
                                    GENERATIVE AI-ASSISTED MUSIC  

                      VIDEO GENERATOR 

 
             Mr. Kamalakkannan R1, Harini Akshitha K2, Shanmathi M3,  

               Sherlin Nisha A4, Swetha J5 ,Vinoda SRD 6 
1Assistant Professor, Department of CSE  

(IoT & Cybersecurity including Blockchain Technology), 
2,3,4,5,6Student, Department of CSE (IoT & Cybersecurity including Blockchain 

Technology) SNS College of Engineering, Coimbatore, India. 

 

 

 

ABSTRACT:  

Generative AI technologies have transformed music and video creation by automating the 

production of high-quality material using powerful algorithms. This abstract examines major 

approaches such as Generative Adversarial Networks (GANs), Recurrent Neural Networks 

(RNNs), and Transformer models, focusing on their applicability in the creative industries. 

The study examines the history of artificial intelligence (AI) in music and video production, 

beginning with early efforts like David Cope's efforts in Musical Intelligence (EMI) and 

progressing to modern platforms like OpenAI's MuseNet and Google Magenta. It also 

discusses the issues of originality, variety, and the necessity for standardised evaluation 

procedures when evaluating AI-generated work. Future research areas include increasing user 

control over the generating process and investigating the integration of multimodal information 

for richer creative outputs. This review seeks to give a complete overview of the existing scene 

and future prospects for generative AI in the arts. 
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I. INTRODUCTION 

The rapid development of generative artificial intelligence (AI) has opened up exciting new 

possibilities in multimedia content creation, notably in video and music production. One of the 

most fascinating uses of generative AI is its capacity to convert static images into dynamic 

movies, which has enormous implications for webtoon, comic, and anime artists. Artists may 

bring their characters to life using AI algorithms, generating animated sequences that enrich 

storytelling and engage viewers in unique ways (Kumar et al., 2021). The ability to collaborate 

not only improves the creative process, but it also allows for faster content development, saving 

creative people significant time. 
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The AI-driven solution presented in this study is intended to improve and expedite the video 

production process. Video generation from text prompts, dynamic video generation from static 

pictures, and effective subtitle generation are all made possible by the system. It also 

incorporates music from services like Spotify and provides features for smoothing out noise 

and improving audio quality. Applications like webtoon visual and verbal anime creation 

benefit greatly from the time savings enhanced quality that may be achieved by using AI for 

these jobs. The method offers a revolutionary toolkit for contemporary content producers and 

demonstrates the potential of AI in multimedia creation. 

 

Figure 1: Our framework overview. We find the following solutions to these problems of 

establishing background music for videos. Left: We focus on providing the first throughly 

annotated dataset of videos and symbolic music. Middle: To lead distinct phases of music 

production, we separate different video components and split music generation in R. 

Kamalakkannan, Y. S. Kumar, D. S. G. R. Divya, S. M. N. Sai Monish Nithin, and S. N. 

Sowndheriya, "IoT Based V2V Communication Using Li-Fi Technology," YMER Journal, 

vol. 23, issue 1, pp. 298, January 2024. 

o three progressive stages: chord, melody, and accompaniment (accom.). Right: To measure 

the relationship between produced music and input video, we therefore provide brand-new 

review metric called Video-Music CLIP Precision (VMCP). 

 

II. RELATED WORK 

Recent developments in generative AI have greatly enhanced the synthesis of audio and video, 

providing tools for effectively producing, editing, and improving multimedia material. An 

outline of the state-of-the-art in this area is provided below, emphasizing its applications, 

approaches. 

Text-to-Audio and Text-to-Video Generation: Text-to-image frameworks like Stable 

Diffusion have been expanded to incorporate video and audio synthesis via generative models 

like diffusion-based architectures. Latent diffusion techniques are used by models such as 

Tune-A-Video and VideoCrafter to produce coherent films that are directed by text 

descriptions. In a similar vein, text-to-audio programs like Make-An-Audio and Audiobox 

provide control over tone, style, and emotion by producing high-quality audio from textual 

prompts. VideoComposer and other image-to-video transition systems concentrate on turning 

still pictures into moving sequences, allowing for artistic uses like turning drawings into 

animated films. for comics or webtoons. To guarantee consistency between frames while 

preserving creative freedom, these models make use of temporal dimensions in latent spaces.  
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Multimodal Generative AI: Text, audio, and video may now be handled simultaneously thanks 

to unified frameworks. By offering end-to-end solutions from text input to completely 

synchronized video and audio outputs, this integration streamlines processes for multimedia 

creation‐11. 

 

Music Production and Audio Enhancement: AI programs such as Voicebox and VALL-E 

improve audio quality by eliminating artifacts and noise while producing speech or music. 

These developments make it possible to include voiceovers or music into videos with ease, 

meeting a variety of use cases such as music videos, podcasts, and video  

Problems and Prospects: Although generative AI has developed quickly, there are still issues 

in attaining fine-grained controllability and guaranteeing temporal coherence. 

 

Dataset Vide o Audi o MID I Genr e Chor d Melod y Tonalit y Video 

Content 

Size Length 

(Hours) 

MAESTRO 

[17] 

’ ✓ ✓ ’ ’ ’ ’ - 1,276 198.7 

POP909[50] ’ ’ ✓ ✓ ✓ ✓ ✓ - 909 70.0 

HIMV-

200K[20] 

✓ ✓ ’ ’ ’ ’ ’ Music Video 200,50 

0 

- 

TikTok[56] ✓ ✓ ’ ’ ’ ’ ’ Dance Video 445 1.5 

AIST++[32] ✓ ✓ ’ ✓ ’ ’ ’ Dance Video 1,408 5.2 

URMP[31] ✓ ✓ ✓ ’ ’ ’ ’ Music 

Performance 

44 33.5 

SymMV 

(Ours) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ Music Video 1,140 76.5 

 

Table 1: A comparison of several music databases. The proposed SymMV dataset is the first 

to incorporate both video and symbolic music pairings for video background music production. 

Our collection also includes a variety of musical comments and metadata, such as genre, chord, 

and melody. In the first two rows, we provide references to prominent symbolic music datasets. 

 

 

III. THE DATASET 

We compile the first video-music dataset that uses symbolic representations to match musical 

videos with their piano versions. With a combined duration of 76.5 hours, the gathered SymMV 

dataset includes 1140 pop piano songs in both MIDI and audio format together with the official 

music video. SymMV was divided into three sets: the test set (70 pairings), validation set (70 

pairs), and training set (1000 pairs). Additionally, our dataset contains a variety of annotated 

metadata, including chord progression, tonal-ity, as well as rhythm. An example of our dataset 

is displayed in Fig. 2. Comparisons with current video-music datasets are shown in Tab 1. 
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IV. DATA COLLECTION 

There are a lot of video-music pairings on the Internet. Specifically, there is a significant 

creative and rhythmic relationship between music and music videos. They are also good for 

understanding intrinsic video-music linkages since they feature a lot of scenarios, actions, and 

camera angles. Therefore, our goal is to create a dataset of music videos and paired symbolic 

music for the purpose of creating video background music. It might be simple to locate music 

videos or piano covers alone, but it can be challenging to gather matching pairs. In order to 

overcome this difficulty, we first gather piano covers from YouTube channels that provide 

professional piano lessons that range in audio and melodic quality from fair to excellent. We 

analyze the metadata after downloading the music and its metadata, then utilize the parsed song 

title and vocalist as search terms. 

 

 

V. DATA ANNOTATIONS 

 

Melody and Accompaniment. Common pop music is wellstructured and can be decoupled 

into melody and accompa- niment. Melody, a combination of pitch and rhythm, consti-tutes 

the most memorable aspect of a song. It is easier for people to perceive melody than other 

music parts. Hence, melody plays an essential role in a music piece. Accompa- niment is 

correlated with the chord sequence and melody, serving as the background sound effect to 

harmonize the foreground melody [28], and can bring different auditory sensations. Given 

music note sequences, we first quantize their duration to the 16th note and implement the 

Skyline algorithm [47] to separate the melody and accompaniment. 

Chord Progression. Chords, several notes in a certain ver- tical configuration that sounds 

harmonic, run through the whole music piece and play an important role in setting the base 

tone of music. Moreover, chords convey strong emotions with several unique features like 

color and ten- sion, e.g., major chords bring a feeling of brightness, while minor chords sound 

relatively dim [40]. We provide chord progression to further control the music generation 

process. We adopt an open-source rule-based algorithm 1 to extract chords from MIDI files. 

We observe a long-tail distribution of chord progressions, where more than half of the chords 

oc- cur less than 10 times. To mitigate this problem, we narrow down the chord templates to 12 

root notes and 10 qualities, which covers mostly used types in pop songs. 

Tonality. Tonality is the general term for tonic and mode of a key. It reflects the hierarchy of 

stability, attractions, and directionality in music work. The tonic chord is considered to be the 

most stable chord in tonality, and it determines the name of the key. Mode represents a type 

of musical scale centered on the tonic, which can be mainly divided into two types: major and 

minor modes. In our dataset, we provide the tonality annotation using Krumhansl- Schmuckler 

algo- rithm [29] to predict tonality from MIDI files and represent music keys using 12 tonic 

and 2 mode types. 

Rhythm. We estimate the beat and downbeat positions from audio using the RNN-based 

model [5], which corresponds to the fine-grained rhythm. Then, we calculate the tempo from 

beat and downbeat positions to represent the global rhythm. 
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Tempo: 120 

Metadata. We also provide additional metadata of our music dataset, such as genre and 

lyrics. We use ShazamIO2 to search for lyrics and genres of music in SymMV. These 

metadata are helpful for data analysis and may benefit future applications, e.g., text-to-music 

generation [3, 23]. 

 
1https://github.com/joshuachang2311/chorder/ 2https://github.com/dotX12/ShazamIO 

 

 

Figure 2: Illustration of sample In SymMV. Sample in our SymMV dataset 

includes paired music and video, music feature annotations, and related metadata. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Visualization of data statistics. (a) Probability density function of beats per minute 

in different genres. (b) T-SNE visualization of visual features and genres. (c) Chord distribution 

in different genres. We show the high correlation between not only music and genre but also 

video and genre. 

 

VI. DATA ANNOTATIONS 

To ensure the quality of our dataset and determine video- music relationships , we provide a 

detailed analysis of differ- ent music and video features. Genre, an attribute shared by both 

modalities, is convenient for us to analyze with visual- ization tools. Since our dataset 

contains video-music pairs with more than 10 genres, we use genre as a bridge betweenvideo 

and music to explore their distinct features. We trans- pose all major music to C major (C) 

and minor music to A minor (a) to remove the influence of tonality on our analysis. 
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Chord and Genre. We count the frequency of chords in different genres of music. To ensure 

statistical significance,we choose the five most frequent genres and ten chord typeswith high 

frequency and high variance. As Fig. 3 (c) shows, the final chord distribution meets our 

expectations. In pop music, the most steady chords, e.g., CM, FM, and Am, oc- cupy the 

largest proportion, in line with the stability of popmusic. In contrast, some rarely seen chords 

have a high frequency in R&B/Soul, such as Dm7 and Am7, in order to create a richer and 

more diverse harmonic palette. Alter- native, as a type of Rock, tends to favor simpler chords, 

so the occurrences of seventh chords are less frequent. As for Hip-Hop/Rap, the singing part is 

less melodic, and therefore, there are generally more seventh chords to provide accom- 

paniments with more space for expression and to fill the harmony space. We provide more 

analysis in the Appendix. 

Rhythm and Genre. We use kernel density estimate (KDE) to visualize the distribution of beats 

per minute (BPM) of mu- sic in various genres. As shown in Fig. 3 (a), Dance and Hip- Hop/Rap 

tend to have higher BPM. Curves in other genres display two distinct peaks, representing the 

BPM of slow- paced and fast-paced songs, respectively. Notably, there is no obvious peak 

corresponding to fast songs in R&B/Soul. 

Visual Features and Genre. As for visual features, we first extract 512-dimensional CLIP 

features from video frames at an FPS of 6. Then we compute the average of these features at 

time dimension to generate the visual feature of the whole video. We use t-SNE [48] to 

project visual features into a 2-dimensional space. We ignore Pop due to its complexity and 

select CLIP features of the other five genres to conduct the cluster analysis. Visual features 

are generally clustered by genre in Fig. 3 (b), demonstrating high correlations. 
 

 

Music Generator 
 
 
 

 
es 

 

 
 
 

 

Accompaniment Music 

 
(a) Music Representation (b) Pipeline of V-MusProd 

Figure 4: Illustration of our method V-MusProd. Left: We group multiple music 

attributes into one event-based token (each column). Different colors indicate different 

types of tokens. Right: We extract semantic, color, and motion features to guide the music 

generation process. The three types of features serve as inputs for different stages of the 

decoupled music generation model, which contains Chord, Melody, and Accompaniment 

Transformers. 

 

Method 

We propose a novel music generation framework named V-MusProd, to tackle the 

challenging video background mu- sic generation task. Our framework is shown in Fig. 4, 

which consists of a video controller and a music generator. The video controller extracts visual 

and rhythmic features and fuses them as the contextual input of the music generator.  
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The music generator decouples the music generation process into three progressive stages that 

are independently trained: Chord, Melody, and Accompaniment. At inference time, melody 

and accompaniment tracks are merged together to form a complete music piece. The 

progressive generation pipeline allows for the use of decoupling control on different 

generation stages, which improves the correspondence be- tween videos and music. We 

elaborate on each component in the following subsections. 

 

Video Controller 

 

Directly using raw video frames as conditional input is difficult for model to learn the 

correspondence between two different modalities. Thus, it is important to design and extract 

meaningful features from video as intermediate rep- resentations to simplify the learning 

process. Considering the style and rhythm relationship between music and video, we extract 

semantic, color, and motion features separately to guide the music generation model. 

Semantic Features. We use pretrained CLIP2Video [13] as the extractor to encode raw video 

frames into semantic feature tokens without finetuning. The CLIP2Video model builds upon 

the CLIP encoder [36], which is pretrained on billions of image-text pairs, and further uses a 

temporal dif- ference block to learn the temporal context across frames. The extracted features 

are supposed to contain representa- tions of different video semantics, e.g., scenery, sports, 

and crowds, which are closely related to the content of music. Color Features. Color in videos 

can reflect the underlying emotions in a given scene, corresponding with the mood of paired 

music. We employ color features as one of the control signals for chord generation. 

Specifically, we extract the color histogram of each video frame, i.e., a 2D feature map 

proposed in [2], to represent the color distribution in a non- linear manifold. The color 

histogram projects an image’s color into a log-chroma space, which is more robust and 

invariant to illumination changes. 

 

Semantic and color features are fed into separate trans- former encoders and then concatenated 

together at the length dimension. We add a learnable embedding to mark whether each token 

is from color feature or semantic feature, and feed the sequence into a transformer encoder 

for inter-modality and temporal fusion. The fused output serves as keys and values of cross 

attention in Chord Transformer. 

 

 

Motion Features. We compute RGB difference as motion features to determine the music 

tempo and calculate Tempo Embedding and Timing Encoding. We extract the RGB dif- 

ference with intervals of 5 frames (0.2 seconds) and map the mean RGB difference of a video 

to the music tempo. We use a linear projection from the minimum and maximum RGB 

difference to the tempo range of [90, 130]. The esti-mated tempo is used as the Tempo 

Embedding in the music generator. We also add Timing Encoding [9] in Melody and 

Accompaniment Transformers to synchronize the video timing and music timing, which 

reminds the model of the current token’s position in the whole sequence. 
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Music Generator 

The music generator G, consisting of a Chord Trans- former Gc, a Melody Transformer Gm, 

and an Accompa- niment Transformer Ga, is designed to generate symbolic music conditioned 

on the extracted video feature. The work- flow can be written as follows: 

xm =Gm(Gc(ys), yr ), 

xa =Ga(Gc(ys), xm, yr ), x =xm ⊕ xa, 

where style feature ys and rhythm feature yr is produced by video controller C, the final music 

piece x is composed of the melody xm and the accompaniment xa, represents merging the two 

parts into a single track. ⊕ 

 

 

Music Representation. Symbolic music comprises a set of music attributes. To encode the 

dependencies among different attributes, we design an event-based music rep- resentation 

inspired by [21, 38]. We define three types of tokens, namely Note, Rhythm, and Chord, as 

the red, yellow, and blue columns in Fig. 4 (a), respectively. Each token is a stack of attributes. 

In particular, the Rhythm token comprises the BarBeat attribute, indicating the beginning of 

each bar or beat; Note token contains the Pitch and Duration attributes; Chord token contains 

the Root and Quality attributes, i.e., the root note and the quality of chords. Chord can also be 

represented as chromagrams, a 12D binary vector where each dimension indicates whether a 

pitch class is activated. An additional Type attribute is applied for all tokens to mark their 

types. In our implementation, the Chord Transformer only models the Rhythm and the Chord 

tokens, while the Melody and Accompaniment Transformers model all three token types. To 

align the generated music with input video with rhythmic information, we add Bar Embedding 

and Beat Embedding for the absolute bar and beat position of current token, and Tempo 

Embedding for the music tempo. 

 

 

Chord Transformer. We adopt a transformer decoder architecture for Chord Transformer to 

learn the long-term de- pendency of input video feature sequences. The event-based token 

sequence is added with positional encoding and fed features from video controller are fed as 

keys and values. each decoder token can only attend to the contextual encoder output within 

the previous current or next bar. 

 

Accompaniment Transformer Similarly, we also adopt an encoder-decoder transformer to 

generate the accompaniment sequence. Since accompaniment closely correlates with chords 

and melody, we merge the generated chord sequence with the melody and then pass the 

merged sequence to Ac- companiment Transformer as conditional input. We also apply the 

same bar-level cross-attention mask as in Melody Transformer. Eventually, the generated 

accompaniment is directly merged with the melody to form the final music. 
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Implementation Details 

 

We train three stages separately and connect them to form a complete pipeline during 

inference. We construct transformers [49] based on linear transformer [26] to reduce time 

consumption. All three stages are trained with cross- entropy loss and teacher-forcing strategy. 

During inference, we use a stochastic temperature-controlled sampling [19] to increase the 

diversity of generated samples. We train Chord, Melody, and Accompaniment Transformers 

for 200, 200, and 400 epochs, respectively, on one V100 GPU. We use fluidsynth3 to 

synthesize our MIDI into audio. More implementation details are in the Appendix. 

 

Evaluation Metric 

 

In this chapter, we first extend the vision-language CLIP [36] to the video-music domain and 

propose a new evaluation metric named Video-Music CLIP Precision (VMCP) to measure the 

video-music correspondence. 

 

Video-Music CLIP 

 

To build the video-music CLIP model, we adopt the de- sign choice in [46], the state-of-the- 

art video-music retrieval model. 

 

Specifically, 

We first split the input music and video into fixed-length segments and use CLIP [36] and 

music tagging model [51] to extract visual and audio features sepa- rately. Given the 

extracted features, we adopt a transformer encoder as the video encoder and music encoder to 

explore contextual relations and learn a joint multi-modal embedding space. The model is 

trained with the InfoNCE contrastive loss [4] to map positive video-music pairs closer while 

push- ing negative pairs further in the CLIP-based joint embedding space. Loss of videos v to 

music pieces m is defined as: 

 

 

 

 

 

 

 

where N denotes number of video-music pieces, L denotes 

number of segments, s( ) denotes cosine similarity, and τ is · 

a learnable temperature parameter. The music-to-video loss Lm→v is defined symmetrically. 

 

3https://github.com/FluidSynth/fluidsynth 
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Methods Video-Music Correspondence Music Quality 

 

 

 

 

 

 

 

 

Table 2: Objective evaluation on SymMV test set. We evaluate video-music 

correspondence and music quality with VMCP and music quality metrics. P indicates 

Precision, where higher is better. AR indicates average rank, where lower is better. For music 

quality metrics, closer to Real is better 

To train this model, we need to collect plenty of video- music pairs and ensure that the training 

dataset should roughly cover the distribution of our dataset. Therefore, we download video 

clips from YouTube8M dataset [1] anno- tated as “music video” and obtain 20k video-music 

pairs. After training on the YouTube music video dataset, we fine- tune the model with a small 

learning rate on audio co
∼
nverted from SymMV to improve its retrieval performance further. 

To train this model, we need to collect plenty of video- music pairs and ensure that the training 

dataset should roughly cover the distribution of our dataset.  Therefore, we download video 

clips from YouTube8M dataset [1] anno- tated as “music video” and obtain 20k video-music 

pairs. After training on the YouTube music video dataset, we fine- tune the model with a small 

learning rate on audio co
∼
nverted from SymMV to improve its retrieval performance further. 

Equipped with the pretrained video-music CLIP model, we design a retrieval-based metric 

similar to [52]. Given a generated music piece in MIDI format, we first synthesize it into audio 

and calculate the top-K retrieval accuracy from a pool of N candidate videos using the CLIP 

model. Specifi- cally, we rank the cosine similarity between the generated sample mˆ and its 

condition video v and M   1 random sampled videos vi. We consider a successful retrieval 

if the ground truth video is ranked−in the top-K place. We test the model using all generated 

samples and compute the success retrieval rate as the final precision score. We set M = 70, K = 

5, 10, 20. We also calculate the average rank of the ground truth video, where a lower rank 

implies better correspondence. Overall, the proposed metric is able to measure how well the 

generated music aligns with the input video. We validate that it shows a high correlation with 

human judgments in the experiments. 

 

VII. EXPERIMENTS 

We conduct comprehensive experiments on our V- MusProd model. In Sec. 6.1, we introduce 

the compared method CMT [9]. In Sec. 6.2, we evaluate video-music cor- respondence with 

VMCP and music quality with objective metrics. In Sec. 6.3, we conduct a thorough subjective 

eval- uation for video-music correspondence and music quality by user study.  

 

 

 P@5 P@10 P@20 AR SC PE PCE EBR IOI 

Real (SymMV) - - - - 0.986 4.197 2.633 0.023 0.184 

CMT [9] 8.9 17.7 31.0 33.4 0.990 3.920 2.444 0.074 0.246 

w/o semantic 11.6 23.9 42.0 26.1 0.955 2.892 2.310 0.019 0.358 

w/o color 15.6 26.6 44.8 25.1 0.956 2.732 2.200 0.011 0.330 

w/o motion 12.2 22.2 37.9 26.3 0.975 3.010 2.283 0.004 0.261 

Video2music 10.8 19.7 33.3 30.0 0.981 3.990 2.639 0.010 0.229 

Video2chord2music 13.7 23.1 43.6 26.0 0.996 2.497 2.036 0.081 0.985 

V-MusProd 15.7 24.6 44.8 25.4 0.983 3.940 2.607 0.004 0.174 
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In Sec. 6.4, we ablate our design choices and highlight the importance of different features 

used in video controller to validate the effectiveness of proposed method. In Sec. 6.5, we 

train V-MusProd in unconditional setting and evaluate its music quality against previous 

symbolic music generation methods. 

We compare V-MusProd with the state-of-the-art video background music generation method 

CMT [9], the first and only method to generate full-length background mu- sic for general 

videos. CMT uses purely rule-based video- music rhythmic relationships without paired video- 

music data. Other video-conditional music generation methods mostly focus on specific video 

types (e.g. dance videos) and require extra annotations (e.g. keypoints [56, 45]), which are 

unavailable in the general setting. We train CMT on SymMV to provide a benchmark. 

 

Metrics. For video-music correspondence, we use VMCP to evaluate objectively, where higher 

precision and lower average rank are better. For music quality, we select music objective 

metrics from [11, 53], including Scale Consistency (SC), Pitch Entropy (PE), Pitch Class 

Entropy (PCE), Empty Beat Rate (EBR), and average Inter-Onset Interval (IOI), which 

evaluate music by pitches and rhythm. Note that these music quality metrics are not indicated 

by how high or low they are but instead by their closeness to the real data. We use SymMV 

test set for evaluation. 

Results. As shown in Tab. 2, V-MusProd surpasses CMT on VMCP and music quality metrics. 

This proves our method achieves better video-music correspondence and music qual- ity than 

the state-of-the-art method. 

 

Metrics Expert Non-

expert 

Music Melody 77% 82% 

Music Rhythm 63% 53% 

Video Content 63% 63% 

Video Rhythm 60% 57% 

Chord Quality 63% - 

Accom. 

Quality 

83% - 

Overall 

Ranking 

73% 67% 

 

Table 3: Subjective evaluation for V-MusProd against CMT [9]. We show preference rates 

in music quality metrics, video-music correspondence metrics, and expertise metrics. 

 

Subjective evaluation is widely adopted in previous works [9, 21, 54, 22]. We conduct a user 

study by send- ing out questionnaires. We invite 55 participants, including 10 experts with 

expert knowledge in music composition and 45 non-experts. We provide several videos from 

different cat- egories like scenery, city scenes, and movies. Each video has two pieces of 

background music generated by V-MusProd and CMT, presented randomly for blindness. 

The question- naire takes about 20 minutes to complete. 
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Metrics. Participants are required to compare two back- ground music pieces from several 

aspects: (1) Music Melody: melodiousness and richness of music theme; (2) Music Rhythm: 

structure consistency of rhythm; (3) Video Content: correspondence between video content 

and music; (4) Video Rhythm: correspondence between video motion and music rhythm; (5) 

Overall Ranking: overall preference of the two samples. Besides, we ask the expert group to 

evaluate two additional metrics related to music theory: (6) Chord Quality: the quality of 

chord progression in the music; (7) Accompa- niment Quality: the richness of music 

accompaniment. 

Results. We provide results of preference rate, i.e. the per- centage of users who consider our 

music better than CMT, in Tab. 3. Results show that V-MusProd outperforms CMT (> 50%) 

in nearly all metrics and user groups, demonstrating better music quality and correspondence 

with videos. In par- ticular, our model outperforms CMT in both Music Melody and 

Accompaniment Quality by a large margin, indicating our decoupling generation of melody 

and accompaniment significantly improves their qualities. The subjective eval- uation results 

show high correlations with VMCP, which further verifies the effectiveness of our proposed 

metric. Ablation on Video Controller. We ablate the three video control features and 

evaluate the video-music correspon- dence with VMCP: (1) w/o semantic: no semantic 

feature input for video controller; (2) w/o color: no color feature. input for video controller; 

(3) w/o motion: fix tempo and do not add timing encoding. As shown in Tab. 2, semantic and 

motion features are significant for correspondence. We observe that w/o color has similar 

correspondence with the full model despite lower music quality. We attribute this to the fact 

that music tonality is connected with the color of videos. The original keys have already 

recorded the infor- mation on video colors, so color features are unnecessary for video-music 

correspondence modeling. If we remove remove the influence of tonality by changing keys, 

we need color features to capture the video colors. Ablation on Music Generator. We 

further conduct ab- lation study on our music generator with VMCP. To ver- ify the necessity 

of the decoupled structure, we test two variants of our model: (1) Video2music: uses the out- 

put video features of the fusion encoder to directly gen- erate target music by a Transformer 

decoder without de- coupling the structure of chords, melody, and accompani- ment; (2) 

Video2chord2music: generate chords first and then use chords to generate music without 

decoupling melody and accompaniment. As shown in Tab. 2, removing any one or more 

components of chords, melody, and accom- paniment hurts the overall performance of 

correspondence while having similar music quality. The difference in corre- spondence and 

music quality validates that decoupled struc- ture is important for music generation and 

imposing video controls. The improvement of VMCP from Video2music to 

Video2chord2music shows the effectiveness of decou- pling chords, and the improvement 

from Video2chord2music to the full model V-MusProd shows the effectiveness of 

decoupling melody and accompaniment. We note that Video2music sometimes has better 

music quality. It can be explained that imposing control over music generation can hurt music 

quality by adding inductive biases. input for video controller; (3) w/o motion: fix tempo and 

do not add timing encoding. As shown in Tab. 2, semantic and motion features are significant 

for correspondence. We observe that w/o color has similar correspondence with the full 

model despite lower music quality. We attribute this to the fact that music tonality is 

connected with the color of videos.  
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The original keys have already recorded the infor- mation on video colors, so color features are 

unnecessary for video-music correspondence modeling. If we remove remove the influence of 

tonality by changing keys, we need color features to capture the video colors. Ablation on 

Music Generator. We further conduct ab- lation study on our music generator with VMCP. 

To ver- ify the necessity of the decoupled structure, we test two variants of our model: (1) 

Video2music: uses the out- put video features of the fusion encoder to directly gen- erate 

target music by a Transformer decoder without de- coupling the structure of chords, melody, 

and accompani- ment; (2) Video2chord2music: generate chords first and then use chords to 

generate music without decoupling melody and accompaniment. As shown in Tab. 2, 

removing any one or more components of chords, melody, and accom- paniment hurts the 

overall performance of correspondence while having similar music quality. The difference in 

corre- spondence and music quality validates that decoupled struc- ture is important for music 

generation and imposing video controls. The improvement of VMCP from Video2music to 

Video2chord2music shows the effectiveness of decou- pling chords, and the improvement 

from Video2chord2music to the full model V- MusProd shows the effectiveness of 

decoupling melody and accompaniment. We note that Video2music sometimes has better 

music quality. It can be explained that imposing control over music generation can hurt music 

quality by adding inductive biases. Our method can be directly used in unconditional music 

generation. We examine V-MusProd against previous music generation methods: (a) HAT 

[54]: a hierarchical model built on multiple transformer- based levels to enhance the structure 

of music, achieving state-of-the-art generation quality; 

(b) CP Transformer [21]: transformer-based model using 2D music tokens to compress 

sequence length; (c) Music Trans- former [22]: the first transformer-based music generation 

model with improved relative attention. All the above methods are trained on POP909[50] 

dataset. We directly use their publicly available demos for evaluation. We train our V- 

MusProd on POP909 without video input, i.e. training Chord Transformer without cross 

attention with video features. The unconditionally generated results are evaluated by music 

quality metrics in Sec. 6.2. As shown in Tab. 4, our V-MusProd achieves closer results to 

POP909 training set than previous methods for most of the metrics. This indicates that 

unconditional music generation can bene- fit from our decoupling structure. 

 

 

VIII. EXPERIMENTS 

 

In this paper, we have introduced the SymMV dataset, which contains 1140 videos and 

corresponding background music with rich annotations. Based on SymMV, we devel- oped a 

benchmark model V-MusProd. It decouples music into chords, melody, and accompaniment, 

then utilizes video- music relations of semantic, color, and motion features to guide the 

generation process. We also introduced the VMCP metric based on video-music CLIP to 

evaluate video-music correspondence. With VMCP and subjective evaluation, we prove that 

V-MusProd outperforms baseline model CMT in correspondence both qualitatively and 

quantitatively. 
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