electrochemical device which can convert chemical energy of 

reactants directly to electrical energy in a quiet, clean and efficient way and thereby reducing 

emission of greenhouse gases and consumption of fossil fuels. The ability of PEMFCs to 

operate in under low temperature conditions, low corrosion, low weight and quick start up 

enables them to be deployed for various applications like automobile, space units and 

stationery power back up [1-4]. Compared to other fuel cell types like solid oxide fuel 

cells(SOFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC) and 

alkaline fuel cells (AFC). PEMFC addresses challenges in all sectors of energy like 

transportation, commercial, residential and industry due to their application in diverse fields. 

But for successful commercialization of PEMFC requires extensive research focusing on 

developing suitable materials for each component, subsystems and appropriate control 

methods to optimize life, cost and performance of PEMFC systems [5]. With the increasing 

demand of PEMFC in various areas of application, the need for accurate on proton transfer 

via modified anode material, which may be doped with CeO2 and also the system models 

with simulation of various operating conditions and performance evaluation becomes very 

critical. PEMFCs are highly nonlinear systems with multiple set of coupled parameters 

affecting the rate of electrochemical reactions and electrical performance. Hence simulation 

study helps in identifying the optimum set of input parameters and operating conditions 

which gives the best performance from a PEMFC system.  

 

Two fundamental approaches in fuel cell modeling are the steady state and dynamic 

models. Steady state model can be analytical or empirical where the parameters are obtained 

from experimental results. These models do not consider the deep underlying physics or the 

electro chemistry of the fuel cell operation and can be used for predicting the effects of input 

parameters on V-I characteristics [6,7]. They can be used to study aging effects, degradation 

issues and for material section [8,9]. There are many previous works on dynamic 

mathematical models which can represent the transient dynamics efficiently and helps to 

understand the power performance. Study of thermal dynamics and internal resistance on cell 

performance is reported in [10]. These effects are very significant for low power PEMFC 

systems with few kilo watts than for larger systems. Simulation of dynamic models can 

predict the cell performance under transient conditions of reactant flow rate, cell temperature, 

anode and cathode pressure and load current demands [11-13]. Another nonlinear dynamic 

model which incorporates the electrochemical and thermodynamic effects of PEMFC 

operation where stack voltage is expressed in terms of load current, cell temperature, oxygen 

partial pressure and membrane humidity is reported in [14]. Mathematical models of 

PEMFCs are extensively used for predicting the stack performance under various operating 

conditions. [15]. Majority of these models are used for steady state analysis and also does not 

consider all the involved phenomena of fuel cell operation [16-19]. Also these steady state 

models become insufficient for practical applications like in automobiles where the load 

conditions and output power vary significantly over the operating period. Hence we need 
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accurate dynamic models of PEMFC to represent the transient responses under a wide range 

of dynamic operating conditions. But majority of the dynamic models available in literature 

uses partial differential equations for representing the underlying operations of fuel cell and 

thus making their simulations slower. Hence there is a need for powerful mathematical 

models which can represent all the transient responses by considering the relevant 

electrochemical and thermodynamic effects. 

 

When a fuel cell is operated with a connected load, heat and water are produced and 

oxygen is consumed which is represented in equation 1. 

 

Net redox reaction (the "" reaction): 

 

2H2 + O2 = 2H2O + heat + electricity               (1) 

 

This requires suitable control systems to maintain safe range of cell temperature, 

membrane humidity and pressure for reactants so that desired electrical performance and 

stack efficiency is obtained. Maintaining the optimum set of operating conditions and safe 

range of input parameters requires efficient controllers for regulating the most critical 

parameters so that the desired electrical performance is obtained from a PEMFC stack for a 

selected application. Thus identification of most relevant parameters of the PEMFC that 

affects the electrical performance is the most critical stage in developing a stable and efficient 

PEMFC system. Figure 1 shows the scanning electron microscope image of nano cerium 

oxide. 

 

 
 

Figure 1 SEM image of CeO2 nanoparticles 

 

2. Modelling and validation 

 

2.1 Modeling a PEMFC 
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The reversible open circuit voltage (Nernst voltage) from a hydrogen Fuel cell is given as 

𝑉𝑟𝑒𝑣𝑒𝑟𝑠 = 1.229 − 0.85 × 10−3(𝑇𝑓𝑐 − 298.15) + 4.3085 × 10−5𝑇𝑓𝑐 [𝑙𝑛 𝑙𝑛 (𝑝𝐻2
)  +  

1

2

𝑙𝑛 𝑙𝑛 (𝑝𝑂2
) ]                                                                                             (2) 

The fuel cell output voltage is affected by various losses and the actual cell voltage is given 

as in equation 3. 

Vstack=  𝑉𝑟𝑒𝑣𝑒𝑟𝑠 - Vact  -  Vcon  - Vohm              (3) 

Activation loss Vact is the voltage lost in driving the chemical reaction at the 

electrodes given by  

𝑉𝑎𝑐𝑡 = [
𝑅𝑇

4𝐹𝛼𝑐
] ×𝑙𝑛 𝑙𝑛 (

𝑖

𝑖𝑐
)  + [

𝑅𝑇

2𝐹𝛼𝑎
] ×𝑙𝑛 𝑙𝑛 (

𝑖

𝑖𝑎
)       (4) 

Due to the flow of electrons through the electrodes and various interconnections, an 

electrical resistance is formed which includes the hindrance in the flow of ions in the 

membranes and results in a voltage drop proportional called Ohmic Loss given by equation 

(5) 

𝑉𝑜ℎ𝑚 = 𝐼𝑓𝑐 × 𝑅𝑓𝑐             (5) 

Decrease in stack voltage due to reduction in concentration of reactants at the 

electrode surface is known as concentration loss given as in equation (6). 

𝑉𝑐𝑜𝑛 = (𝑖 × 𝐶1 ×
𝑖

𝑖𝑚𝑎𝑥
)

𝐶2

                            (6) 

 

2.2 Dynamics of reactant pressure  

 

The stack voltage of a PEMFC system depends on partial pressure of Oxygen (PO2) 

and partial pressure Hydrogen (PH2) as given in equation 7 and 8. 

 

𝑃𝑜2
= 𝑅𝐻𝐶 × 𝑃𝑠𝑎𝑡𝐻2𝑜

× {(
1

𝑒

4.192×
𝐼
𝐴

𝑇1.334

) × (
𝑅𝐻𝐶×𝑃𝑠𝑎𝑡𝐻2𝑂

𝑃𝐶
− 1)}               (7) 

𝑃𝐻2 = 0.5 × (𝑅𝐻𝐴 × 𝑃𝑠𝑎𝑡𝐻2𝑂
×

1

𝑒

1.635×
𝐼
𝐴

𝑇1.334

 ) ×
𝑅𝐻𝐴×𝑃𝑠𝑎𝑡𝐻2𝑂

𝑃𝑎
− 1    (8) 

The saturation pressure of water depends on temperature and hence maintaining the 

temperature in the safe range is very important for maintaining the reactant partial pressures 

and also for optimum membrane humidity. For temperature above 900C, conductivity of 

Nafion membrane decreases and results in membrane cracks and damages the membrane 

permanently. 

 

2.3 Thermodynamics involved in membrane humidity 

 

The water diffusion coefficient, Dw and electro-osmotic drag coefficient, nd, shown in 

equation 9 and 10 are calculated from the average membrane water content, 𝐷𝜆𝑚 as given in 

equation 11. 

nd = 0.0029λ2
m + 0.05λm − 3.4 × 10−19                                (9) 

 𝐷𝑤 =  𝐷𝜆𝑚 𝑒𝑥𝑝 𝑒𝑥𝑝 (2416 (
1

303
−

1

𝑇𝑓𝑐
))                (10)                                                                             
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Where 𝐷𝜆𝑚 is given by equation (11) 

                  𝐷𝜆𝑚 = {10−6,   𝜆𝑚 < 2 10−6(1 + 2(𝜆𝑚 − 2)),    2 ≤ 𝜆𝑚 ≤ 3 10−6(3 −

1.67(𝜆𝑚 − 3)), 3 < 𝜆𝑚 < 4.5  1.25 × 10−6,    𝜆𝑚 ≥ 4.5       (11) 

The desired Rhc is obtained by injecting sufficient amount of vapor (Winj) to the 

humidifier given by equation 12. 

Winj=
𝑀𝑣

𝑀𝑎
. 𝜙𝑑𝑒𝑠.

𝑃𝑠𝑎𝑡

𝑃𝑎𝑐𝑜
. 𝑊𝑎𝑐𝑜 − 𝑊𝑣𝑐𝑜                                 (12)    

  

2.4 Double Layer Charging Effect 

 

During PEM fuel cell operation, Hydrogen ions are collected in the electrolyte and 

electrons in the electrodes (modified anode), which actually represent a condition similar to 

charge accumulation in capacitor. As a result of this capacitive effect, the cell voltage cannot 

immediately follow the current variation in current. Models build by considering this double 

layer capacitive effects give more accuracy in representing the dynamics of fuel cell 

operation. 

 

2.5 500W PEMFC Model in Matlab/Simulink 

 

A mathematical model in Matlab/Simulink is developed by considering these 

dynamics of operation for a rated power of 500W with 25V at 20A whose layout is shown in 

Figure 2. Simulations are carried out to study the optimum range of input parameters for 

obtaining the optimum electrical response at the rated power. 

 

 

Fig 2: 500 W PEMFC Model layout in Matlab/Simulink 
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3. Study on the effect of input parameters on stack voltage 

 

Simulations are performed under a large set of operating conditions with different 

combinations of dynamic input range to identify the most significant set of input parameters 

on stack performance by the introduction of CeO2 doping which is very important in 

designing efficient controllers for a PEMFC system. 

 

3.1 Study on effect of cathode input pressure on stack voltage 

 

The variation of stack voltage for different values of cathode input pressure under a given 

operating condition (input relative humidity= .3 and temperature =333.17K) is given in 

Figure 3. 

 

 
 

Fig 3: Effect of cathode input pressure on stack voltage 

 

Simulation result shows that the effect of cathode pressure on stack is more for higher load 

currents than for low loads of less than 5A. Thus we need a control mechanism to regulate the 

cathode pressure according to the load. This is achieved by controlling the compressor valve 

at the cathode inlet. 

 

3.2 Effect of cathode flow rate on stack voltage. 

 

 
Figure.4 Effect of cathode input flow rate on stack voltage 
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Simulation study performed under various values of cathode flow rate and its effect 

on the stack performance is shown in Figure 4. From these results, we can see that under low 

load currents (less than5A), the effect of cathode input flow rate is less. But as the load 

demand increases, there is need for increased flow rate at cathode which shows a need for 

flow regulation at cathode. This flow regulation is possible by controlling the speed of motor 

which is supplying the air at cathode. 

 

3.3 Effect of Relative Humidity on stack voltage 

 

Model was simulated under different values of relative humidity and stack performance 

is plotted and shown in Figure 5. 

 
 

Figure 5: Effect of cathode relative humidity on stack voltage 

 

Study on cathode humidity shows that even a slight variation in cathode relative humidity can 

significantly affect the stack performance and hence there is a need for highly efficient 

controllers on cathode side for getting an optimum value of relative humidity. Regulation of 

relative humidity is possible by controlling the flow of water injected from humidifier at 

cathode inlet. 

 

3.4 Need for controller in PEMFC system 

 

Results of simulation under a wide range of input conditions describe the effect of 

these parameters on stack performance and the suitable range of values to achieve the rated 

power. There is a highly nonlinear and inter related coupling between these input parameters 

which affects the stack voltage and hence the power at different load conditions. Table 1 

shows values from simulation under different operating conditions and the need for 

maintaining these parameters using efficient controllers. 
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Table 1: Stack power under different operating conditions and loads. 

 

Cathode Input parameters Output parameter-Stack power (PsatckW) for different 

load currents at CeO2 modified anode  

Pa,co(atm) 

Partial 

pressure 

of dry air 

Wco(g/s) 

Flow rate 

from 

compressor 

Winj(g/s) 

Flow rate of 

water 

injected to 

humidifier 

5A 10A 15A 20A 

1.2  .6 .042 154 291 417 518 

1 .5 .04 155 292 412 512 

.8 .46 .032 155 280 387 455 

.5 .3 .028 141 255 323 333 

 

The optimum values of cathode inlet pressure, flow and relative humidity are obtained using 

Neuro Fuzzy Controller to get the desired electrical performance at rated power for the 500W 

PEFMC model.  

 

4. Validation. 

 

Validation typically means to what extend the accuracy supports. In this work, a 

machine-learning algorithm, Tertius is used to study the performance and infer how 

variations in parameters affect the system.  

 

4.1 Tertius Algorithm 

 

Tertius algorithm builds rules out of the attribute pair values in the training data and 

ranks them according to how inclined they are, ie., how many times the rule holds true in the 

training data. A rule consists of a body and a head. The body contains the conditions (known 

as literals) required for the rule to hold, and consists of any number of literals. The head 

contains the event that occurs if the rules hold true. During rule learning, Tertius algorithm 

starts with an empty rule, ie., it contains a blank body and a blank head. The algorithm is 

shown in Algorithm 4.1  

___________________________________________________________________________ 

Algorithm 4.1: Tertius Algorithm  

---------------------------------------------------------------------------------------------------------------- 

Input : Empty rule (agenda)  

Output : Parameter association rules  

1. Agenda ← empty rule  

2. while agenda is not empty  

2.1 rule← first rule of the agenda  

3. if rule can be stored in results  

3.1 Add rule to results  
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4. if rules can be refined  

4.1 refine rule  

5. for each child  

5.1 Calculate optimistic estimate and confirmation  

5.1.1 if child can be stored in agenda  

 5.1.2 Add child to agenda  

6. Sort agenda according to optimistic estimate  

___________________________________________________________________________ 

 

Tertius is a single attribute oriented algorithm. The attribute that needs to be tested against is 

fixed and the parameters are fed-in directly from the dataset. The algorithm processes the 

data and provides the rules in a manner, how inclined or how much variations in input 

parameter causes a change in the fixed attribute. 

 

The experiment was run over the weka.associations platform with the help of Class Tertius. 

The class implementing the Tertius type algorithm is given below. 

 

public class Tertius 

extends Associator 

implements OptionHandler, java.lang.Runnable  

 

Details on the java implementation is given in Reference [21] 

 

4.2 Results and Performance Comparison 

 

Tertius as we know is a single attribute prediction mechanism, it captures the dataset 

that is provided and models the system accurately from the range of values and tests it against 

the associated parameters. Here system accepts the dataset in. arff file format and does an 

initial data preprocessing using a supervised filter. The processed dataset is trained and is fed 

to the machine-learning algorithm, Tertius module. The predicted results will be viewed 

using a text viewer. The schematic knowledge flow of the process in Weka environment is 

shown in the Figure 6. 
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Fig 6: Schematic View of Knowledge Flow 

 

Here the critical parameters under our observation are pressure, flow of oxygen and 

flow of injected water. The lower and upper limit of parameters is set and is fed for training. 

Tertius calculates the system performance for each instance and updates the same in the 

parent node of Treap [22]. As with each instance the nodes in Treap (a tree shaped data 

structure having the property of heap) gets larger and a traversal from bottom to top provides 

the best pair of parameters for optimal system performance. Stack voltage of 25V for a load 

of 20A is obtained when the parameter reading seized at Pa,co(atm) = 

0.810,Wco(gm/s)=0.386 and Winj(g/s)=0.0369 s 

 

For measuring the systems performance, the most common and straight away approach is the 

ROC curve, it shows how the system responds to a set of positive datasets and how it 

responds to the negative datasets. Here the random Treap nodes and the values associated 

with the nodes are taken into consideration and the performance is evaluated. Data sample of 

cumulative rate of a four level diagnostic test is shown in Table 2. The corresponding ROC is 

shown in the Figure 7. 

 

Table 2: Data Sample 

Diagnostic 

Level 

Cumulative Rates 

False Positive True Positive 

1 0.0108 0.5625 

2 0.1935 0.7813 

3 0.5806 0.9063 

4 1 1 
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Fig 7: ROC Curve 

 

There were a total number of 73 actual negative cases and 825 actual positive cases;  

With: x = false positive rates (1-specificity) 

                0.0108   0.1935   0.5806    

y = true positive rates (sensitivity) 

      0.5625   0.7813   0.9063    

The Fitted curve:  y = 0.1Ln(x) + 0.97 

R2 = 0.9906 and Area under curve = 0.8722 

Estimated ROC curve with 

  Column 1 = false positive rates (1-specificity) 

  Column 2 = true positive rates (sensitivity) 

 

Table3: Estimated ROC curve with true and false positive rates 

 

Column 1 Column 2 Column 1 Column 2 

0.05 0.6704 0.55 0.9102 

0.1 0.7397 0.6 0.9189 

0.15 0.7803 0.65 0.9269 

0.2 0.8091 0.7 0.9343 

0.25 0.8314 0.75 0.9412 

0.3 0.8496 0.8 0.9477 

0.35 0.865 0.85 0.9537 

0.4 0.8784 0.9 0.9595 

0.45 0.8901 0.95 0.9649 

0.5 0.9007   

  

Area under the ROC is much convincing and is totally in align with the system that 

we have modeled. So with this machine learning approach we could establish the correctness 

of our proposed system. 
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5. Results 

 

The model simulated in MATLAB / Simulink version R2016b is used to study the 

CeO2 doped PEMFC stack performance for the most significant parameters: Pa,co(atm), 

Wco(gm/s) and Winj(g/s). Here in this study, the doped CeO2 anode model for effective 

proton exchange as well as the predicted set of input parameters from the neuro fuzzy 

controllers are validated using the machine learning tool with Tertius algorithm. The ROC 

curve in Figure 6 shows the correctness of the predicted set of optimum values of the input 

parameters obtained after four levels of diagnostic tests. 

 

6. Conclusion 

 

A novel method of machine learning based validation for the designed control 

strategy for a Modified anode by using nano CeO2 oxide 500W PEMFC to achieve the 

following requirements. 

 

 1) To maintain required value of cathode inlet pressure (Pc) by controlling the 

pressure from air compressor with respect to load current(Ifc).  

 

2) To maintain required air flow (Wco) by controlling the motor according to load 

current(Ifc). 

 

 3) To maintain desired value of relative humidity (Rhc) by controlling the water 

injected (Winj) into the humidifier for specific load conditions based on the value of dry air 

pressure and air flow from motor is performed successfully. Validations of the results were 

carried using Tertius algorithm. The results strictly adhere to the values obtained during 

modeling. A ranker mechanism was also used during preprocessing to prune the lower order 

parameters. As the machine-learning algorithm validates the model to be perfectly in align, it 

could be concluded as a perfect implementation strategy for getting an efficient PEMFC 

system. 

 

4) Thus the nano CeO2 modified anode material inbuilt 500W PEMFC was studied 

and validated for optimum process parameters with Tertius algorithm.   
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