EXPLORING THE ANTI-DIABETIC AND ANTI-OXIDANT POTENTIAL OF DIFFERENT FRACTIONS OF AMORPHOPHALLUS PAEONIIFOLIUS LEAF EXTRACT THROUGH IN VITRO ASSAYS

Teasha Chakraborty¹, Rajesh Ghosh ^{2*}, Debanjana Mondal ³, Puja Saha ⁴, Swagatam Ghosh ⁵, Shreyoshi Sengupta ⁶, Nitish kumar Halder ⁷

 ¹Assistant Professor, Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, 700124, WB
 ^{2*}Assistant Professor, Sahajpath College of Pharmacy, Bira (Rail Station), Balisha More, Ashokenagar, North 24 Parganas, 743234, WB
 ³Assistant professor, Sanaka Educational Trust's Group of Institutions, Malandighi, Durgapur, 713212, WB
 ⁴Associate professor, Mata Gujri College of pharmacy, Mata Gujri University, Kishanganj, 855107. Bihar
 ⁵Amity University, New Town, Kadampukur, 700135 WB
 ^{6, 7} Assistant Professor, Ashok Niloy Prabhabasu College of Pharmacy, Lakshmikantapur, South 24 Pgs, 743336 WB

> *Corresponding Author E- Mail – rajeshghosh336@gmail.com

ABSTRACT

AIMS AND OBJECTIVES: - Diabetes mellitus is a metabolic disorder characterized by persistent high blood glucose level. The global incidence of DM is about 22.9 million. Thus the present study evaluated the antidiabetic activity of different fractions (Chloroform, Methanol and Water) of the leaves of *Amorphophallus paeoniifolius D*. by using *in vitro* assays.

MATERIALS AND METHODS: - *In vitro* methods like α -Amylase and α -Glucosidase inhibition assays were performed to determine antidiabetic activity. For the antioxidant activity, DPPH free radical scavenging activity and H₂O₂ scavenging activity were also performed on each fraction of *Amorphophallus paeoniifolius*.

^{2*}Assistant Professor, Sahajpath College of Pharmacy, Bira (Rail Station), Balisha More, Ashokenagar, North 24 Parganas, 743234, WB

RESULTS: - In *in vitro* assays for anti-diabetic activity, α -amylase inhibition assay and α -glucosidase inhibition assay were performed. In case of both the assays the Acarbose was taken as the standard drug and was treated as the positive control. For α -amylase inhibition assay, the IC50 value of Acarbose was found to be 97.495±16.94 µg/ml. For α -glucosidase inhibition assay, the IC50 value of Acarbose was found to be 103.789±23.73µg/ml. The IC50 value of Ascorbic acid was found to be 19.105±7.9 µg/ml in DPPH Antioxidant Activity. The chloroform, methanol and water extract of *Amorphophallus paeoniifolius* have also shown significant activity against the standard drug like that of acarbose and ascorbic acid.

CONCLUSION: - *Amorphophallus paeoniifolius possess* inhibition effect on the two enzymes and also shown anti-oxidant effect. The findings offer valuable insights into the pharmacological actions of this plant in relation to diabetes.

Keywords: Antidiabetic, Anti-oxidant, *Amorphophallus paeoniifolius*, α -Amylase, α -Glucosidase, DPPH, H₂O₂ scavenging assay.

INTRODUCTION

Blood sugar (glucose) levels are unusually excessive in people with diabetes mellitus because the body does not create enough insulin or respond to it correctly. A condition known as diabetes mellitus is characterized by high blood sugar levels. Among the negative consequences of diabetes are increased thirst and urination, as well as the possibility of weight loss even if the patient is not making an effort. Diabetes impairs nerve function and results in sensory issues.^[1]

Diabetes raises the risk of heart attack, stroke, chronic kidney disease, and eyesight loss by damaging blood vessels. The blood vessels, nerves, eyes, and kidneys are among the numerous major long-term issues that people with diabetes mellitus experience. In 2017, type 2 diabetes impacted around 462 million people, or 6.28% of the global population (4.4% of people aged 15–49, 15% of people aged 50–69, and 22% of people aged 70+). This translates to a prevalence rate of 6059 cases per 100,000. ^[2,3] Diabetes alone is the ninth greatest cause of death, accounting for over 1 million fatalities annually. By 2030, the prevalence of type 2 diabetes is expected to climb to 7079 cases per 100,000 people worldwide, representing a steady increase in cases in every part of the world. According to the National Institute for Health and Care Excellence (NICE), typical blood sugar levels for most healthy people are as follows: ^{.[4,5]}

Between 4.0 to 5.4 mmol/L (72 to 99 mg/dL) when fasting

Up to 7.8 mmol/L (140 mg/dL) 2 hours after eating. ^[6]

The tuberous plant Amorphophallus paeoniifolius (Dennst.), which belongs to the Areaceae family, is frequently employed in Indian tribal and Ayurvedic medicines. Elephant foot yam is the usual English name for this plant, and "Oal" is the Bengali name. The plant is a member of the order Alismatales and the phylum Magnoliophyta. Every year, they generate one or two big leaves that can reach a height of two meters. ^[7, 8] The enormous underground tuber, which can weigh up to 25 kg, is where the leaves grow. It develops with purple corm inflorescence during the rainy season.

This hardy plant thrives in tropical climates with rich, well-drained soil that is humid and protected. The plant has been used extensively as traditional medicine for a variety of conditions, including arthralgia, elephantiasis, tumors, inflammations, hemorrhoids, hemorrhages, bronchitis, asthma, anorexia, dyspepsia, flatulence, colic, constipation, helminthiasis, hepatopathy, splenopathy, amenorrhea, dysmenorrhea, fatigue, anemia, and general weakness^{. [9, 10, 11]}

MATERIALS:-

Chemicals :- Chloroform, Methanol, Distilled Water, α-Amylase, α-Glucosidase, Phosphate Buffer Solution (pH-6.8), 2,2-diphenyl-1-picryl- hydrazyl-hydrate (DPPH), L-Ascorbic Acid, Hydrogen Peroxide

Equipment: - Hot Water Bath, UV Spectrophotometer, Micropipette- 10, 100, 1000 µl, Centrifuge, Vortex Spinner, Digital Balance

METHODS

Collection of plant materials and preparation of extract of different fraction of *Amorphophallus paeoniifolius* D. leaves. ^[12, 13, 25]

The leaves of Amorphophallus paeoniifolius D. were collected from the locality of district North 24 Parganas, West Bengal in the month of August. Around 2 kg of the fresh leaves were collected along with the stalks. Some of them preserved for herbarium. The collected leaves were allowed to dry avoiding direct sunlight. These were shade dried to maintain a temperature of below 55°C in order to preserve the phytochemical constituents of the leaves. The leaves were kept moisture free and allowed to dry until they become brown in color and brittle. After drying of the leaves they were grinded using laboratory mill maintaining a temperature below 55°C and were converted into fine powder ready for extraction. 1. The powder was weighed and transferred in a 1000 ml conical flask and defatting was done by immersing the ground leaves in sufficient Petroleum ether to remove the non-polar compounds from the powdered material. 2. The first extraction was done with Chloroform by adding sufficient quantity of Chloroform so that the powder is completely dissolved in it. 3. This mixture was allowed to stand under dark conditions for a period of 72 hours, a process called maceration.4. After that filtration was done to separate the chloroform extract by carefully pressing the marc. 5. The filtrate (chloroform extract) was made to evaporate firstly in open air followed by heating on water bath at a temperature of 55-60°C. 6.After complete drying a semi-solid to dry residue was obtained which was immediately transferred to eppendorf tubes and stored at freezing temperature of about 4-8°C. 7. The marc which was left behind after filtration was again dissolved in methanol and followed by water and the same process was repeated as mentioned in steps 3.

In Vitro Anti-diabetic Assays:-

α- Amylase Inhibition Assay:-^[14, 15, 16]

Principle: The delay in glucose absorption caused by blocking enzymes that hydrolyze carbohydrates, such as pancreatic amylase delay carbohydrate digestion and protract overall carbohydrate digestion time, resulting in the reduction in glucose absorption rate and consequently dulling the postprandial plasma glucose rise.

Hence this assay is performed in vitro with the test compound to check its efficacy.

Methods: Stock solutions of the leaf extract with Chloroform, Methanol and Water was dissolved in Phosphate Buffer Solution of pH 6.8. The concentration of the stock solutions were 25, 50, 100, 150, 200, 250 and 300 μ g/ml respectively. The stock solution of the standard drug Acarbose (500 mg in 50 ml PBS) was prepared in Phosphate Buffer Solution (pH 6.9). Inhibition of porcine α -amylase activity was determined using dinitrosalicylic acid. The leaf extract at various concentration or Acarbose (100 μ l of 2 to 20 mg/ml) was added to 100 μ l of α -amylase (1 U/ml) and 200 μ l of phosphate buffer solution (pH 6.9). The samples were pre-incubated at 25 °C for 10 min, and 200 μ l of 1 % starch prepared in phosphate buffer solution (pH 6.9) was added.

The reaction mixtures were incubated at 25 °C for 10 min. The reactions were stopped by incubating the mixture in a boiling water bath for 5 min after adding 1 ml of dinitrosalicylic acid (DNS). The reaction mixtures were cooled to room temperature and absorbance was measured in a UV spectrophotometer at 540 nm. Percentage of inhibition of enzyme activity was calculated as

% Inhibition = $[(A_{540}^{Control} - A_{540}^{Test})/A_{540}] \times 100$

Wherein A $_{540}$ ^{Control} is absorbance at 540 nm in control sample without the leaf extract and A $_{540}$ ^{Test} is absorbance at 540 nm in treatment with leaf extract

α -Glucosidase Inhibition Assay:- [17,18]

Principle: The enzyme α -glucosidase, which is membrane-bound and found in the small intestine's epithelium, speeds up the breakdown of oligosaccharides and disaccharides into simple glucose, which is then absorbed and released into the bloodstream. Delaying the breakdown of carbohydrates can lower blood glucose levels by inhibiting the α -glucosidase enzyme.

Methods: Phosphate buffer solution (pH 6.9) was used for generating leaf extracts of various solvents at varied concentrations (25, 50, 100, 150, 200, 250, and 300 μ g/mL). Ten microliters of the α -glucosidase enzyme solution (1 U/mL) were then added, and the mixture was incubated for 20 minutes at 37 °C. After 20 minutes, 20 μ L of 1 M pNPG (substrate) was added to initiate the reaction, and the mixture was incubated for 30 minutes. 50 μ L of 0.1 N Na2CO3 was added to stop the reaction, and a UV spectrophotometer was used to detect the final absorbance at 405 nm. As a positive control, several quantities of acarbose (13, 25, 50, 100, 200, and 300 μ g/mL) were employed.

Enzyme activity was calculated as:

% Inhibition = $[(A_{540}^{Control} - A_{540}^{Test})/A_{540}] \times 100$

Wherein A $_{540}$ ^{Control} is absorbance at 540 nm in control sample without the leaf extract and A $_{540}$ ^{Test} is absorbance at 540 nm in treatment with leaf extract

In vitro Antioxidant Activity: - [^{19]}

DPPH (2, 2-*diphenyl-1-picrylhydrazyl*) free radical scavenging assay:- ^[20,21,26]

50 μ L of sample solution of various concentrations (50, 100, 150, 200, 250, 300 and 350 μ g/mL) were mixed with 50 μ L of methanolic solution of DPPH (1000 μ l).

The reaction mixture was incubated at 37°C for 1 h in the dark. The free radical scavenging potential of the extracts were expressed as the disappearance of the initial purple color. The absorbance of the reaction mixture was recorded at 517 nm using UV–Visible spectrophotometer. Ascorbic acid was used as the positive control.

DPPH scavenging capacity was calculated by using the following formula:

Scavenging Activity (%) = $[(Absorbance^{Control} - Absorbance^{Test})/Absorbance^{Control}] \times 100$ Where A ^{control}: absorbance of the control solution; A ^{sample}: absorbance of the extract.

A linear regression analysis was used to calculate the IC50 (minimum inhibitory

Concentration) value (μ g/mL). The lower the IC50, the higher the antioxidant power. H_2O_2 Scavenging Assay:- ^[22,23]

0.1 mL of extracts (50, 100, 150, 200, 250, 300 and 350 μ g/ mL) was transferred into the test tubes and their volume was made up to 2.4 mL with phosphate buffer (pH 7.4) followed by the addition of 0.6 mL of H2O2 solution (0.43 mM). The reaction mixture was vortexed and after 10 min of reaction time, its absorbance was measured at 230 nm. Ascorbic acid was used as the positive control. The ability of the extracts to scavenge the H2O2 was calculated using the following equation:

H2O2 scavenging activity percentage = $[(A0 - A_1)/A_0] \times 100$ where: A0 = Absorbance of control, A1 = Absorbance of sample

STATISTICAL ANALYSIS^[24]

Statistical analysis of the data was performed using Graph Pad Prism Software Version 5. The data was analysed using one-way ANOVA parametric test followed by Tukey's multiple comparison test that compares all columns of data among themselves and Dunnet test that compares all columns of data with the control column respectively as per the requirement of the tests. Also in some cases unpaired t test was performed. The value p<0.05 is statistically significant. [*p<0.05, **p<0.001 and ***p<0.0001]

ALPHA AMYLASE INHIBITION ASSAY								
Standard Acarbo	ose % Inhi	bition		Interpolated IC50	Average IC50			
Concentration (µg/ml)				Value (µg/ml)	Value			
	·			_				
	Set 1	Set 2	Set 3					
0	0.000	0.000	0.000					
10	18.750	16.183	12.149					
20	22.410	19.883	14.862	97.495±16.94	NIL			
40	29.060	21.009	16.249					
60	38.740	33.479	25.112					
80	47.270	42.129	36.789					
Water extract	% Inhibiti	on		Interpolated IC50	Average IC50			
Concentration (µg/ml)				Value (µg/ml)	Value			
	Set 1	Set 2	Set 3					
0	0	0	0					

RESULT:-

40	14.986	11.672	8.112	125.040±18.10	
60	25.824	19.293	12.118		
80	31.649	27.116	21.094	145.249±17.50	144.602±17.81
100	39.118	32.087	28.994		
120	48.349	43.245	39.461	163.518±17.83	
Methanolic extract	% Inhibitio	on		Interpolated IC50	Average IC50
Concentration (µg/ml)				Value (µg/ml)	Value
	1				
	Set 1	Set 2	Set 3		
0	0	0	0		
40	12.329	9.213	7.591	131.754±18.15	
60	21.989	17.684	14.998		
80	29.684	25.129	21.921	145.219±18.12	148.347±17.85
100	37.496	32.118	27.649		
120	46.273	44.198	37.623	168.068±17.30	
Chloroformextract% InhibitionInterpolated IC50Concentration (ug/ml)Value (ug/ml)					
Chloroform extract Concentration (µg/ml)	% Inhibitio	on		Interpolated IC50 Value (ug/ml)	Average IC50 Value
ChloroformextractConcentration (µg/ml)	% Inhibitio	on Set 2	Set 3	Interpolated IC50 Value (µg/ml)	Average IC50 Value
Chloroform extract Concentration (µg/ml)	% Inhibitio	Set 2	Set 3	Interpolated IC50 Value (µg/ml)	Average IC50 Value
ChloroformextractConcentration (µg/ml)040	% Inhibitio Set 1 0 10.281	Set 2 0 6.744	Set 3 0 2.189	Interpolated IC50 Value (µg/ml)	Average IC50 Value
ChloroformextractConcentration (µg/ml)04060	% Inhibitio Set 1 0 10.281 19.288	Set 2 0 6.744 15.849	Set 3 0 2.189 11.567	Interpolated IC50 Value (μg/ml) 142.898±17.79	Average IC50 Value
Chloroform extract Concentration (µg/ml) 0 40 60 80	% Inhibition Set 1 0 10.281 19.288 27.246	Set 2 0 6.744 15.849 21.998	Set 3 0 2.189 11.567 18.349	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63	Average IC50 Value 162.479±17.74
ChloroformextractConcentration (µg/ml)0406080100	% Inhibition Set 1 0 10.281 19.288 27.246 34.098	Set 2 0 6.744 15.849 21.998 31.761	Set 3 0 2.189 11.567 18.349 27.228	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82	Average IC50 Value 162.479±17.74
ChloroformextractConcentration (µg/ml)0406080100	% Inhibition Set 1 0 10.281 19.288 27.246 34.098	Set 2 0 6.744 15.849 21.998 31.761	Set 3 0 2.189 11.567 18.349 27.228	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82	Average IC50 Value 162.479±17.74
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982	Set 2 0 6.744 15.849 21.998 31.761 37.655	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82	Average IC50 Value 162.479±17.74
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982	Set 2 0 6.744 15.849 21.998 31.761 37.655	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82	Average IC50 Value 162.479±17.74
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION 4 se % Inhibition	Set 2 0 6.744 15.849 21.998 31.761 37.655	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50	Average IC50 Value 162.479±17.74 Average IC50
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml)	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition	Set 2 0 6.744 15.849 21.998 31.761 37.655	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (μg/ml)	Average IC50 Value 162.479±17.74 Average IC50 Value
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml)	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition Set 1	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY oition	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (μg/ml)	Average IC50 Value 162.479±17.74 Average IC50 Value
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml)	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition Set 1 0	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY Dition Set 2 0	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (μg/ml)	Average IC50 Value 162.479±17.74 Average IC50 Value
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml)	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition Set 1 0 0 41.889	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY oition Set 2 0 36.216	Set 3 0 2.189 11.567 18.349 27.228 32.724	Interpolated IC50 Value (μg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (μg/ml)	Average IC50 Value 162.479±17.74 Average IC50 Value
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml) 0 15 30	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION 4 se % Inhit Set 1 0 41.889 49.908	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY oition Set 2 0 36.216 42.119	Set 3 0 2.189 11.567 18.349 27.228 32.724 Set 3 0 30.189 37.162	Interpolated IC50 Value (µg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (µg/ml) 103.789±23.73	Average IC50 Value 162.479±17.74 Average IC50 Value NIL
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml) 0 15 30 60	% Inhibitio Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition Set 1 0 41.889 49.908 55.261 55.261	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY oition Set 2 0 36.216 49.984	Set 3 0 2.189 11.567 18.349 27.228 32.724 Set 3 0 30.189 37.162 41.762	Interpolated IC50 Value (µg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (µg/ml) 103.789±23.73	Average IC50 Value 162.479±17.74 Average IC50 Value NIL
Chloroform extract Concentration (µg/ml) 0 40 60 80 100 120 ALPHA GLUCOSIDASE IN Standard Acarbo Concentration (µg/ml) 0 15 30 60 120	% Inhibition Set 1 0 10.281 19.288 27.246 34.098 42.982 HIBITION A se % Inhibition Set 1 0 41.889 49.908 55.261 71.396	Set 2 0 6.744 15.849 21.998 31.761 37.655 ASSAY oition Set 2 0 36.216 42.119 49.984 62.493	Set 3 0 2.189 11.567 18.349 27.228 32.724 Set 3 0 30.189 37.162 41.762 57.118	Interpolated IC50 Value (µg/ml) 142.898±17.79 160.762±17.63 183.778±17.82 Interpolated IC50 Value (µg/ml) 103.789±23.73	Average IC50 Value 162.479±17.74 Average IC50 Value NIL

Water extract Concentration	% Inhibition Inte			Interpolated I	C50	Average	IC50
(µg/ml)				Value (µg/ml)		Value	
	Set 1	Set 2	Set 3				
0	0	0	0				
60	38.247	31.992	28.776	111.001±27			
90	56.184	51.294	47.662			124.004±2	25.87
120	69.249	63.492	59.772	124.953±25.87			
200	72.821	70.005	67.614				
250	79.000	74.856	70.198	136.058±24.74			
Methanolic extract	% Inhih	ition		Internolated I	C50	Average	IC50
Concentration (ug/ml)		luon		Value (ug/ml)		Value	1000
	Set 1	Set 2	Set 3			, muc	
0	0	0	0				
60	31.791	27.442	21.994	135.390 ± 24.33			
90	49.776	42.189	38.661				
120	54.213	50.943	47.843			150.605±2	23.363
200	66.846	62.749	58.219				
250	72.493	69.843	63.549	166.982±22.26			
Chloroform extract	% Inhibition Interpolated IC5			C50	Average	IC50	
Concentration (µg/ml)	S-4 1	S .4 2	Cat 2	value (µg/ml)	<u> </u>	value	1 722
	Set I	Set 2	Set 3			1/3./5/±.	21.733
	0	0	0	155 251 22 05			
00	40.502	21.049	19.402 31.824	155.551±22.95			
120	40.392 50.601	<i>A6</i> 780	A1 346	172 79/1+21 78			
200	50.091	5/ 120	50/08	1/2.//+_21./0			
250	68 226	63 713	58 227	193 126+20 47			
250	00.220	05.715	30.227	175.120±20.47			

Table 1: Alpha Amylase & Alpha Glucosidase Inhibition Assay- Percentage Inhibition and IC50 Value

DPPH ANTIOXIDANT ACTIVITY							
Ascorbic Acid standard % I Concentration (µg/ml)		Inhibitio	n	Interpolated IC50 Values	erage IC50 Value		
	Set	: 1	Set 2	Set 3		19.105±7.97	
10	30.	925	29.174	26.355			
25	57.	162	54.652	52.191	13.971±7.67		
50	73.	484	68.301	73.644			
75	83.	191	85.124	83.087	20.540±7.89		
100	87.	046	86.350	89.066			
125	88.	939	88.027	88.494	22.594±8.36		
150	89.	355	89.307	90.157			
Water ext Concentration (µg/n	ract 1l)	%	Inhibitio	n	Interpolated IC50 Values	erage IC50 Value	
Water ext Concentration (µg/n	ract nl) Set	% 1	Inhibitio Set 2	m Set 3	Interpolated IC50 Values	erage IC50 Value	
Water ext Concentration (µg/n	ract nl) Set 30.1	% 1 178	Inhibitio Set 2 27.533	Set 3 30.497	Interpolated IC50 Values	erage IC50 Value	
Water ext Concentration (µg/n 50 100	ract nl) Set 30.1 35.5	% 1 178 544	Inhibitio Set 2 27.533 33.231	Set 3 30.497 35.903	Interpolated IC50 Values	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150	ract nl) 30.1 35.5 44.1	% 1 178 544 156	Set 2 27.533 33.231 42.102	Set 3 30.497 35.903 44.533	Interpolated IC50 Values	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200	ract nl) 30.1 35.5 44.1 54.0	% 1 1 1 1 78 5 4 1 5 6 1 1 1 1 1 1 1 1 1 1	Inhibitio Set 2 27.533 33.231 42.102 52.398	Set 3 30.497 35.903 44.533 54.392	Interpolated IC50 Values 173.570±17.84 183.429±18.48	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200 250	ract nl) 30.1 35.5 44.1 54.0 65.0	% 1 178 544 156 002 098	Inhibitio Set 2 27.533 33.231 42.102 52.398 63.847	Set 3 30.497 35.903 44.533 54.392 65.534	Interpolated IC50 Values 173.570±17.84 183.429±18.48	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200 250 300	ract nl) 30.1 35.5 44.1 54.0 65.0 72.0	% 1 178 544 156 002 098 586	Set 2 27.533 33.231 42.102 52.398 63.847 71.727	Set 3 30.497 35.903 44.533 54.392 65.534 72.950	Interpolated IC50 Values 173.570±17.84 183.429±18.48 171.569±17.84	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200 250 300 350	ract nl) 30.1 35.5 44.1 54.0 65.0 72.0 81.1	% 1 178 544 156 002 098 586 107	Set 2 27.533 33.231 42.102 52.398 63.847 71.727 80.508	Set 3 30.497 35.903 44.533 54.392 65.534 72.950 81.424	Interpolated IC50 Values 173.570±17.84 183.429±18.48 171.569±17.84	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200 250 300 350	ract nl) 30.1 35.5 44.1 54.0 65.0 72.6 81.1	% 1 178 544 156 002 098 586 107	Inhibitio Set 2 27.533 33.231 42.102 52.398 63.847 71.727 80.508	Set 3 30.497 35.903 44.533 54.392 65.534 72.950 81.424	Interpolated IC50 Values 173.570±17.84 183.429±18.48 171.569±17.84	erage IC50 Value 176.189±18.053	
Water ext Concentration (µg/n 50 100 150 200 250 300 350	ract nl) 30.1 35.5 44.1 54.(65.(72.6 81.1	% 1 178 544 156 002 098 586 107	Inhibitio Set 2 27.533 33.231 42.102 52.398 63.847 71.727 80.508 Inhibitio	Set 3 30.497 35.903 44.533 54.392 65.534 72.950 81.424	Interpolated IC50 Values 173.570±17.84 183.429±18.48 171.569±17.84 Values	erage IC50 Value 176.189±18.053 erage IC50 Value	

	Set 1	Set 2	Set 3		217.358±19.343
50	17.763	14.695	18.194	215.048±19.08	
100	27.799	25.171	28.123	-	
150	37.002	34.673	37.411	224.013±19.88	
200	49.505	47.728	49.887	-	
250	58.013	56.599	58.412	213.014±19.07	
300	65.566	64.424	65.967	-	
350	74.318	73.476	74.683	-	
Concentration (ug/m	ract	Inhibitio	m	rpolated 0 Values	erage IC50 Value
				o values	207 110 16 00
	Set 1	Set 2	Set 3	201151 15 01	287.118±16.08
50	16.374	1 13.360	16.808	284.464±15.84	
100	20.43	7 17.580	20.880	205 500 16 62	_
150	30.352	2 27.839	31.190	295.588±16.63	
200	37.072	2 34.835	37.480		
250	45.598	3 43.635	6 46.075	281.304±15.77	
300	48.37	5 46.610	48.830		
350	62.85	61.630	63.281		
H ₂ O ₂ FREE RADIC	AL SCA	VENGIN	NG ASSAY	-	
Standard Asco	bic %	Inhibitio	n	rpolated IC50 Value	es erage IC50 Value
Acid Concentrat	tion				
(µg/ml)	0-4-1	S-4.2	S-4 2		_
10	Set 1	Set 2	Set 3	14.004.7.00	_
10	41.904	4 42.034	50.894	14.804±7.96	
25	52.294	4 48.353	53.327	10,500, 0,22	_
50	69.54	67.598	3 70.277	19.789±8.33	17.358±8.
75	/9.6/:	6.21/	81.132	15 401 0.24	21
100	89.848	3 93.743	90.458	17.481±8.34	
125	98.31	97.886	97.867		
150	98.50	5 99.606	99.203		

Water extra	ct % I	nhibition		rpolated IC50 Values	erage IC50 Value
Concentration (µg/ml)					
	Set 1	Set 2	Set 3		142.796±14.95
50	33.614	36.730	34.352	148.571±15.29	
100	37.575	40.667	38.466		
150	54.242	56.308	54.770	134.374±14.69	
200	57.878	59.850	58.410		
250	69.134	70.623	69.739	145.443±14.88	
300	75.389	76.590	74.456		
Methanolic extra	ct % I	nhibition		rpolated IC50 Values	erage IC50 Value
Concentration (µg/ml)					
	Set 1	Set 2	Set 3		192.417+16.32
50	23.982	27 304	24 596	197 602+16 59	1)2.11/210.02
100	23.762	35 9/3	24.570	177.002±10.37	
100	27.164	40.004	33.020	194 094 15 96	
150	37.104	40.004	50.226	184.984±13.80	
200	49.033	59.640	57.075	104 665 16 51	
250	56.623	58.649	57.075	194.665±16.51	
300	73.852	75.201	74.348		
	() (T	1 •1 •4•			
Concentration (ug/ml)		nnibition		rpolated 1C50 values	erage IC50 value
Concentration (µg/m)	Set 1	Set 2	Set 3		293.954±14.82
50	13.160	17.112	14.430	300.221±15.26	
100	21.471	24.984	22.162	· -	
150	22.900	26.310	23.540	284.745±14.21	
200	32.510	35.550	33.211		
250	40.779	43.484	41.438	296.898±14.99	
300	53.528	55.666	54.102		

Table -2: DPPH Antioxidant Activity & H2O2 Free Radical Scavenging Assay-Percentage Inhibition and Average IC50 Value

Figure 1: Alpha Amylase Inhibition Assay-Percentage inhibition by Acarbose. IC50= 97.495±16.94 µg/ml

Figure-2 IC₅₀ comparison of water, methanol, and chloroform fraction of test drug against Acarbose

All values are taken for triplicate analysis. The values of one-way ANOVA followed by Dunnet Post Test are statistically significant at *p<0.05 and **p<0.001

Figure 3: Alpha Glucosidase Inhibition Assay-Percentage inhibition by Acarbose. IC50= $103.789\pm23.7 \mu g/ml$

Figure-4 IC₅₀ comparison of water, methanol, and chloroform fraction of test drug against Acarbose.

All values are taken for triplicate analysis. The p values of one-way ANOVA followed by Dunnet Post Test are statistically significant at **p<0.001 and *** p<0.0001

Figure-5 DPPH Antioxidant Activity Percentage inhibition by Ascorbic Acid. IC50=19.105±7.97µg/ml

All values are taken for triplicate analysis. The p values of one-way ANOVA followed by Dunnet Post Test are statistically significant at *** p<0.0001

Figure-7 H₂O₂ Free Radical Scavenging Activity-Percentage inhibition by Ascorbic Acid. IC50= $17.358\pm8.21 \ \mu g/ml$

Figure-8 IC50 comparison of water, methanol and chloroform fraction of test drug against Ascorbic acid for H₂O₂ assay.

All values are taken for triplicate analysis. The p values of one-way ANOVA followed by Dunnet Post Test are statistically significant at *** p<0.0001

DISCUSSION

The leaves of Amorphophallus paeoniifolius possess a wide variety of phytochemicals like flavonoids, alkaloids, glycosides, saponin, inulin, protein and carbohydrates. Different plants have long been used for different pharmacological uses. The corm of this plant already has significant anti-diabetic activity. In in vitro assays for anti-diabetic activity, a-amylase inhibition assay and α - glucosidase inhibition assay were performed. Table 1 shows α -Amylase & α- Glucosidase inhibition Assay- Percentage Inhibition and IC50 Value. In case of both the assays the Acarbose was taken as the standard drug and was treated as the positive control. For α -amylase inhibition assay, the IC50 value of Acarbose was found to be 97.495±16.94 µg/ml. [Figure 1] The Water, Methanolic and the Chloroform Extracts exhibited IC50 values at 144.60±17.81 µg/ml, 148.35±17.85 µg/ml and 162.48±17.74 µg/ml respectively. [Figure 2] For α-glucosidase inhibition assay, the IC50 value of Acarbose was found to be 103.789±23.73µg/ml. [Figure 3] The Water, Methanolic and the Chloroform Extracts exhibited IC50 values at 124.004±25.87 µg/ml, 150.60±23.36 µg/ml and 173.76±21.73 µg/ml respectively. [Figure 4] It can be conferred that the water extract has the lowest IC50 value followed by the methanolic extract in both the assays. The water extracts showed significant anti-diabetic activity followed by the methanolic extract. Since oxidative stress is an enormous drawback for diabetic patients, some in vitro free radical scavenging assays have also been performed with the test drug. This includes DPPH Antioxidant Activity and H₂O₂ Free Radical Scavenging activity. Table 2 shows DPPH Antioxidant Activity & H2O2 Free Radical Scavenging Assay- Percentage Inhibition and Average IC50 Value. Ascorbic acid was used as the standard and the positive control in both cases. The IC50 value of Ascorbic acid was found to be 19.105±7.9 µg/ml in DPPH Antioxidant Activity. [Figure 5] The water, methanolic and chloroform extract of the test drug exhibited the IC50 values at 176.19±18.05 µg/ml, 217.36±19.34 µg/ml and 287.12±16.08 µg/ml respectively for DPPH Antioxidant Activity. [Figure 6] The IC50 value of Ascorbic acid was found to be 17.358±8.21 µg/ml in H₂O₂ Free Radical Scavenging Activity. [Figure 7] The water, methanolic and chloroform extract of the test drug exhibited the IC50 values at 142.79±14.95 μ g/ml, 192.41±16.32 μ g/ml and 293.95±14.82 μ g/ml respectively for H₂O₂ Free Radical Scavenging Activity. [Figure 8] It can be conferred that the water extract has the lowest IC50 value followed by the methanolic extract in both the assays. The water extract showed significant antioxidant activity followed by the methanolic extract.

CONCLUSION

From this study it can be concluded that *Amorphophallus paeoniifolius* leaf possess antidiabetic property particularly the Aqueous Fraction and Methanolic Fraction of the Extract in *in vitro* models. The Chloroform Fraction does not possess significant anti-diabetic activity. The Phytochemical Screening exhibits the presence of a wide variety of phytochemicals which are responsible for such activity. It also possesses antioxidant activity which is an essential factor in management of Diabetes Mellitus. The Aqueous fraction followed by the Methanolic fraction exhibited a decent amount of antioxidant activity. After this study we want to conclude that among these three fractions the Water Fraction is the superior in all aspects and the dose can be optimized keeping in mind the safety and efficacy level of the fraction. The findings offer valuable insights into the pharmacological actions of this plant in relation to diabetes.

Funding: - Self-funded.

REFERENCES:-

- 1. Boutari C, Pappas PD, Theodoridis TD, Vavilis D. Humanin and diabetes mellitus: A review of in vitro and in vivo studies. World journal of diabetes. 2022 Mar 3; 13(3):213.
- 2. El Adaouia Taleb R, Djebli N, Chenini H, Sahin H, Kolayli S. In vivo and in vitro antidiabetic activity of ethanolic propolis extract. Journal of food biochemistry. 2020 Jul; 44(7):e13267.
- 3. Surbala L, Singh CB, Devi RV, Singh OJ. Rutaecarpine exhibits anti-diabetic potential in high fat diet–multiple low dose streptozotocin induced type 2 diabetic mice and in vitro by modulating hepatic glucose homeostasis. Journal of pharmacological sciences. 2020 Aug 1;143(4):307-14.
- 4. Aminizadeh M, Kavoosi G, Kariminia A. In vitro and ex vivo anti-diabetic and antihyperglycemic properties of Zataria multiflora essential oil. Molecular Biology Reports. 2020 Oct; 47:7805-13.
- Rhizlan A, Amine E, Ouassou H, Elrherabi A, Berraaouan A, Legssyer A, Ziyyat A, Mekhfi H, Bnouham M. In vitro study on antioxidant and antiglycation activities, and molecular docking of Moroccan medicinal plants for diabetes. Current Traditional Medicine. 2024 Dec 1; 10(7):201-14.
- 6. Sharma D, Tekade RK, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020 Sep 1; 76:153235.
- 7. Nedunchezhiyan M, Kumar JS, Sahoo B. Effect of weed control on growth, dry-matter production and partitioning in elephant-foot yam [Amorphophallus paeoniifolius (Dennst.) Nicolson]. Current Horticulture. 2021;9(1):40-4.
- 8. Dey YN, Mahor S, Sharma D, Wanjari MM, Kumar D, Sharma J. Possible role of serotonin in the gastrokinetic activity of Amorphophallus paeoniifolius tuber. Phytomedicine Plus. 2022 May 1;2(2):100275.
- Rahman SS, Muhsin MM, Karim MR, Zubaer M, Rahman MH, Rouf SM. Proximate composition, phytochemical screening and anti-hyperglycemic effect of elephant foot yam (Amorphophallus paeoniifolius) tuber on alloxan induced diabetic rats. Progress in Nutrition. 2021 Feb 7;23(2):1-9.
- Rahman SS, Salauddin HM, Rahman M, Muhsin MM, Rouf SM. Nutritional composition and antidiabetic effect of germinated endosperm (Borassus flabellifer), tuber (Amorphophallus paeoniifolius) and their combined impact on rats. Biochemistry and Biophysics Reports. 2021 Mar 1; 25:100917.

- 11. Singh B, Kaur S, Kaur A. Bioactive Chemicals and Biological Activities of Elephant Foot Yam (Amorphophallus paeoniifolius (Dennst.) Nicolson). In Bioactive Compounds in the Storage Organs of Plants 2023 Jul 29 (pp. 1-23). Cham: Springer Nature Switzerland.
- 12. Devi S, Kashyap S. Effects of aqueous extract of Amorphophallus paeoniifolius tuber in treatment of experimental steatohepatitis. International Journal of Surgery. 2022 Apr 1; 100:106313.
- Shastry RA, Karur N, Habbu P, Madagundi SD, Patil BS, Kulkarni VH. Pharmacognostical Evaluation and In vitro Cytotoxic Activity of Alcoholic and Aqueous Extracts of Corm of Amorphophallus paeoniifolius (Dennst). RGUHS Journal of Pharmaceutical Sciences. 2021;11(4).
- 14. Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Pessu B, Tonukari NJ. Phytochemical profile, antioxidant, α -amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α -amylase. Biophysical chemistry. 2021 Feb 1; 269:106529.
- 15. Kifle ZD, Enyew EF. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (melianthaceae). Journal of Evidence-Based Integrative Medicine. 2020 Jul 24; 25:2515690X20935827.
- 16. Esfandi R, Seidu I, Willmore W, Tsopmo A. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. Journal of Food Biochemistry. 2022 Apr;46(4):e13762.
- 17. Sakulkeo O, Wattanapiromsakul C, Pitakbut T, Dej-Adisai S. Alpha-Glucosidase Inhibition and Molecular Docking of Isolated Compounds from Traditional Thai Medicinal Plant, Neuropeltis racemosa Wall. Molecules. 2022 Jan 19;27(3):639.
- Daou M, Elnaker NA, Ochsenkühn MA, Amin SA, Yousef AF, Yousef LF. In vitro αglucosidase inhibitory activity of Tamarix nilotica shoot extracts and fractions. Plos one. 2022 Mar 14;17(3):e0264969.
- 19. Li C, Wu W, Tilley M, Chen R, Sun XS, Wang W, Li Y. In vitro antioxidant properties of wheat bran extracts and their inhibitory effects on collagenase, elastase, and hyaluronidase. ACS Food Science & Technology. 2024 Jul 15;4(8):1960-6.
- 20. Akgül H, Mohammed FS, Kına E, Uysal İ, Sevindik M, Doğan M. Total Antioxidant and Oxidant Status and DPPH Free radical activity of Euphorbia eriophora. Turkish Journal of Agriculture-Food Science and Technology. 2022 Feb 28;10(2):272-5.
- Sihag S, Pal A, Saharan V. Antioxidant properties and free radicals scavenging activities of pomegranate (Punica granatum L.) peels: An in-vitro study. Biocatalysis and Agricultural Biotechnology. 2022 Jul 1;42:102368.
- 22. Hussen EM, Endalew SA. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complementary Medicine and Therapies. 2023 May 4;23(1):146.
- 23. Suseela V, Sushmita L, Bharatkumar R, Nirmaladevi R. Free Radical Scavenging potential of different extracts of Tabebuia roseo-alba (Ridl) Sand leaves. Research Journal of Pharmacy and Technology. 2021;14(9):4801-7.

- 24. Dubey A, Basu A, Ghosh R, De A. Anti-Pyretic Effects Of Aqueous Extract Of Anogeissus Latifolia Roxb In Albino Wistar Rats. Latin American Journal of Pharmacy: A Life Science Journal. 2023 Sep 11;42 (5):1-9.
- 25. Ghosh R, Bhowmik R, Nath R, Roy R. Curcumin: A Systematic Review. International Journal of Pharmaceutical Sciences Review and Research. 2021; 70(2).
- 26. Trinh PC, Thao LT, Ha HT, Nguyen T. DPPH-scavenging and antimicrobial activities of Asteraceae medicinal plants on uropathogenic bacteria. Evidence-Based Complementary and Alternative Medicine. 2020;2020 (1):7807026.