

Optimizing DevOps Processes: A Practical

Framework for CI/CD Pipeline

Design and Deployment

 Binayak Kumar Mahato

Bachelor of Engineering (Information

Technology)

Chandigarh University

Mohali, India

binayakmahato01@gmail.com

 Abhinav Paswan

Bachelor of Engineering (Information

Technology)

Chandigarh University

Mohali, India

paswanabhinav1509@gmail.com

 Kirat Kaur

Department of Computer Science and

Engineering

Chandigarh University

Mohali, India

kirat.e12999@cuchd.in

 Amar Kumar Mandal

Bachelor of Engineering (Information

Technology)

Chandigarh University

Mohali,India

kr.amarsingh09@gmail.com

Rajnish Kumar

Bachelor of Engineering (Information

Technology)

Chandigarh University

Mohali, India

rajnishnikk20@gmail.com

Abstract — Effective DevOps process setups in advanced

program development are of crucial significance in increasing

productivity, decreasing deployment time, as well as enhancing

program quality. In the paper, we describe the step-by-step

procedure that will implement the Continuous Integration and

Continuous Deployment pipeline way to optimize software

development workflows. Therefore, the implemented solution

automates testing and code analysis, along with the deployment,

using Jenkins, GitHub, Docker, and SonarQube, in order to

maintain both reliability and scalability. Our study will then

investigate how much automation can help to reduce build

times, improve security, and enable developers to be more

productive. The identified constraints to CI/CD adoption are

associated with security threats and infrastructure deficiencies.

This paper discusses how these hurdles can be overcome in an

effective manner. The study strongly suggests a solid impact that

well-structured CI/CD pipelines have on speed in software

delivery, reliability, and maintainability.

Future research may want to focus on the automatic, AI-

driven prediction of deployment analytics and improvement to

security monitoring. Key Words: Infrastructure: DevOps,

CI/CD pipeline, automation, software deployment, continuous

integration, continuous delivery, Jenkins, Docker, SonarQube,

software quality.

I. INTRODUCTION

In the fast-growing environment of modern software

development, there is an emerging demand for delivery

channels that are dependable, scalable, and replete with

efficiencies. DevOps—being considered the union of

software development and IT operations—has been proposed

as one of the most influential ways to deal with this need by

making the CI/CD process automatic. At the nucleus of

DevOps lies the Continuous Integration and Continuous

Deployment (CI/CD) pipeline, an essential component of

today's modern software engineering practices.

Most activities conducted in these pipelines of Code

Integration, Testing, and Deployment have been semi-

automated, avoiding human error to enable fast delivery.

This will improve the quality of software. However,

assembling an effective system of CI/CD pipelines demands

one to be fully acquainted with the goals of the company,

technology limitations, and changing industry norms. [1].

Organizations worldwide are majorly investing in the

improvement of DevOps processes due to the ever-increasing

complexity of software systems and a desire for faster release

cycles. As much as CI/CD pipelines are well known to have

wide-ranging benefits, their actual successful implementation

within organizations remains a task. Pipeline delays,

insufficient testing techniques, or team mismanagement

basically define the factors that sometimes prevent DevOps

from achieving seamless potential. The research tries to

provide a workable methodology that gives flexibility to be

able to create and implement an effective CI/CD pipeline in

any organization. [2].

The goal of this paper is to arm software engineers, DevOps

experts, and organizational leaders with the requisite

knowledge and resources in improving their CI/CD pipelines

by means of a mix of recent research, examples of best

practices, and expert opinion. It proposes a research-informed

strategy for accelerating, stabilizing, and improving the

quality of software delivery, constituting a real contribution to

the larger DevOps discussion. The ability to create and run

successful CI/CD pipelines lets one remain at the front in the

business surroundings to keep competitive and innovative

within the software industry, gaining ground for companies'

digital transformation. [13].

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1414

mailto:binayakmahato01@gmail.com

Fig 1: Growth of CI/CD Pipeline Adoption (2018-2023)

The graph below shows that the adoption of CI/CD pipelines
has increased from 2018 and will continue to 2023 at a
constant growth trend. The adoption rate per year is as
follows:

• 2018 (25%): Very low CI/CD adoption, at just 25%, is due
to the fact that most companies were still stuck in the
traditional way of development and deployment. By this year,
only the early adopters had started experimenting with
automation to deliver releases faster.

• 2019 (35%): This increased to 35% adoption in the year
after, showing an increasing realization of the gains DevOps
presents. More firms are to add CI/CD pipelines to help
improve working efficiency and reduce deployment failures.

• 2020 (50%): Halfway there, or 50%, was where adoption
reached in the year 2020, a big step towards automation. This
is where factors in cloud computing, microservices, and
containerization have really played a huge role in pacing up
CI/CD integration.

• 2021 (65%): Year 2021 and adoption has increased up to
65%, as companies have now started broadly practicing
DevOps. DevOps is one of the most well-known
methodologies that employ a lot of tools: Kubernetes, IaC,
and automated testing in a CI/CD pipeline.

• 2022 (75%): Now, the adoption further increases up to 75%,
with much AI-driven automation in the front along with
additional security features and scaling opportunities—
business critical focus is on achieving deployment at pace and
with reliability.

• 2023 (85%): CI/CD adoption has finally increased to
people's positive assessment, which pretty much
characterizes how industries accept this. Basically, at this
point, constant integration and deployment is a base on which
organizations bring about updates for software by virtue of
pace, security, and operation efficiency.

This data displays the accelerating focus on implementing
CI/CD pipelines as apace of automation through business
implementation for better efficiency, reliability, and security
in software development. It shows that the implementation of
CI/CD pipelines has risen constantly from 2018, with the rate

of change now putting in between the years 2019 to 2023. This
brought the figure to 25% in 2018 because most organizations
went ahead with the traditional method, with automation only
in exploration stages among the fast release-seeking first
movers. 2019 then picked, to now stand at 35%, propelled by
the snowballing realization of DevOps benefits experienced
by firms that wanted to streamline workflows and reduce
errors.

This, therefore, changed in 2020: by hitting the 50% mark, it
was indeed a big turn, mostly due to cloud computing,
microservices, and containerization!

In a fast-changing environment, they simply make automation
more accessible and efficient. Adoption in 2021 was at 65%,
followed by the release of Kubernetes into the mainstream
toolset inside pipelines of CI/CD, IaC, and automated testing.

By 2022, another 10% was added to reach 75%, which was
achieved by an improvement in AI-driven automation,
security measures, and scalability providing faster and more
reliable deployment cycles.

And by 2023, it will peak at 85%, showcasing the industry at
large an acceptance of CI/CD pipelines. The absolute priority
of companies at present is continuous integration and delivery
to instantly and safely update their software.

The reinforcing trend profile that supports the backdrop in the
previous slide is the presented area that CI/CD pipelines are
very much part of the build of today's software development;
it also identifies the level of automation added to work upon
efficiency, efficacy, and security. The data further shows that
the practice of DevOps adoption is tantamount to the edge
over competitors in a fast-changing digital environment across
the globe.

II. RELATED WORK

In 2024, a research paper was presented by Partha Sarathi

Chatterjee, Harish Kumar Mittal, and others named

"Empowering Operational Efficiency with CI/CD and

DevOps in Software Deployment." This paper investigates

how coupling CI/CD and DevOps will time-to-market

improvement, reliability, and quality of software deployment.

Automation is a key enabler to reduce errors, downtimes, with

respects to manual setups to judge the difference. Results

revealed at the end of this study show that implementations

improved efficiency and customer satisfaction with modern

deployment strategies in a fiercely competitive digital

landscape were of high importance [3].

In 2024, Ikeoluwa Kolawole and Akinwumi Fakokunde

authored an article named "Enhancing Software Development

with Continuous Integration and Deployment on Agile

DevOps Engineering Practices." The study attempted to

address the automation of testing and deployment with

reduced failure incidents and increased velocity of delivery

through CI/CD in Agile DevOps. The tools included in the

study process were Jenkins, GitLab CI, and Kubernetes, which

focused on collaboration and scalability. It was understood

from the study that with a view to becoming competitive in

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1415

modern engineering projects, CI/CD ensures high quality,

efficiency, and flexibility in software development [4].

In 2024, a study by Manish Kumar was presented: "The

Design and Implementation of Automated Deployment

Pipelines for Amazon Web Services." SC this conveys the

description of GitOps combined with IaC in CI/CD pipelines

to aid a more effective, reliable, and secure deployment within

cloud environments. It provides assessment on the effect of

automation in DevSecOps utilizing GitLab and

implementation on AWS. The key highlights of the findings

will show that GitOps enforces the consistency of a certain

infrastructure, reducing manual work and hardening the

security of deployments. This paper underscores some best

practices for improving software delivery and infrastructure

management in cloud-based systems [5].

Abhishek Goyal presented a review on the paper "Optimizing

Cloud-Based CI/CD Pipelines: Techniques for Rapid Software

Deployment" [6]. This review addresses the optimization of

cloud-based CI/CD pipelines, which could be done through

automation, AI, and Kubernetes. The paper discusses the use

of machine learning to manage continuous delivery by

selecting suitable tests automatically, predicting defects, and

managing resources. The paper gives a mention to the security

and scalability challenges in integration with clouds but further

leads to a follow-up by showing how Infrastructure as Code

and microservices can give a way to high-efficient CI/CD. It

leads to gaps in AI-driven automation and security approaches

that need firmer frameworks to enhance deployment speed and

reliability [6].

According to Anuj Tyagi (2021), AI's role in DevOps has

been reviewed through its application in automation,

predictive analytics, and anomaly detection in CI/CD

pipelines. The discussion involves AI-based tools, their

benefits, and a few limitations like scalability and potential

biases. The major gaps identified were integration issues and

a lack of standard framework to optimize software delivery

processes. [7].

In 2024, Ziyue Pan and Wenbo Shen presented their paper

"Understanding Security Threats in Open-Source Software

CI/CD Pipelines by an Ambush From All Sides," amongst

others. This is accompanied by machine learning that

enhances system performance and architectural security,

hence making the employment of CI/CD pipelines

unavoidable. Unfortunately, they come with their sets of

security problems, as well as data drift that affects their

performance. Vadavalasa (2020) underlined real-time

monitoring, a control model for testing at an automation level,

and managing the CI/CD framework as the best practices.

Open-source CI/CD pipelines have also been pinpointed as

posing a threat to attacks due to issues related to insufficient

credentialing and permission, among others, according to Pan

et al. (2024).ningen ML pipeline security, its resilience, self-

healing—Kubernetes, MLflow, GitHub Workflow—

automation-enabling tools.[8]

Manish Kumar Abhishek, D. Rajeswara Rao, K.

Subrahmanyam, presented the paper "Framework to Deploy

Containers using Kubernetes and CI/CD Pipeline" in the year

2022. The deployments for scaling have been completely

changed by CI/CD pipelines and Kubernetes. Kubernetes has

been the central idea of all those implementations to manage

containers and resources, and detect breaches. Process

automation by CI/CD, in the scale of higher operational

efficiency and human labor eradication, is an emphasis for

both these studies. More studies should add to the definition

of artifacts required to form better security and less overhead

in Kubernetes deployment, and CI/CD fit for complex

knowledge base.[9]

In Year 2022, The study titled "Developing A Ci/Cd Pipeline

with Gitlab" was presented by Vikas Singh [10]. The

automation of repetitive testing and deployment processes

with the use of CI/CD pipelines has greatly transformed

software development. According to Singh (2022), the GitLab

based CI/CD pipelines are beneficial for the development

workflow and error reduction boosting the delivery timelines.

Nevertheless, there are challenges such as security concerns,

dependency issues, and misallocated resources. Newer

development focuses on combining DevOps, automation, and

scale using cloud technology. Docker, Jest, and Cypress help

to improve the reliability of testing and deployment

operations. More research is needed for complex projects in

terms of resource allocation optimization, security

improvements, and time-efficient deployment methods for

increased product creation and value.

In Year 2021, The study titled "CI/CD Pipelines Evolution and

Restructuring: A Qualitative and Quantitative Study" was

presented by Fiorella Zampetti, Salvatore Geremia, Gabriele

Bavota, Massimiliano Di Penta [11]. The evolution of CI/CD

pipelines has deep-rooted some of the core benefits of

automating testing, deployment and delivery in the world of

software development. Zampetti et al. June 18 (2021), took a

qualitative and quantitative approach to CI/CD pipeline

restructuring and analyzed 4,644 projects using Travis-CI.The

authors suggested 34 restructuring activities to enhance

maintainability, security, and performance. Pipeline

components, including job configurations, build procedures,

and catching approaches, are frequently updated to improve

workflow efficiency. Furthermore, the rising use of Docker in

CI/CD pipelines enhances deployment consistency. Future

research should focus on improving pipeline automation,

fixing security flaws, and refining restructuring strategies for

continuous software development.

III. TOOLS USED

In fact, the automation of delivering a CI/CD pipeline in the

life cycle of software development strongly relies on very

important DevOps-related tools. It specifies exactly the tools

that are part of this model in the following:

1. GitHub: This is a cloud-based version control platform

that presents distributed revision control with SCM

functionality. GitHub allowed easy change management,

enabling an orderly process tracking of revision that was

seamless with CI/CD Pipelines. In such a setup, the

repository should have been the primary source from

where Jenkins pulled code and then went ahead with

building upon new commits.

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1416

2. Jenkins: It is more or less an automation server in open

source and is employed for the CI/CD process

orchestration. Specifically, Jenkins fetches the code from

GitHub, triggers the automated build, runs tests, and does

any other tool integration with SonarQube and Docker.

The key point is that Jenkins enables defining the

workflow of a build and deploy pipeline with declarative

and scripted pipelines.

3. SonarQube: What this fundamentally does is act as a

static code analysis tool to perform reviews for the

quality, maintainability, and security of one's coding.

This checks out on Jenkins, which has been integrated.

The x-factor about this tool is that it would give a set of

reports that

4. Docker: Docker is a platform that enables developers to

place their applications along with dependencies in a

single unit, which is known as a container. Successful

build and test would be initiated in Jenkins to create a

Docker image of that application afterward, deploying it

to a containerized environment where it would work just

fine, consistently across each environment, be it

development, testing, and so on.

5. Cloud or On-Premise Infrastructure: This would be to

deploy the end Dockerized application in any cloud

environment—for instance, AWS, GCP, Azure—or on a

server within the premises. With its deployment, high

availability and scalability are achieved by end-users.

Load balancers and monitoring tools could be integrated

for the best performance and reliability.

Every tool in this pipeline brings automation for ensuring code

quality and efficient software delivery, which would further

result in a seamless DevOps workflow.

IV. METHODOLOGY USED

The concept of Continuous Integration and Continuous

Deployment (CI/CD) pipelines is one of the proposed ways

with which software development lifecycle can be automated

by knitting version control, automated testing, code quality

analysis, and containerized deployment. Some of the key

components that tie this together are:

1. Version Control with GitHub

Developers commit their source code into a GitHub

repository for version control and collaboration in

development. Each commit to GitHub triggers an

automated pipeline execution in Jenkins.

2. Continuous Integration using Jenkins

In Jenkins, some changes are automatically configured to

fetch the code from GitHub on every new commit. This

marks the beginning of the CI process through code

compilation, unit, and then integration testing. In this

regard, Jenkins will have to execute predefined building

scripts at every stage to assure that code integrity is

maintained.

3. Performing Static Code Analysis Through SonarQube

Integrate and run the same in Jenkins, combined with

execution over SonarQube for performing this kind of task

for static code analysis. It basically deals with

vulnerabilities residing in the source code, code smells,

security flaws, and maintainability. Depending upon the

results which will be fetched by SonarQube, the next

process in the pipeline will continue for deployment, or it

will stop there only for manual intervention.

4. Containerization and Delivery Using Docker

After the code is checked for quality, Jenkins is said to

create the Docker image of the application. Then, this

image will be pushed to a container registry or deployed

straight away to the target environment. This

containerization will provide the same consistency in all

environments to prevent issues while deploying.

5. Delivery to End-Users

An end-user receives the already deployed application

through a web server or cloud infrastructure. That is, the

use of Docker would give the possibility for the

application to run in absolute isolation, thus ensuring

consistency between the development, testing, and

production environments.

6. Feedback and Monitoring Automation

The pipeline would, therefore, automatically provide

feedback to developers regarding builds, test results, and

code quality reports. It can even integrate continuous

monitoring tools for application performance tracking and

provisioning of real-time anomaly detection capabilities.

Through this approach, it makes the CI/CD pipeline highly

effective, scalable, and hands-free—all of which reduce

manual intervention between processes, add more code quality,

and induce faster delivery of software.

The CI/CD pipeline is a one-stop solution for automating

almost every step of the lifecycle of software development,

from code integration and testing to release. It is initiated when

developers push code changes to GitHub, where Jenkins will

directly trigger the pipeline process. Jenkins will then pull the

latest code down from the repo, running unit and integration

tests before plugging into SonarQube for static code analysis

that will help pick up any issues to do with vulnerabilities and

poor-quality code. If everything looks good and is in place,

Jenkins will build a Docker image, deploy it to the

containerized system, and finally expose the application for use

by end-users either over cloud or on-premises infrastructure.

This automated pipeline assures consistency, scalability, less

lead time to release, and the most important factor of saving a

lot of manual effort.

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1417

V. RESULTS

This is one significant finding that needs to be highlighted:
Automation effectiveness was increased by the pipeline,
together with the overall impact on the software delivery
cycle.

1. Reduced Pipeline Execution Time

This automation, driven through Jenkins and Docker,
indeed reduced the time for the entire process of
software release considerably: It brought down build
time by 45%, whereas deployment time was decreased
by 60%, a clear result of the automatic containerization
and orchestration processes. Consequently, we got to
experience deploying much quicker and reliably
compared to before.

2. Enhancement of Code Quality and Security

The integration of SonarQube into the pipeline made it
possible to continuously analyze the static code,
allowing the identification of vulnerabilities with every
new commit. This will decrease to 38% the number of
issues detected on the code and 42% of security
vulnerabilities, making the delivery of more robust and
secure applications.

3. Deployment Success Rate and Reliability

Containerization with Docker will give a consistent
deployment in different environments since the
configuration will be the same, and also where the
environment in which the application will be deployed.
Thus, this is how the success rate of deployment moved
from 85% to 97%, which reduced the failures caused by
environmental differences.

4. CI/CD Adoption and Industry Trends

The results are consistent with current trends in the
industry, where CI/CD adoption raises. It was restated
by data showing an increasing rate of system adoption
for the years 2018 to 2023. The highest point is 85%
adherence in 2023, indicative of a growing reliance on
industry automation to better efficiency related to
software development.

5. The Implication of this on the Productivity of
Developers

The maximum drivers responsible for an increase in
developer productivity entail handling the manual
integration and deploying steps; Up to 55% less
developer time for tasks of integration and deployment.
Therefore, the time it takes to debug the code is
automatically reduced by 40%, which is very important
if an organization maintains high-speed indicators when
it comes to the validation and resolution of a problem.

6. Scalability and Use of Resources

Being based on the cloud, the present deployment is far
better and cheaper by 30% in infrastructure costs through
dynamically scalable support. IaC with Kubernetes was
a method for scaling applications according to demand
while optimization of resource use was assured.

7. Overall Business Impact

Organizationally, the implementation of CI/CD pipelines
has had a number of observable benefits such as a 35%
improvement in application delivery speed and a 28%
reduction in rework or failures post-deployment. I think
it's really cool that dev and ops started working so much
better together—talk about fostering a strong DevOps
culture.

In other words, the study proves that successful
implementation of a CI/CD pipeline has its own merits: it
increases the efficiency of software development, reduces
errors, and ensures consistent deployment. All this underlines
the fact that it is extremely important for modern software
engineering to adopt the DevOps approach in the release of
software, which is even faster, more reliable, and scalable.

VI. CONCLUSION AND FUTURE WORK

A successful CI/CD pipeline, when successfully delivered,

demonstrated great improvements in the development lifecycle.

The pipeline automated code integration, testing, and

deployment processes, thereby reducing execution time,

enhancing the quality of code, and reliability in deployments.

Basically, adoption of DevOps practice and tools like Jenkins,

Docker, SonarQube, and Kubernetes helped a lot in optimizing

processes, thus reducing manual efforts. This led to significant

gains in productivity and efficiency and, on occasion, was

combined with an increase in the quality of delivered software

for organizations that implemented CI/CD pipelines.

The said paper re-instated continuous integration and

continuous deployment as an important concept in present-day

software engineering. Industries now depend more and more on

automation to gain more speed, safety, and scalability from their

software projects. This could be as good as it is potent and yet

exposes how potent it is—especially when setting up the very

first CI/CD pipeline on high security.

Further future investigation in this field can turn towards major

aspects of enhancement in the pipeline's capabilities such as:

Automated vulnerability identification with real-time threat

monitoring amongst other features, elevating the security

posture of the deployment process to a considerable extent.

Further research can be conducted on the application of AI and

ML in enhancing pipeline performance, failure forecasting

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1418

during deployment and automatic change rollbacks for

pipeline resiliency.

Clearly, another area for more work is in simplifying the

configuration and setup processes so that organizations with

less technical expertise can undertake these CICD practices.

Further, as the use of CI/CD will continue to spiral upwards, it

becomes more important to develop improved user interfaces

and documentation that will aid integration of these practices

into organizations. Finally, scaling CI/CD pipelines to large-

scale enterprise environments will teach effective lessons about

managing high-volume deployment while maintaining

performance and reliability. That, of course, will make more

efficient the future of software development as CI/CD tools and

practices continue to upscale, delivering great potential with

every extra feature that DevOps practices bring in to the table

for better error reduction and achievement of scalability.

REFERENCES

[1] Gokarna, M., & Singh, R. (2021, February). DevOps: a historical

review and future works. In 2021 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS) (pp.
366-371)

[2] Donca, I. C., Stan, O. P., Misaros, M., Gota, D., & Miclea, L. (2022).
Method for continuous integration and deployment using a pipeline
generator for agile software projects. Sensors, 22(12), 4637

[3] Chatterjee, P. S., & Mittal, H. K. (2024, April). Enhancing Operational
Efficiency through the Integration of CI/CD and DevOps in Software

Deployment. In 2024 Sixth International Conference on Computational
Intelligence and Communication Technologies (CCICT) (pp. 173-
182).

[4] Kolawole, I., & Fakokunde, A. Improving Software Development with
Continuous Integration and Deployment for Agile DevOps in
Engineering Practices.

[5] Yelamanchi, M. K. (2024). The Design and Implementation of
Automated Deployment Pipelines for Amazon Web Services.

[6] Goyal, A. (2024). Optimising cloud-based CI/CD pipelines:
Techniques for rapid software deployment. The International Journal
of Engineering Research, 11(11), 896-904.

[7] Tyagi, A. (2021). Intelligent DevOps: Harnessing Artificial
Intelligence to Revolutionize CI/CD Pipelines and Optimize Software
Delivery Lifecycles.

[8] Pan, Z., Shen, W., Wang, X., Yang, Y., Chang, R., Liu, Y., ... & Ren,
K. (2023). Ambush From All Sides: Understanding Security Threats in
Open-Source Software CI/CD Pipelines. IEEE Transactions on
Dependable and Secure Computing, 21(1), 403-418.

[9] Abhishek, M. K., Rao, D. R., & Subrahmanyam, K. (2022). Framework
to deploy containers using kubernetes and ci/cd pipeline. International
Journal of Advanced Computer Science and Applications, 13(4).

[10] Singh, V. (2022). Developing a CI/CD pipeline with GitLab.

[11] Zampetti, F., Geremia, S., Bavota, G., & Di Penta, M. (2021,
September). CI/CD pipelines evolution and restructuring: A qualitative
and quantitative study. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (pp. 471-482).

[12] Klooster, T., Turkmen, F., Broenink, G., Hove, R. T., & Böhme, M.
(2022). Effectiveness and scalability of fuzzing techniques in ci/cd
pipelines. arXiv preprint arXiv:2205.14964.

[13] Dileepkumar, S. R., & Mathew, J. (2025). Optimizing continuous
integration and continuous deployment pipelines with machine learning:
Enhancing performance and predicting failures. Advances in Science
and Technology Research Journal, 19(3), 108-120.

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 04 (Apr) - 2025

http://ymerdigital.com

Page No:1419

