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Abstract 
Traffic management, urban planning, and emergency management cannot be efficiently 

done without crowd simulation. This paper proposes a Behavioral Clustering Method 

(BCM), which tackles the problem of forming crowds in clusters or subgroups based on 

fundamental behaviors so that congestion is minimized during effective evacuation 

processes. We designed BCM based on synthetic data obtained from the simulation of the 

evacuation of a crowd in high-risk situations. Our method regards pedestrians as intelligent 

agents and predicts key behavioral aspects of future crowd evacuations before they occur. 

We use cluster analysis on those movement and behavioral data for building as well as 

evacuation-friendly control strategies by clustering people into subgroups of behavioral 

similarity. The credibility of the model is validated through Python-based animations to 

detect and rectify errors. Results from simulation performance evaluations indicate that 

BCM is successful in modeling the evolution of crowd behavior at the time of evacuation. 

 

Keywords: crowd evacuation behavior, agent-based model simulation, artificial 

intelligence, pedestrian clustering, behavior animation, effectiveness, and efficiency 

evaluation 

 

1. Introduction 

Crowd behavior during evacuation scenarios is a critical study area in understanding 

collective human decision-making and movement patterns. Identifying and analyzing groups 

of individuals with similar behaviors can provide valuable insights into how people respond 

to high-pressure situations, thereby aiding in designing more efficient and safer evacuation 

strategies [16]. 

Two primary hypotheses explain the emergence of these behavioral patterns. The first 

suggests that individuals locally coordinate their actions with their neighbors, resulting in 

self-organized group movements without external control. This hypothesis highlights the 

role of proximity and localized interactions in shaping crowd dynamics. The second 

hypothesis emphasizes collectivism, where individuals exhibit similar behaviors due to 

shared thought processes or group-level decision-making. This behavior is influenced by 

various factors, including individual decision-making strategies and the density of the crowd 

[14]. 

Understanding the mechanisms behind these behavioral similarities is essential for 

quantifying and comparing patterns across different crowd scenarios. Such studies contribute 

to the broader understanding of collective human behavior and provide practical implications 

for crowd management, urban planning, and emergency response systems. By analyzing 
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these dynamics, researchers can uncover universal principles governing group behavior, 

enabling the development of predictive models and effective evacuation protocols [18]. 

Public emergencies and disasters with significant casualties have become more common in 

recent years due to the behaviors of individuals. Drills for evacuation are costly and don't 

accurately simulate how people would act in an emergency. Considerable attention has been 

drawn to crowd evacuation simulation technology, which may effectively address the 

drawbacks of evacuation drills and offer guidance for mass evacuation in emergencies [6][7]. 

Public places like subway stations and bus stops can become very crowded. People usually 

enter and exit these places in order. However, accidents like crowding and trampling may 

happen in emergencies (fire or earthquake). It may lead to greater congestion, or more severe 

accidents, due to large gatherings of people at transport hubs. To design rational evacuation 

routes and strategies, many scholars have attempted to develop suitable models for real-

world scenes and crowd behaviors [1][2]. 

Model-based simulations are often the main research methodologies used to analyze crowd 

evacuation rather than real-world experiments, which pose a significant challenge for 

examining crowd behavior during emergency evacuation [3][4]. Simulation models and 

clustering of individuals with similar behavior in this case are driven by environmental 

information, which should be qualitative, not quantitative. 

To simulate crowd behaviors, Helbing and Molnar [5] as a combination of forces social, 

physical, and environmental that guide movement. Clustering is often applied in conjunction 

with this model to group individuals based on their reactions to these forces, such as people 

clustering around exits during evacuations. 

Multiple studies have explored the use of simulation methods for crowd evacuation analysis. 

Yue-wen (2014) proposed a model that integrates multi-agent technology and cellular 

automaton, considering individual differences in behavior. Li (2019) combined the social 

force model with deep learning for pedestrian detection, resulting in a more realistic 

simulation of crowd evacuation. 

This study introduces a Behavioral Clustering Method (BCM) designed to group individuals 

in a crowd based on shared behavioral patterns during evacuation scenarios. Synthetic data 

generated through simulations serves as the basis for this method, enabling the prediction of 

dominant behavioral trends before actual evacuation events occur. Features such as 

movement patterns and decision-making tendencies are extracted and analyzed to form 

behavior-based subgroups. 

To validate the proposed method, an animation framework implemented in Python is used 

to visually examine the clustering results and identify potential model issues. Performance 

assessments reveal promising results, highlighting BCM's potential to enhance evacuation 

planning and congestion mitigation in critical situations. 

The remainder of this paper is organized as follows. Section 2, presents a brief overview of 

previous work on crowd simulation. In section 3, we present our approach to solving the 

problem posed and contained the description of the crowd evacuation model based on 

artificial intelligence, and the BCM model is established. Section 4 describes how to validate 

the proposed model using model animation and how to produce simulation results, with 

reports of performance evaluation of the proposed model is presented by analysis of 

simulation results. Conclusions of this research and perspectives are presented in section 5. 

2. Related Works 

Various simulation models have been developed over the past few decades to analyze the 

dynamics of crowd evacuation in both regular and emergencies. We will organize the 

discussion by modeling methodologies: social force, cellular automaton, fuzzy logic, 

artificial intelligence, fluid dynamic methods, and psychological and emotional models. 
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Helbing and Molnar [11] have suggested a social force model that views pedestrians as a 

combination of forces social, physical, and environmental that guide movement. Clustering 

is often applied in conjunction with this model to group individuals based on their reactions 

to these forces, such as people clustering around exits during evacuations. The model 

simulates group dynamics for Reynolds, C. W. [12] based on three simple rules: alignment, 

separation, and cohesion. These rules naturally form clusters of agents within the simulation. 

Behavioral clustering methods enhance these groups by introducing individual or subgroup 

variations. The BCM goes beyond the rigid, rule-based clustering of social force models by 

dynamically grouping individuals based on data-driven behavioral similarities. This 

enhances adaptability and accuracy in predicting future evacuation patterns.  

The rule-based model [4][5] and the social-force based model [8][21] are the most common. 

Xiong et al. [4] proposed a set of man-made sampling and evaluation rules based on the 

partial model. The author applied it to the evacuated crowd to improve the efficiency of 

evacuation. Liu [8] used the social power model to study the crowd evacuation in public 

places by terrorist attacks. The author discussed the efficiency of crowd evacuation when 

there were different numbers of exits or when the attackers had different locations. While 

cellular automaton models focus on movement at a macroscopic level, BCM emphasizes 

clustering based on individual behavioral data, offering a finer resolution for understanding 

evacuation dynamics. 

Nasir et al. [23] presented a genetic fuzzy system. Fuzzy perception and fear are ingrained 

in human thinking, and Dell’Orco et al. [24] proposed a behavioral model for crowd 

evacuation based on fuzzy logic and accounting for these aspects. Furthermore, several fuzzy 

inference systems are made to provide escape, egress delay, and motion direction [7][8]. The 

BCM avoids the complexity of fuzzy inference systems by using clustering techniques that 

are computationally efficient and scalable. It focuses on extracting actionable insights from 

behavioral data rather than modeling subjective psychological factors. 

The model developed by Chatra M. and Bourahla M. [34] integrates artificial intelligence 

with deep learning to predict future trajectories based on observed movement patterns. It 

combines linguistic variables with reinforcement learning to adapt individual behaviors 

dynamically in response to changing environmental conditions, such as the emergence of 

new obstacles or shifting goals. Notably, studies of pedestrian dynamical behaviors in both 

calm and frenzied situations have been carried out through modeling and simulation based 

on artificial intelligence [25][26], whereby artificial intelligence techniques can be used to 

predict human spirit and perception. To mimic and model the guiding behavior of 

pedestrians in constructed environments, Wang et al. [27] presented a study on pedestrian 

movement dynamics under emergency evacuation using machine learning. In the work 

presented in the study by Yao et al. [28], a reinforcement learning method is used to produce 

a data-driven model for crowd evacuation. Li et al. [29] have combined the techniques of 

deep learning and social to develop a simulation model for crowd evacuation. 

Fluid Dynamic models [17][19] and the model based on the method of potential fields 

[9][10] are two of the most common. In Fluid Dynamic models, Partial Differential 

Equations of a man-made setting are often used to describe the dynamic properties of a 

crowd such as velocity and constant density. For example, Mao et al. [20] studied the process 

of crowd evacuation based on Fluid Dynamic models, which improved the efficiency of 

crowd evacuation. 

3. Our Approach 

The description of the crowd evacuation model is based on the description of the 

environment or physical space in which the crowds move, consisting of the following 

elements: obstacles, boundaries, exit door and, pedestrians, which are represented by 
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Movements 

and actions Clustering 

physical positions (indicated by location coordinates) and behaviors performed by 

pedestrians. We are using Python [30], an all-purpose high-level programming language to 

develop a simulation model for analyzing crowd evacuation using artificial intelligence (full 

Python code is available on request). The Behavioral Clustering Method (BCM) is central 

to analyzing and understanding crowd behaviors during evacuation simulations. By 

categorizing pedestrians into subgroups based on their behaviors, BCM provides insights 

into key crowd dynamics, which can be used to optimize evacuation plans. Below is a 

detailed explanation of the algorithms used at each stage of the BCM, along with flowcharts 

to visualize the processes. 

3.1. Global Architecture 

To achieve our goal, we propose this three steps architecture (figure 1): 

 
STEP 1  

(pre-simulation) 

Training Data for 

Pedestrians 

STEP 2  

(during-simulation) 

Environment Description 

STEP 3  

(post-simulation) 

Environment Description 

 
 

  

Pedestrians prediction 

Model 

Using Pedestrians predictive 

model during simulation 

Behavior clustering 

cluster common behaviors by 

adjusting similarity index and 

the grouping factor index 

Figure 1. Flowchart of the proposed Crowd Evacuation Simulation 
Methodology: Pedestrian Prediction, Simulation, and Behavioral 

Clustering 

Step1: pedestrian model creation – Pre-Simulation- 

Before going to the simulation, the main idea is to create a model that can achieve and 

simulate real pedestrian behavior to extract this knowledge, linguistic variables and label 

encodings are used to implement it, the big challenge in this step is : how can we get a data 

that represent real human behavior?. We propose to use data from different simulation 

platforms and try to convert it to a discrete representation – linguistic- instead of continuous 

representation –coordinates, angles, speed –. 

The results of this step are a model that can behave like a human, we will use this knowledge 

in the next step of crowd evacuation simulation (figure 1). the algorithm that summarizes 

step 1 is defined below. 

Algorithm Step1 

Start 

Simulate Crowd Evacuation. 

Collect Data (Position, Speed, Proximity, etc.) 

Normalize Data. 

Feature Engineering. 
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Preprocessed Data Ready for Clustering. 

End. 

Step2: crowd evacuation simulation 

This step plays the main role in understanding the crowd evacuation actions. The challenge 

we faced in the beginning of our research is: how we build a logic that can predict this 

evacuation actions, we found 2 paths: 

- Gathering data from crowd evacuation experiences and trying to use it to predict actions 

behind the evacuation. This solution costs a lot of resources and need enormous number 

of experiences and different situations to converge to the reality. Also need to update 

this data over the time and updating this logic for covering all scenarios and environment 

is also a big challenge. 

- The solution we select is to build a pedestrian model that can predict the individual 

behavior and use this model for each pedestrian in the simulation environment and track 

the crowd simulation over the time to get realistic scenarios. 

At the end of this step; we will get a realistic crowd evacuation and this is the time to start 

the Behavioral clustering step to analyze crowd behaviors and actions for discovering 

problems, optimizing the environment, and creating good policies to avoid bad scenarios 

during the evacuation (figure 1). the algorithm that summarizes step 2 is defined below. 

Algorithm Step2 

Start 

Preprocessed Data. 

Apply Clustering Algorithm (K-means) 

Identify Behavioral Subgroups. 

Behavioral Clusters Identified. 

End. 

Step3: behavioral clustering step 

After we got all data related with the crowd evacuation, this data is used to analyze and 

create sub-groups from the crowd based on their features. The goal from getting this data is 

to analyze the crowd evacuation and convert the data to a good knowledge about remarkable 

behaviors and critical actions on the crowd. This knowledge helps the decision maker to 

understand action in behaviors point of view instead of statistical point of view.  

The Behavioral Clustering Method (BCM) is the name we choose for the logic used on this 

step and it will be explained more in the BCM section. 

In the next section, we will start deep diving on environment and pedestrian description and 

describing all details used on linguistic variables, pedestrian model building and the Crowd 

simulation (figure 1). 

3.2 Environment Description 

First, we present a method of representing the environment that plays a main role in modeling 

and simulation. The proposed pedestrian model, we have displayed the target that is set in 

the center of the wall and a scale SpaceWidth × SpaceLength, will be used for simulation in 

a rectangular hall ‘s’. The physical environment consists of boundaries (walls), internal 

obstacles of various shapes and one exit. For a good illustration the following is part of the 

algorithm used to generate a model of the physical space ‘s’. 

Algorithm generate physical space: 

Inputs: width, length, goal 

Outputs: positions, obstacles, borders, goal 
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Generates the goal region based on the provided width 

Creates positions for entities, potentially distributed randomly 

Creates obstacles based on predefined vertices and the positions of entities 

Constructs the borders of the environment 

The exit (goal) location is first created by running the following code: goal_position = 

generate_goal(goal_width), where goal is the exit polygon (a rectangle). To represent the 

starting locations of pedestrians in ‘s’, a collection of pnumber positions (points) within the 

space will be generated at random by calling the function positions = 

generate_positions(pnumber). When obstacles = generate_obstacles(positions, 

nobstacles_vertexes) is executed, a random set of obstacles_filled polygons, each with 

multiple vertexes will be produced. The number of vertexes for each obstacle is contained 

in the list nobstacles_vertexes. The method borders = generate_borders(goal_position, 

goal_width) is called to create the borders, which are external barriers that have the shape of 

rectangles. 

 
Figure 2. Environment space   

the results of our algorithm give a description of the physical space and the physical entities 

that plays an important role in our simulation (figure 2). 

3.3 Pedestrian Description 

The suggested model includes a crowd of pedestrians that need to be evacuated from a 

hazardous scenario in addition to the actual surroundings. A pedestrian's actions in reaction 

to their surroundings are the primary basis for evacuation. Because the knowledge utilized 

to describe the intelligent model is based on human experience in identifying the values of 

distances, directions (angles), and speeds, this human behavior gives our model intelligence. 

Several linguistic classes (Categories) are produced by their classifications, and they are 

employed as data to help make informed decisions in order to avoid a variety of stationary 

and mobile impediments. The accuracy and temporal complexity of this structurally 

intelligent model rise sharply as the number of classes increases. Therefore, in order to 

balance accuracy and computing efficiency, we use several language classes to define state 

variables (figure 3). 

  
Figure 3. reasoning of humans 
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"Near" and "far" are two categories (sets of knowledge) that indicate distances based on 

human experience. If the distance between his position and any other position in the physical 

environment is between 0 and 100 units, the pedestrian will experience it as being close; if 

it is within the interval [100, visual distance], he will perceive it as being far. 

By using the method perceiveDistance(self, d), where self is the reference to the pedestrian 

object, we have constructed a Multi-Layer Perceptron Classifier called DistanceModel, 

which is trained with specific data to make each pedestrian sense a distance value d (figure 

4). 

 
Figure 4. Decision maker of our pedestrian 

Direction angle is defined as the angle between the pedestrian's position and the goal's (exit) 

position. The pedestrian (decision maker) can perceive this angle as belonging to one of the 

following classes (knowledge sets): "Zero", "SmallPos", "LargePos", "SmallNeg", or 

"LargeNeg", where the commands "Neg" and "Pos" turn pedestrians left or right, 

respectively (figure 5).  

This data is used to build and train a Multi-Layer Perceptron Classifier named 

DirectionModel, where DirectionY is the concatenation of category (class) codes and 

DirectionX is the concatenation of all direction value intervals. 

When someone is walking in the other way, pedestrians may interpret their speed as falling 

into one of three categories: "Stop", "Slow" or "Fast". The provided data is used to construct 

and train a multi-layer perceptron classifier known as SpeedModel, in which SpeedX is the 

concatenation of all speed value intervals and SpeedY is the concatenation of category (class) 

codes. 

The direction_crisp() and speed_crisp() methods must be defined in addition to the 

prediction functions of the direction model DirectionModel.predict() and the speed model 

SpeedModel.predict() in order to update the pedestrian's state during the simulation. These 

routines use the random selection approach to determine the apparent (crisp) value of the 

relevant class direction angle and velocity, respectively. 

An object belonging to the Python class "Pedestrian" is a pedestrian "p" moving in an 

environment "s". It has three features:  

- movement speed (the speed at which it goes from one position to another),  

- direction information (the angle between the pedestrian's position and the goal's (exit) 

position), and  

- location information (a point with coordinates (xp, yp) to trace its movements). 

MovementsNbre, MovementsDistance, and MovementsSpeed it's the number of pedestrian 

movements (defined as a change in direction, speed, or both) as well as their total velocities 

are taken into account when calculating the distance that pedestrians must walk to get to 

their destination. The pedestrian energy needed to leave the physical region is calculated 

using these. The data component of the "Blocked" information indicates that the pedestrian 

may be blocked due to physical obstacles preventing him from moving forward; if the 

pedestrian has already accomplished the goal, the data member of the "ReachedGoal" 

information will reflect this. 
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By using the method member update(self, sp, speed), pedestrian objects also known as 

decision-makers can update their data members during the model's simulation steps, 

changing the pedestrians' locations, directions, and speeds. The decision maker is 

represented by the parameter self, the pedestrian's specific movement speed is denoted by 

speed, and the visual sector's position to identify the pedestrian's direction of movement 

toward the goal is denoted by sp. 

Using their member techniques, pedestrians can sense information about direction 

(perceiveDirection(self, a)), velocity (perceiveSpeed(self, s)), and distance 

(perceiveDistance(self, d)). These senses can then trigger the relevant model prediction 

algorithms. 

We need to create a collection of pedestrians that don't cross over in order to complete the 

model description. The function generate_pedestrians(n) is called to construct n pedestrians 

for a simulation, with the i-th pedestrian situated at position positions[i] in the space “s”. 

A pedestrian's visual field is modeled as a circular area with a central angle of 360°, a radius 

R unit, and a central point representing the pedestrian's position. This visual field is divided 

into n sectors using sector angles 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖, 𝑖 = 1,… , 𝑛 (∑ 𝑆𝑒𝑐𝑡𝑜𝑟_𝐴𝑛𝑔𝑙𝑒𝑖i=1,…,n =
𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝐴𝑛𝑔𝑙𝑒), such that the sum of all sector angles satisfies. These sectors are 

comparable in terms of their functional representation but are not necessarily congruent, as 

shown in Figure 5. 

 
Figure 5. pedestrian's visual field 

The number of sectors in the pedestrian's visual field is determined by balancing model 

complexity with prediction accuracy. This division allows for the integration of objective 

information with pre-collected environmental data from each sector of the visual field. Using 

this information, pedestrian motion states are dynamically updated, supported by a 

predefined spatial representation strategy. 

3.4 Behavior Description 

In order to survive, pedestrians steer clear of hazardous circumstances and surroundings. In 

sections 3.1 and 3.2, we introduced a structural model of pedestrian behavior in a crowd that 

is based on artificial intelligence. To make the suggested model more complete and clearer, 

the following presumptions are made: 

- Although every pedestrian is aware of the nuances and subtleties of their goals as well as 

the local knowledge inside their field of vision, they are not aware of the global knowledge 

regarding their surroundings. 

- During an ignored rest period, the pedestrian may choose to alternate between any two 

preset states. 

The artificial intelligence-based model is built on a framework that integrates obstacle-

avoidance and goal-seeking behaviors to predict pedestrian motion. The input data primarily 

consists of information about pedestrians, obstacles, and goals. For example : 

 A pedestrian’s proximity to a barrier determines their avoidance behavior. 

 The distance and speed of individuals moving in the opposite direction influence their 

goal-seeking decisions and pathfinding behavior. 

The model’s output data, such as turning angles, movement directions, and speeds, 

determines the final motion states of pedestrians. These outputs combine local obstacle-
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avoidance and goal-seeking behaviors to simulate crowd evacuation dynamics. Pedestrians 

must move toward their objectives at appropriate speeds while avoiding collisions with 

others, obstacles, and visible boundaries. Figure 8 illustrates this behavior. 

 
Figure 6. AI-based pedestrian movement model combining obstacle-

avoidance and goal-seeking behaviors 
Pedestrian behavior is strongly influenced by the location of the destination, the distribution 

of similar pedestrians, and the presence of obstacles. To ensure effective navigation, the 

goal’s location must be known in advance by all pedestrians. The visible field for each 

pedestrian is modeled as a circle with a radius of R units (default value: 50 units), defining 

the area within which they perceive and respond to their surroundings. 

The pedestrian's viewing field's center angle the central_angle is separated into sector angles 

that are identical and have the same value. Then the sectors that comprise the visual field are 

n=Central_Angle/Sector_Angle. each sector specifies a path from the pedestrian location to 

the sector position sp. 

In general, pedestrians base their choices on the following factors. As the decision-maker, 

the pedestrian first examines his visual field, sector by sector, and chooses which sector to 

proceed through in order to reach the exit (target). He then moves in the direction of the 

chosen sector position (sp) to accomplish the goal while maintaining the proper speed and 

direction of travel to prevent running into oncoming traffic and frontal impediments. 

The algorithms inputs are the nearest pedestrian-obstacle distances in each sector, while the 

outputs are the turning angle and movement speed. Goal-seeking and obstacle-avoiding 

behavior are combined to establish the decision maker's ultimate turning angle and 

movement speed. The decision maker will avoid the obstacle in front of the goal before 

pursuing it. Therefore, avoiding obstacles is more crucial than pursuing your goals. As a 

result, the pedestrians are able to accomplish their objective while avoiding potential 

roadblocks and other pedestrians. 

To control pedestrian movement, it is necessary to comprehend the following information. 

The decision maker (pedestrian) “p”, position (xp, yp), and goal “g” location is at goal 

distance “dg” from the pedestrian position “p”, goal angle “γg” (the angle between the 

pedestrian position “p” and goal position “g”, also called the direction angle of the 

pedestrian), and position (xg, yg) that represent the location that pedestrians wish to reach in 

“s”. 

The method behavior(self), defined below, will invoke the get_distance_perceptions(self) 

method (self is the pedestrian's reference) to determine the pedestrian's perception of the 

minimum distances between his location and surrounding obstacles, borders, and other 

pedestrians approaching from opposite directions in different sectors of his visual field 

during model simulation. 

A list called distance_perceptions contains these senses of distance. Its longest point is 

equivalent to Central_Angle/Sector_Angle, which is Sector_Angle, the sector's angle, which 

by default is 45 degrees (figure 5). 

The information about the distances that the subject perceives himself in each sector of his 

visual field will be present in the list distance_perceptions after 

get_distance_perceptions(self) has been executed. 
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The initial part of all sector information, which is triples, consists of the sector's position and 

the minimum perceived distance between the pedestrian's position and any barriers, 

boundaries, and other pedestrians visible inside the sector's window of the visual field. 

Use the third piece of information in the triple check to determine whether the blockage is 

another obstacle or a person approaching from the opposite direction. Based on the 

information obtained about him, the pedestrian who is now making decisions will choose to 

change positions at the proper speed and angle of direction. 

The method behavior (self), which alters the pedestrian's state and compels him to move 

from one location to another until he reaches the exit (the objective), is defined as follows. 

The pedestrian may go into a state of blocking, or halt traveling, if he encounters physical 

obstacles in every direction. 

To receive decision-making information for the pedestrian self and determine each 

pedestrian's movement, we call the previously mentioned function 

get_distance_perceptions(self). The goal-seeking and obstacle-avoiding behaviors are 

combined in the technique behavior (self) to acquire new locations. 

These new roles are possible candidates for the pedestrian (decision-maker) transfer. A 

formula that specifies the preference between the two weighting parameters, alpha and beta, 

and offers a moderate weighting between the distance and direction angle from the target is 

used to determine the best new position. 

The pedestrian self, or decision maker, first assesses if he is close to someone who has 

already achieved the objective. He enters an exit state if that's the case. 

Otherwise, he will utilize the procedure goal_seeking_behavior(self, distance_perceptions) 

to check if all obstacles, boundaries, and pedestrians are far away from him in order to decide 

whether to pursue the path for chasing the goal. 

One form of global conduct known as "goal-seeking behavior" is the propensity of the 

decision-maker to consistently move closer to his objective, independent of the 

circumstances surrounding him. It is defined by the goal angle γg, which can be in the 

LargeNeg, SmallNeg, Zero, SmallPos, and LargePos classes, and the goal distance dg, which 

can be in the Near or Far classes. 

By fostering a worldwide goal-seeking behavior, pedestrians are motivated to approach the 

goal. The decision maker reduces speed and quickly turns in the direction of the goal without 

missing it as the pedestrian approaches the exit without facing it. Conversely, when facing 

the target, he moves swiftly and freely in its direction. 

Using this approach, the decision-maker first looks at the sectors, which stand for remote 

interior barriers, blocked pedestrians, and exterior obstacles (boundaries). He adds the choice 

to the list of choices related to "gsb" (goal-seeking behavior) if any of these circumstances 

hold true. This allows him to go swiftly in the direction that the expression 

abs(self.get_angle(self.position,sp)-self.get_angle (self.position, goal_position)) indicates. 

Before adding the same movement direction angle and halting, the decision-maker checks 

to see if there is any kind of obstacle in the way. If not, he adds as fast as the movement 

speed. 

The method obstacle_avoiding_behavior(self, distance_perceptions) defines frontal 

obstacles, which must be avoided by invoking the obstacle-avoiding behavior if the decision 

maker cannot find a sector position (the list new_positions is empty) to seek the goal, 

indicating that he is surrounded by obstacles from all directions defined by the sectors of his 

visual field. 

He employs this technique to ascertain whether each barrier is of a particular type because 

they are all near pedestrians. To the list of "pab" (pedestrian (obstacle)-avoiding behavior), 

the code's decision maker appends the option to follow the direction, which is established by 

the following statement. the absolute value of the angle between the sector point from which 
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the decision maker has observed someone approaching him and the goal, as well as the 

difference between the angle between the choice maker and the goal when traveling slowly. 

If the type is traveling in the other direction, the resolution to add continues in the same 

direction as before but ceases until later simulation stages.  

The decision-maker is in a blocking condition (see the behavior approach) and is unable to 

evacuate (i.e., have access to the exit) if there are no kind-related obstacles, only internal or 

external barriers remain. 

Obstacle-avoiding behavior is the propensity of a pedestrian to shift directions gently and 

smoothly as opposed to abruptly. Therefore, if the pedestrian-obstacle distance is the same 

in each sector, the code is made so that pedestrians will typically move in the same direction. 

To help with the interpretation of the simulation results, the description of this crowd 

evacuation model offers a way to change parameters like the number of pedestrians, the size 

of the space, the number of visual field sectors, the weighting parameters, the number of 

obstacles, the design of each obstacle, and so on. The complexity of the model may rise with 

certain parameter settings, requiring more time and space to simulate. 

3.5 Crowd Simulation Approach BCM General Description 

The primary goal of the Behavioral Clustering Method (BCM) is to simulate and predict 

crowd behaviors during evacuation scenarios by identifying and clustering individuals into 

behaviorally similar subgroups. This clustering approach allows the model to account for the 

diverse decision-making processes and movement patterns exhibited by different individuals 

in a crowd.  

Unlike traditional methods that treat the crowd as a homogeneous entity, BCM integrates 

behavioral diversity, capturing nuances such as leadership tendencies, social attachment, and 

risk aversion. By doing so, BCM provides more accurate and actionable insights, enabling 

planners and decision-makers to design tailored evacuation strategies that enhance both 

efficiency and safety. 

Crowd heterogeneity plays a crucial role in evacuation scenarios, as individuals respond to 

emergencies in diverse ways influenced by psychological, physical, and social factors. For 

instance, some individuals may panic, moving erratically and creating bottlenecks that 

impede overall crowd movement. In contrast, others may remain calm, acting as natural 

leaders who guide groups toward exits. 

 

 

 

 

 

 

Figure 7. Behavioral Clustering Method (BCM) workflow for crowd simulation 
in evacuation scenarios 

This diversity in behavior introduces complex, emergent dynamics that cannot be adequately 

captured by traditional evacuation models treating the crowd as a uniform entity. Behavioral 

clustering addresses this challenge by grouping individuals with similar traits and responses, 

enabling more specialized and realistic modeling of crowd interactions. By considering 

heterogeneity, the method enhances the predictive accuracy of simulations and supports the 

development of strategies to mitigate risks and improve evacuation efficiency. 

 

Features 

extraction 
Behavior 

clustering 

 

Crowd Simulation Data BCM Results 
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The Behavioral Clustering Method (BCM) follows a systematic workflow designed to 

simulate and analyze crowd behaviors during evacuation scenarios with high accuracy. This 

workflow consists of the following key steps: 

1. Data is gathered from crowd simulations, encompassing attributes such as movement 

trajectories, reaction times, and proximity to others. Preprocessing techniques like noise 

reduction and normalization ensure the data is clean and suitable for analysis. 

2. Critical features that define an agent’s behavior are extracted from the prepared data using 

advanced feature extraction techniques. These features include movement speed, 

decision-making tendencies, social attachment levels, and influence on nearby agents. By 

employing methods such as statistical analysis, time-series processing, and trajectory 

analysis, the raw data is transformed into meaningful attributes that accurately represent 

individual behaviors. These extracted features form the foundation for clustering 

individuals into behaviorally similar subgroups, enabling a detailed and realistic 

understanding of crowd dynamics. 

3. The BCM employs artificial intelligence techniques, such as the K-means clustering 

algorithm, to group agents based on the similarity of their extracted behavioral traits. K-

means partitions the dataset into distinct clusters by minimizing the within-cluster 

variance, ensuring that agents in the same cluster exhibit closely related behaviors. This 

approach leverages the efficiency and scalability of K-means to handle large datasets, 

making it suitable for complex evacuation scenarios. By accurately segmenting the crowd 

into meaningful groups, the method enables a detailed analysis of emergent patterns and 

interactions during simulations. 

4. Once clusters are formed, the simulation assigns each group specific decision-making 

rules and movement models. These clusters interact within the simulation environment, 

allowing researchers to observe emergent crowd patterns, bottlenecks, and evacuation 

dynamics. 

in the figure 9 we have summarized the Behavioral Clustering Method (BCM) workflow for 

crowd simulation in evacuation scenarios. The flow consists of key stages listed above. 

3.5.1 Input Data and Features 

The (BCM) relies on rich, high-dimensional input data to capture the nuances of individual 

behaviors during crowd evacuation scenarios. This data is collected over discrete time 

intervals within simulation environments. Each time step records critical pedestrian 

movements and decision-making actions, including their chosen paths, interactions, and 

movement patterns. These observations form the foundation for statistical analysis and 

feature extraction, which are essential for unsupervised learning. 

The data generation and collection process is at the core of the Behavioral Clustering 

Method (BCM), ensuring that the input data accurately represents the complex and diverse 

behaviors exhibited by individuals during evacuation scenarios. This section delves into the 

methodology for capturing, processing, and refining the data, focusing on its relevance to 

understanding crowd dynamics. 

During the simulation, pedestrian behavior is meticulously observed and recorded at regular 

intervals, resulting in a dynamic and comprehensive dataset. This dataset captures both 

individual and collective movement patterns within the simulated environment, which may 

include corridors, open spaces, and bottleneck areas. The primary attributes monitored 

include trajectories, action patterns, and path information. 

Trajectories describe the sequential positions of pedestrians as they progress toward their 

goals. These include spatial coordinates (xt,yt)(x_t, y_t)(xt,yt), which mark each pedestrian's 

position at a given time step ttt, and temporal changes, offering insights into trends in 
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movement, deviations, and congestion dynamics. Additionally, trajectories reveal 

interactions with static or dynamic obstacles, shedding light on navigational strategies. 

Action patterns provide a detailed account of decision-making processes. These patterns 

involve directional changes, reflecting how pedestrians adjust their paths; speed transitions, 

identifying variations in speed such as acceleration or deceleration; and stopping events, 

which may signify hesitation or congestion. Collectively, these attributes highlight the 

complexity of pedestrian behavior. 

Path information quantifies the total distance traveled by each individual, serving as a 

measure of navigational efficiency and movement complexity. Straight paths often indicate 

direct movement toward a goal, while deviated paths suggest detours or hesitation influenced 

by environmental factors or social dynamics. 

Feature extraction plays a crucial role in the Behavioral Clustering Method (BCM), 

transforming raw simulation data into structured representations of pedestrian behavior. By 

encapsulating decision-making patterns, movement characteristics, and interactions, these 

features enable detailed clustering and analysis. Through systematic statistical and trajectory 

analysis, the BCM effectively captures the diversity and intricacy of crowd behavior, 

supporting robust clustering and providing actionable insights. 

3.5.2 Feature extraction serves several critical objectives 

Feature extraction is pivotal in the Behavioral Clustering Method (BCM) for reducing data 

complexity and enabling actionable insights into pedestrian behavior. By summarizing raw 

data into meaningful attributes, this process achieves dimensionality reduction, simplifying 

datasets while preserving critical behavioral information. Extracted features serve as a bridge 

between abstract pedestrian actions and quantifiable metrics, enabling detailed comparisons 

and analysis. Furthermore, the structured features facilitate clustering readiness, providing a 

robust foundation for unsupervised learning algorithms to effectively group individuals into 

behaviorally similar subgroups. 

Table 1. Description of the features used for BMC 
Feature Name Description Behavioral Insight 

x The pedestrian's initial x-coordinate position. 
Indicates the starting horizontal position, essential 

for understanding spatial context and trajectory. 

y The pedestrian's initial y-coordinate position. 
Indicates the starting vertical position, 

complementing the spatial representation. 

Initial Angle 
The angle formed between the pedestrian's 

initial orientation and the direct line to the goal. 

Reflects the initial heading alignment and potential 

for detours or straight paths. 

Initial Distance 

The Euclidean distance between the 

pedestrian's starting position and the goal at the 

beginning. 

Represents the initial effort required to reach the 

goal, influencing urgency and path choice. 

no_zero 

The frequency with which the pedestrian 

chooses a zero-degree angle, indicating direct 

movement. 

Highlights preference for straightforward paths, 

signifying decisiveness and low environmental 

influence. 

no_small_pos 
The frequency of selecting small positive 

angles, reflecting slight rightward adjustments. 

Suggests subtle course corrections to the right, often 

in response to environmental or social stimuli. 

no_small_neg 
The frequency of selecting small negative 

angles, reflecting slight leftward adjustments. 
Indicates similar slight adjustments but to the left. 

no_large_pos 
The frequency of selecting large positive 

angles, indicating significant rightward turns. 

Captures substantial changes in direction to the right, 

often signaling avoidance or reorientation. 

no_large_neg 
The frequency of selecting large negative 

angles, indicating significant leftward turns. 

Mirrors large directional shifts to the left, possibly 

reflecting obstacles or group influences. 

speed_zero 
The number of times the pedestrian stops 

(speed reduced to zero). 

Represents hesitation, rest, or congestion-related 

behavior. 

speed_slow 
The number of times the pedestrian transitions 

to a slow pace (walking slowly). 

Indicates cautious movement, often in response to 

dense areas or social interactions. 

speed_fast 
The number of times the pedestrian accelerates 

to a fast pace (running). 

Reflects urgency, goal-oriented movement, or 

response to emergencies. 
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The extracted features are categorized based on their insights into pedestrian dynamics. 

Position-based features include the pedestrian's initial x and y coordinates, the initial angle 

formed between the pedestrian's orientation and the goal, and the initial distance to the goal. 

These attributes define spatial context and starting conditions, influencing movement 

decisions. Angular preferences measure the frequency of specific directional choices, such 

as zero-degree (direct movement), small adjustments, or large turns to either side, which 

reflect environmental influences or obstacles. Speed dynamics capture the pedestrian's 

adaptability, urgency, and decision-making under changing conditions through metrics like 

stops, slow paces, and rapid movements. 

Before extracting features, the raw simulation data undergoes rigorous preprocessing to 

ensure accuracy and reliability. Noise reduction techniques, including moving average filters 

and spline interpolation, address sudden position changes and trajectory artifacts while 

maintaining realistic movement curves. Normalization brings all features to a uniform scale, 

preventing numerical dominance by attributes with larger ranges. For instance, the Min-Max 

normalization rescales data values to the range [0,1] using the formula (01): 

𝑥′ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
  (01) 

Outlier detection and removal are critical for maintaining dataset integrity. Statistical 

thresholding identifies anomalies based on deviations from the mean, while density-based 

clustering algorithms like DBSCAN isolate abnormal behaviors, such as excessive 

directional changes or uncharacteristically high speeds. 

3.5.3 Model and Techniques 

After preprocessing and feature extraction, the Behavioral Clustering Method (BCM) 

proceeds to identify and segment individuals into behaviorally similar subgroups. This phase 

involves determining the optimal number of clusters and applying clustering techniques to 

group pedestrians based on their extracted behavioral features. Below, we outline the 

methods used and the workflow for achieving accurate clustering. 

3.5.3.1 Optimal number of clusters 

Determining the appropriate number of clusters is a critical step in the clustering process, as 

it directly affects the granularity and interpretability of the results. We relied on technique 

of Silhouette Analysis: Silhouette Analysis measures the cohesion and separation of clusters 

by calculating the mean silhouette coefficient for each cluster. This coefficient ranges from 

-1 (poor clustering) to +1 (highly distinct clusters). Using this approach, we found an optimal 

cluster number where the silhouette score peaked, indicating well-separated and meaningful 

clusters. This technique proved suitable for our data as it accounts for the diversity and subtle 

differences in pedestrian behaviors. 

3.5.4 Clustering technique: K-means clustering 

After identifying the optimal number of clusters using silhouette analysis, we applied K-

means clustering to group pedestrians into behaviorally similar subgroups. K-means is a 

centroid-based algorithm that iteratively partitions the dataset by minimizing the within-

cluster variance. Its key advantages include: 

 Efficiency: K-means is computationally efficient and scalable, making it suitable for 

large datasets generated during crowd simulations. 

 Simplicity: The algorithm is straightforward to implement and interpret, providing clear 

group assignments for each pedestrian. 

However, K-means assumes spherical clusters with relatively uniform sizes. To address 

potential limitations, we ensured careful feature scaling and preprocessing during earlier 

stages to align with these assumptions. 
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3.5.5 Workflow for behavioral clustering 

The complete workflow for clustering in BCM involves the following steps: 

1. Data Preparation and feature extraction: Preprocessed simulation data is transformed 

into structured features that capture individual behaviors, such as movement tendencies, 

decision-making patterns, and interaction metrics. 

2. Optimal cluster selection: 

o Apply the Elbow Method to analyze within-cluster variance across different cluster 

counts. 

o Use Silhouette Analysis to evaluate cluster cohesion and separation, selecting the 

cluster number with the highest silhouette score. 

3. Clustering with K-means: 

o Initialize K-means with the selected number of clusters. 

o Randomly assign initial cluster centroids and iteratively update them by minimizing 

the within-cluster variance. 

o Assign each pedestrian to the nearest cluster based on behavioral feature similarity. 

This structured approach ensures that the clustering process effectively segments the crowd 

into behaviorally relevant subgroups, forming the foundation for realistic and actionable 

crowd behavior simulations. The integration of Silhouette Analysis and K-means clustering 

ensures robustness and scalability, accommodating the complexity of pedestrian behaviors 

in dynamic evacuation scenarios. 

4. Validation and Simulation  
The approach we have outlined provides a structured workflow for simulating and validating 

pedestrian movement during a crowd evacuation. Here is a breakdown of the implementation 

of the main functions and their roles. Firstly, the function generate_initial_state(), this is for 

initializes random positions for pedestrians in the simulation space. Means assigning an 

initial status of zero (moving) to each pedestrian figure 10(a). secondly, the function 

move_pedestrians(), this is for updates pedestrian positions incrementally toward the goal, 

while avoiding collisions by considering obstacles in the path. Checks for overlaps between 

pedestrians’ new positions and obstacles and prevents invalid movements (figure 8). Thirdly, 

the function generate_animation_data(), Logs positions and statuses of pedestrians at each 

simulation step. And so it provides us input data for visualization (figure 8). At the end, the 

function animate(), converts recorded simulation data into an animation. We relied on some 

colors to represents pedestrians, obstacles, and the goal with visual markers: (green points: 

Pedestrians, red points: Obstacles, dashed green line: Goal) (figure 8). 

  
(a) Initial state (b) Final state 

Figure 8. Animation with Graphical Information Format file 
The output for our simulation produces a GIF file named "pedestrian_simulation.gif" that 

visualizes pedestrian movement and final states. The animation confirms logical pedestrian 

behavior, such as avoiding obstacles and stopping upon reaching the goal. 
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(a) Initial animation (b) Final animation 

Figure 9. Simulation of the crowd evacuation model 
The performance evaluation of the proposed crowd evacuation model described in Section 

3 focuses on assessing scalability and the trade-offs between scalability and pedestrian 

randomization in the simulation environment. This evaluation is based on metrics such as 

effectiveness, efficiency, and total evacuation time to analyze the overall performance of the 

behavioral clustering model (BCM). 

To evaluate the model, experiments were conducted in a simulated square hall with varying 

crowd sizes and obstacle configurations. The hall included 10 internal obstacles of varying 

shapes and a single exit (goal) with a fixed width. The pedestrian distribution and obstacle 

locations were randomized for each experiment. 

The BCM model demonstrates high scalability and effectiveness, maintaining smooth 

evacuation performance even with increasing crowd sizes and densities. The results align 

with prior research, affirming the model's robustness and reliability for crowd evacuation 

analysis. Future experiments may explore multi-exit scenarios or dynamic obstacle 

configurations to further validate the model. 

 
(a1) Initial distribution of an experiment 

with 5 pedestrians 

 
(b1) Final state of an experiment with 5 

pedestrians (t=0.3s) 

 
(a2) Initial distribution of an experiment 

with 10 pedestrians 

 
(b2) Final state of an experiment with 10 

pedestrians (t=0.83s) 

   
(a3) Initial distribution of an experiment 

with 20 pedestrians 

(b3) Final state of an experiment with 20 

pedestrians (t=2.21s) 
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(a4) Initial distribution of an experiment 

with 40 pedestrians 

(b4) Final state of an experiment with 40 

pedestrians (t=4.91s) 

  
(a5) Initial distribution of an experiment 

with 70 pedestrians 

(b5) Final state of an experiment with 70 

pedestrians (t=10.72s) 

  
(a6) Initial distribution of an experiment 

with 90 pedestrians 

(b6) Final state of an experiment with 90 

pedestrians (t=16.45s) 

  
(a7) Initial distribution of an experiment 

with 100 pedestrians 

(b7) Final state of an experiment with 100 

pedestrians (t=21.25s) 

  
(a8) Initial distribution of an experiment 

with 130 pedestrians 

(b8) Final state of an experiment with 130 

pedestrians (t=30.00s) 

  
(a9) Initial distribution of an experiment 

with 150 pedestrians 

(b9) Final state of an experiment with 150 

pedestrians (t=39.95s) 

  
(a10) Initial distribution of an experiment 

with 160 pedestrians 

(b10) Final state of an experiment with 160 

pedestrians (t=40.52s) 

 

Figure 10. Crowd simulation with different situations number of obstacles and 
number of pedestrians 

The table 1 evaluates pedestrian evacuation performance across 10 experiments illustrating 

in Figure 12 with varying densities and numbers of pedestrians. 
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Table 2. Experimental results 
Experiment N. of 

Pedestrians 

Density N. of 

Movements 

N. of Reached 

Goal 

Number of 

Clusters 

Silhouette 

Score 

WCSS T(seconds) Effectiveness Efficiency 

e = 1 5 3.00% 60 5 2 0.475 1.294 0.3 100.00% 82.78% 

e = 2 10 6.00% 156 10 4 0.565 1.565 0.83 100.00% 87.84% 

e = 3 20 13.00% 366 20 4 0.342 5.263 2.21 100.00% 78.35% 

e = 4 40 25.00% 629 39 5 0.410 9.482 4.91 97.50% 77.92% 

e = 5 70 44.00% 1062 69 5 0.459 10.324 10.72 98.57% 78.61% 

e = 6 90 56.99% 1435 89 4 0.427 14.504 16.45 98.89% 74.39% 

e = 7 100 63.00% 1739 98 4 0.402 17.664 21.25 98.00% 68.82% 

e = 8 130 82.00% 2079 127 4 0.420 19.980 30 97.69% 71.94% 

e = 9 150 94.00% 2504 142 5 0.408 18.051 39.95 94.67% 67.95% 

e = 10 160 100.00% 2400 149 4 0.400 28.532 40.52 93.71% 70.97% 

The analysis confirms the achievement of the main goal with the arrival of almost all 

pedestrians reaching the goal (exit), validating the model's effectiveness across varying 

densities. This behavior aligns with findings from prior studies [32][33]. 

Evacuation time represents the total duration taken for all pedestrians to reach the exit in 

each experimental scenario. Table 2 outlines the results for different densities and pedestrian 

counts. Below are key findings: 

- Low-density scenarios (experiments 1–3) show shorter evacuation times (0.3s to 2.21s) due 

to reduced congestion and fewer movement constraints. 

- Medium-density scenarios (experiments 4–7) show moderate evacuation times (4.91s to 

21.25s) due to increased congestion. 

- High-density scenarios (experiments 8–10) result in longer evacuation times (30s to 

40.52s), highlighting the challenges of high-density environments. 

We note that the effectiveness values remain consistently high, near or above 94%, 

indicating a robust model with slight decline in effectiveness as density increases, this is to 

due congestion and obstacles. 

Regarding efficiency, it peaked at 87.84% for Experiment 2, then gradually decreases as 

pedestrian numbers and density rise. Higher densities lead to more movement constraints, 

reducing efficiency. 

Simulation time scales with density and pedestrian count, peaking at 40.52 seconds in 

Experiment 10 (higher densities require more computation and prolong evacuation). 

The number of clusters stabilizes at 4-5 for most experiments. Silhouette Scores range from 

0.34 to 0.56, indicating moderate cluster separation quality. As for the WCSS (Within-

Cluster Sum of Squares) increases with the number of pedestrians and density, suggesting 

more variation within clusters due to higher complexity (figure 11). 

 
Figure 11. Density relationships of average speed (left), WCSS (right) 

Our model performs well at low to medium densities but faces challenges in high-density 

scenarios. We observe in experiments (e = 1-3) a low density, high effectiveness (100%), 

http://ymerdigital.com

Page No:657

YMER || ISSN : 0044-0477

VOLUME 24 : ISSUE 01 (Jan) - 2025



minimal time required, and high efficiency due to less congestion and fewer obstacles. in the 

experiments (e = 4-7) a medium density, slight dips in effectiveness (97.5%-98.89%), and 

efficiency starts declining as density increases (figure 12). But when the density is high (e = 

8-10) we observe noticeable reductions in both effectiveness (93.71%-97.69%) and 

efficiency (67.95%-71.94%), and movement complexity and cluster overlaps become more 

pronounced. As a result of our analysis, we conclude that our model performs well at low to 

medium densities but faces challenges in high-density scenarios. These results indicate that 

the model performs well across all experiments, efficiently evacuating crowds with high 

effectiveness, also our model work to group individuals into clusters based on similar 

behaviors or movement patterns. This clustering provides insights into crowd dynamics, 

which can inform crowd management strategies, evacuation planning, or analysis of 

pedestrian behavior in various settings (figure 11). 

 
Figure 12. Performance evaluation 

They are also unable to capture behavioral nuances like leadership, social attachment, or 

panic responses. longer evacuation times are consumed in high-density scenarios due to 

oversimplified movement models. 

Accounts for heterogeneity by clustering agents with similar behaviors. Contrary to what 

has been stated, simulations BCM includes realistic dynamics such as leadership and 

hesitation, improving predictive accuracy. BCM reduces bottlenecks by grouping agents 

based on movement and decision-making tendencies (table 3). 

Table 3. Quantitative Comparison 

Metric 
Traditional Homogeneous 

Models 
BCM Improvement (%) 

Evacuation Time 

(High-Density) 
50s–60s 40.52s 20–30% faster 

Effectiveness (%) ~85–90% 93.71–98.89% 5–10% higher 

Congestion Levels 
Severe in all density 

scenarios 

Moderate to low in 

low/medium 
Reduced significantly 

Silhouette Score N/A (not behavior-based) 0.34–0.56 
Provides clustering 

insights 

Efficiency (%) ~60–65% 67.95–87.84% 10–20% higher 

The BCM consistently performs better than traditional methods across all metrics, 

particularly in high-density scenarios. Behavioral clustering provides granular insights into 

pedestrian dynamics, enabling targeted strategies for bottleneck reduction. While BCM 

performs well, further optimization could address high-density challenges (e.g., multi-exit 

scenarios or real-time dynamic clustering). 

The table provides a comprehensive evaluation of the Behavioral Clustering Method (BCM) 

in various crowd evacuation scenarios, focusing on key performance metrics. Evacuation 

time quantifies the duration required for pedestrians to exit the simulation environment, with 

shorter times indicating more efficient evacuation processes. Effectiveness represents the 
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percentage of pedestrians who successfully reach the goal, consistently high across 

experiments, showing the model's reliability even in challenging scenarios. Congestion 

levels are indirectly reflected in the efficiency and movement patterns, highlighting how 

crowd density and obstacles impact flow dynamics. The Silhouette Score measures the 

quality of behavioral clustering, with moderate values indicating reasonable differentiation 

between behavioral groups. Efficiency combines multiple aspects, such as path optimization 

and speed, revealing the system’s ability to maintain smooth movement while minimizing 

delays. As density increases, both effectiveness and efficiency slightly decline due to 

congestion and overlapping behaviors, demonstrating the model’s strengths and limitations 

under varying conditions. This detailed analysis validates BCM’s robust performance while 

identifying areas for improvement in high-density scenarios. 

5. Conclusion and Perspectives 
We presented in this paper a novel method, called Behavioral Clustering Method (BCM), to 

improve crowd evacuation strategies by analyzing pedestrian behaviors during emergencies. 

It uses synthetic data generated from simulations to identify groups of individuals based on 

shared behavioral patterns. The method provides valuable insights into crowd dynamics. The 

validation of our model through Python-based animations demonstrates its capacity to 

accurately predict evacuation behaviors, thereby enhancing the effectiveness of evacuation 

planning. 

The results obtained indicate that understanding the nuances of pedestrian movement and 

decision-making can significantly reduce congestion and improve safety during emergency 

evacuations. Further, this paper emphasizes the importance of integrating behavioral 

analysis into crowd management systems, as it provides a framework for developing more 

adaptive and responsive evacuation protocols. 

For future work, more research could look into ways of gathering real-time data so BCM's 

predictions get even better. Also, adjusting the model to think about different environmental 

conditions and changing sizes of crowds will make it useful in many cases. Future studies 

might also check into psychological influences on group behavior for a deeper 

comprehension of what happens during evacuations. 

Finally, we can say that BCM represents a significant step forward in crowd evacuation 

analysis, with the potential to inform urban planning and emergency response strategies 

effectively. By continuing to refine this method and exploring new approaches for research, 

we can contribute to safer and more efficient public spaces in times of crisis. 
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