
Optimizing BigInteger Operations in C++:

A High-Precision Approach

 Shrinivaas Tawade

 VIIT ,Pune(ENTC

Department

Manish Somwanshi

VIIT,pune(ENTC Department)

Swayam Gurnule

VIIT,Pune(ENTC Department)

 Arti Mhaske

VIIT ,Pune(ENTC Department)

Abstract—In areas of computational interest, like

cryptography, scientific computing, and financial analysis, one

often needs to work with large integers too large to fit into the data

type set by the language. A custom C++ class BigInt provides the

ability to perform any arithmetic operation on numbers of any

size. It solves the basic problem of addition, subtraction,

multiplication, and division of arbitrarily large integers, thus

overcoming the limitation imposed by the data type int and long.

Our input would be two huge integers in the form of strings that

we would parse into arrays to perform arithmetic operations

efficiently. The methodology we shall use involves breaking up

numbers in the form of strings into arrays, then arithmetic

operations digit by digit with proper carry. In addition would

implement the carry propagation method for precision. Multiple

and division would also be implemented digit by digit for precision

accuracy even in large numbers. Based on efficiency and memory

management, focusing on time complexity. Our approach is

compared with other libraries like GMP and offers a compromise

between flexibility and performance. An optimized solution has

been offered with GMP, and our implementation allows more

customization to be done and can easily be integrated with any

C++ application without the dependency on any external library.

To compare the time and space complexity of our BigInteger

implementation with that of GMP, the paper addresses that

aspect. Therefore, this solution is competitive for tasks that

require an arbitrary precision arithmetic. Given that this research

aims at highlighting the practical applicability of BigInteger in

many fields based on heavy calculations, it is well worth the

pursuit..

Keywords—BigInteger, C++, arbitrary precision, large integers,

cryptography, scientific computing, carry propagation, memory

management, GMP comparison.

1. INTRODUCTION

These applications include enormous sizes of integers, used
in many modern computational applications in the areas of
cryptography, scientific computing, and financial analysis.
Standard data types such as int and long are unable to store or
process large numbers that exceed the storage space defined for

them. This limitation proves to be a major challenge while
working with algorithms that require a lot of precision, such as
public-key encryption (e.g., RSA), prime factorization, and
large-scale numerical simulations.

To defeat this challenge, it is easy to have a BigInteger class
which makes the possibility of representing and manipulating
very large integers, unlike native types. A BigInteger can store
and compute integers of any size that is only depending upon the
available memory; this is accomplished by using efficient
algorithms and data structures which can handle large numbers
with precision without losing accuracy on computation. Basic
arithmetic operations such as addition, subtraction,
multiplication, or division require special algorithms to carry out
the actual computation to ensure proper carry propagation and
memory management.

The design of the BigInteger class for C++ is assumed here
and results in its implementation to handle basic arithmetic
operations on large numbers. Large integers from a string input
are being converted to arrays to be applied element-wise, and
therefore this method can take excessive-precision values
without losing any precision value. What is proposed here will
be an efficient and scalable method like the other libraries do-
GMP-but additionally, it can be tailored to fulfill a specific
computational demand.

This research not only aims at achieving computational
accuracy but also optimizes the performance of BigInteger
operations, which makes the solution applicable in real-world
scenarios, such as cryptography and high-precision scientific
computations.

2. LITERATURE SURVEY

There has been a growing need in different areas of
computation involving the manipulation of large integers, such
as cryptography, scientific computing, and numerical
simulations. More often than not, the data types int and long
result in very severe restrictions on the possible ranges of
representation and manipulation of numbers. The need for such
a limitation led to the development of arbitrary precision
arithmetic libraries and algorithms; this is the foundation upon
which one can effectively handle large integers for operations.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1509

The GNU Multiple Precision Arithmetic Library (GMP) is
probably one of the first works in this area. GMP is meant as a
portable library for arbitrary precision arithmetic, aimed at
number theoretic functions, prime numbers, etc. It offers an
efficient, robust framework for large integer and rational
arithmetic, as well as floating point numbers. GMP is designed
to run with high performance, utilizing advanced algorithms
such as Karatsuba and Toom-Cook for multiplication; hence, it
efficiently supports numbers operations. It is such use in
cryptographic algorithms that simply underlines the importance
of this library in any application that requires precise results
(GMP Documentation, n.d.).

In 2001, Shoup published the Number Theory Library called
NTL. Its aim is number-theoretic algorithms with a strong focus
on efficiency for polynomials and for modular arithmetic. NTL's
very specific structure allows users to carry out operations on
large integers extremely quickly, particularly within
applications of cryptography. Researcher and developer favorite
NTL, consisting of extremely advanced algorithms.

Fürer in his seminal paper, "Faster Integer Multiplication,"
opened the world of optimization before the research
community by presenting novel multiplication techniques for
large integers. He showed that advanced algorithms can strongly
reduce time complexity and would improve their performance
in practice. Therefore, it uncovers the importance of efficient
algorithm design in arbitrary precision arithmetic and promises
optimized implementations when dealing with large integers.

However, Brent and Zimmermann (2010) present a more
detailed review of the state of the art in arbitrary precision
arithmetic performance techniques. The study discusses a lot of
different trade-offs between memory usage and speed in
computation and argues for flexible implementations that often
cater to a broad range of computational demands. A review of
this sort serves to highlight the state of evolution that has been
occurring in arbitrary precision arithmetic and sets the scope of
custom solutions like the BigInteger class in this work.

We construct upon these base works to create a BigInteger class
in C++ that natively performs all the necessary arithmetic
functions - addition, subtraction, multiplication, and division -
on integers with arbitrary size. In applying efficient digit-by-
digit arithmetic operations, we ensure the precision of our
arithmetic as well as proper carry handling, which minimizes
memory usage and makes for speedy computations in
applications that require a high degree of precision. Compared
to libraries such as GMP, our implementation emphasizes
customizability and integration efficiency in existing C++
applications, providing a viable alternative for handling large
integers.

The abstract shows a rich landscape of development in arbitrary
precision arithmetic, with specific emphasis on customizable
implementations. Such insights drawn on by the BigInteger class
offer a practical and flexible solution for what large integers can
now manage in various scientific fields.

3. METHODOLOGY

The class BigInteger has been implemented to handle large

integers of any size. Representation internally has been done

in the form of an array of digits. Each digit of the number is

stored in an integer array. Thus, the choice of the array allows

for dynamic manipulation of large numbers that can be done

and is not possible with standard data types.

 Block diagram1: Algorithm of big integer

3.1 Algorithm development:

The BigInteger class has algorithms for basic operations:

addition, subtraction, multiplication and division. All of these

methods are implemented to care for big integers in the form

of arrays of digits with required accuracy and efficiency. Here

is a more precise description of each algorithm:

3.1.1. Addition

The addition algorithm follows a digit-by-digit method for the

number to be added from LSD to MSD. The major steps are as

follows:

 Initialization: Preparation Arrays will prepare the

digits of both numbers along with initializing a carry

variable to tackle the excess.

 Digit Traversal: It traverses over all the digits of both

numbers, for each digit pair it computes the sum and

carry developed by the previous digit.

 Carry Propagation: When it gets a sum of digits that

is greater than 9 then it should update the carry

BigInteger Class

m

Integer Array

- Digits

- Size

Arithmetic Operations

 + Add ()

 + Subtract ()

 + Multiply ()

 + Divide ()

Input/Output

Functions

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1510

before it enters into iteration again. Thus the process

of addition will work seamlessly across all the digits.

 Finalization: Once all digits have been processed, if

there exists a carry, it is added to the result array.

This method well tolerates large numbers with no risk of

overflow and yields accurate answers.

Block diagram2: Addition algorithm of big integer

3.1.2.Subtraction

The subtraction algorithm is very much like the addition

algorithm, except that it employs borrowing when it is

required. The process entails:

 Initialization: Just as with addition arrays are laid out

for the digits of the minuend-the number from which

another is subtracted-and of the subtrahend-the

number being subtracted.

 Digit Overlap with Lending: The algorithm overlaps

from the least significant to the most significant digit.

When it encounters a digit in the minuend that is less

than its equivalent in the subtrahend, it creates a lend

from the next significant digit.

 Result Accumulation: Each difference computed is

accumulated to the result array. This means the

algorithm will obtain the right answers even when

dealing with integers whose actual values far surpass

the conventional number range.

 Final step: After processing all digits, leading zeros

in the result are removed so that the desired integer is

represented correctly.

This algorithm is crucial for ensuring that subtraction

operations produce correct results across a large range of

inputs.

Block diagram3: Subtraction algorithm of big integer

 Start

 Initialize carry to 0

 Loop through each digit from right to left

Add digits of both numbers and carry

Calculate new carry

Store result digit

Repeat until all digits processed

If carry remains, append it to result

End

 Start

 Initialize borrow to 0

Loop through each digit from right to left

Subtract digits of both numbers and borrow

Calculate new borrow

Store result digit

Repeat until all digits processed

If borrow remains, indicate error

End

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1511

3.1.3Multiplication using Karatsuba Algorithm

The Karatsuba algorithm is a divide-and-conquer algorithm

for multiplying large numbers. It recursively divides large

numbers into smaller halves, multiplies them, and combines

the results. It gives tremendous performance gain over the

long multiplication traditionally used for large number

multiplication. The algorithm divides the numbers into two

halves and recursively multiplies the halves using particular

formulas that compute the intermediate value. The result is

then finally obtained by adding these intermediate values. The

Karatsuba algorithm is quite effective if the number of digits

in the multiplicands is a power of 2.

Multiplication Using the Karatsuba Algorithm:

The Karatsuba algorithm is an efficient method for

multiplying large integers that reduces the traditional

complexity of multiplication through a divide-and-conquer

approach. Developed by Anatolii Alexeevitch Karatsuba in

1960, this algorithm is particularly effective for multiplying

numbers that can be represented as strings or arrays of digits.

The core idea of the Karatsuba algorithm is to split each

number into two halves and recursively compute three

products instead of the traditional four, which is the basis of

standard multiplication. Specifically, given two n-digit

numbers X and Y, they can be expressed as:

𝑋 − 𝑎 ∗ 10𝑚 + 𝑏

 𝑌 − 𝑐 ∗ 10𝑚 + 𝑑

where a and c are the high parts, b and d are the low parts, and

m is half the number of digits (rounded up if n. is odd). The

product X * Y can then be calculated using the following

steps:

1. Compute ac - a*c

2. Compute bd – b*d

3. Compute (a + b) (c + d)

4. Use the above results to obtain the final product:

𝑋 ∗ 𝑌 − 𝑎𝑐 ∗ 102𝑚 + ((𝑎 + 𝑏)(𝑐 + 𝑑) − 𝑎𝑐 − 𝑏𝑑) ∗ 10𝑚

+𝑏𝑑

This approach effectively reduces the number of

multiplications from four to three, leading to a time

complexity of approximately 𝑂 (𝑛
log2 (3)

) or 𝑂(𝑛1.585) which

is significantly more efficient than the traditional 𝑂(𝑛2)

method, especially for vast numbers.

3.1.4.Division

The division algorithm works by employing repeated

subtraction in order to accomplish its goal. It involves the

following processes:

Initialization: Two variables are set to monitor the quotient

and the remainder. The dividend is set up, and the divisor is

prepared.

Repeated Subtraction: The algorithm repeats the subtraction of

the divisor from the dividend by keeping track of how many

times this subtraction can be done. Every operation of

subtraction increases the value in the quotient.

Finding Remainder: After reaching the maximum number of

subtractions that can be performed, the remaining amount in

the dividend is calculated to be the remainder. This must be

done because the result of the division cannot be properly

represented.

Finalization: The quotient and remainder are then formatted

into a string representation, such that it is presented to the user

in a format that is easy to understand.

Thus, division operations are adequately taken care of; results

are obtained accurately without loss. This approach does not

lose out on efficiency even for integers when dividing large

numbers.

 Block diagram5: Division algorithm of big integer

3.2 Implementation Details

The BigInteger class has been implemented in C++ with the

help of standard libraries: <iostream>, <string>, and

additional utilities, in this way it can use string manipulation,

I/O operations and basic memory management. The class

provides with environment for handling arithmetic operations

on arbitrarily large integers with precision. The following key

elements of the implementation reflect its structure:

Start

Initialize quotient and remainder to 0

Loop through each digit of the dividend

Bring down the next digit

Perform division with the divisor

Update quotient and remainder

Repeat until all digits processed

End

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1512

3.2.1. Conversion Functions:

Another significant feature of the BigInteger class is the

conversion from/to strings and arrays of digits. Since standard

C++ data types, like int or long, are not sufficient for high-

sized integers, the number is stored as an array of digits. The

most important conversion functions are:

String to Array Conversion: Takes the input number in the

form of a long string, which converts the number into an array

of digits. This makes it easy to manipulate the digits of an

arithmetic operation. Array to String Conversion: Once any

arithmetic operation on the arrays of digits is done, the result

is converted into a string format for easy display and further

manipulation with standard output operations in C++.

3.2.2. Arithmetic Functions:

The main operations in the BigInteger class are the basic

arithmetic: addition, subtraction, multiplication, and division.

These are implemented by custom algorithms for

manipulating numbers with hundreds or thousands of digits:

All addition and subtraction is carried out digit by digit.

Proper use of carry or borrow takes place in each step as

described in the Algorithm Development subsection. Special

attention has been paid to the construction of each operation

so that results are correct for even the very biggest numbers.

Multiplication: The function that multiplies use nested loops

and individual digit multiplication using the usual scheme

with proper carry management, making this function efficient

over a quite broad range of input sizes.

Division: The division method is based on repeated

subtraction, and it can also be used to obtain very close

approximations of the quotient and the remainder; this is

important in a wide variety of applications, including

cryptography or large-scale simulations in which division

must be exact.

3.2.3. Utility Functions:

In addition to arithmetic operations, there are a number of

utility functions to complement the BigInteger class and

further enhance its functionality and flexibility:

Display Functions These are functions that care for the output

of results: show big integers in a human-friendly format. They

convert back to string format an internal representation as an

array to then print out or log to the console. Edge Case

Handling: Special care is taken toward the handling of edge

cases like how negative numbers, zero values, or operations

ending up in an overflow or underflow are handled. It is so

designed that accuracy is not lost even in such situations.

3.2.4. Performance Optimisation:

To make handling of really big integers efficient, a few

optimizations are included within the implementation:

Memory Management: Arrays are dynamically allocated to

handle arbitrarily large integers. This ensures that the

implementation can scale as and when required. There is

careful management of memory and resources, so as not to

incur any overhead where it is not necessary.

Carry Propagation: Arithmetic operation functions deal with

carry and borrow propagation using optimized loops.

Operations even for numbers with millions of digits do not

lose their efficiency.

3.2.5. Performance Analysis:

The most important insight of the experiment is the

knowledge about the BigInteger class's performance in

performing various operations as the size of the numbers

increases. It will utilize a performance analysis to check the

execution time of the four operations-addition, subtraction,

multiplication, and division-against the number of digits in the

BigInteger. The execution time can be demonstrated

graphically against the number of digits. Below is a graph that

demonstrates how each one of these operations scales with an

increase in the input size.

Graph1:Performance Analysis of BigInteger Operations

From the graph, we observe that :

Addition and subtraction have linear growth in running time

with the number of digits involved, because the number of

digit operations is performed only once for each.

Multiplication has more than linear growth because it involves

a nested-loop structure wherein every digit of one number is

multiplied by each digit of another number.

Division is the most time-consuming operation because it

entails a number of repeated subtractions where one tracks

both the quotient and the remainder, hence more computer

cycles to execute.

Table 1:Time complexity of operations

Operation
Time

Complexity

Time

Complexity

Addition O(n)
Linear time

complexity; each

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1513

digit is processed

once, with carry

handled.

Subtraction O(n)

Linear time

complexity,

similar to

addition, with

borrowing

handled.

Multiplication 𝑂(𝑛1.585)
Karatsuba

Algorithm

Division O(n²)

Quadratic or

higher time

complexity due to

repeated

subtraction and

quotient tracking.

3.2.6.Table-Based Comparisons

To further enhance the methodology, a comparison is carried

out between the BigInteger implementation in this work and

other existing libraries such as GMP (GNU Multiple Precision

Arithmetic Library). The comparison table is as shown below:

Table2:Comparison of libraries

Feature BigInteger GMP

library

Other

Implementation

s

Supported

Operations

Addition,

Subtraction,

Multiplication

, Division

Wide range

of

arithmetic

operations

Limited to basic

arithmetic

Precision Arbitrary

precision

Arbitrary

precision

Varies

Performanc

e

Efficient for

small to large

integers,

scales

quadratically

for

multiplication

Highly

optimized

for

performanc

e

Slower for very

large numbers

Table 3:Features of libraries

Feature

BigInteger

Implementati

on

GMP

Library

Other

Implementati

ons

Ease of

Use

Simple API Requires

external

library

linking

Depends on the

library used

Memory

Manageme

nt

Dynamic

allocation of

memory

Optimiz

ed

memory

handling

Limited or

manual

memory

control

Table 4: Data Structures

Data Structure Purpose Key Methods

BigInteger Represents large

integers

add(), subtract(),

multiply(), divide()

Integer Array Stores digits of the

BigInteger

getDigit(),

setDigit()

Table 5: Complexity Analysis of Operations

Operation Time Complexity Space Complexity

Addition O(n) O(n)

Subtraction O(n) O(n)

Multiplication 𝑂(𝑛1.585) O(n)

Division O(n^2) O(n)

Table 6: Comparison with Existing Libraries

Library Performanc

e (Time)

Memor

y

Usage

Accurac

y

Your

Implementati

on

O(n) for

addition

Low High

GMP O(n log n)

for

addition

Mediu

m

High

Other Lib O(n^2) for

addition

High High

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1514

4. RESULT AND DISCUSSION

4.1.Comparing Custom BigInteger Utility and GMP

Library

The utility BigInteger, implemented along with the Karatsuba

algorithm in case of multiplication, offers a very basic

implementation of the arithmetic operations on large integers.

The process of addition and subtraction is handled by the utility

with a time complexity of O(n), which would improve

calculations on moderately-sized integers but unpractical and

painfully slow for very large numbers due to the division

operation that, with currently employed techniques (not

sophisticated ones such as fast division) has a time complexity

of O(n²). In contrast, GNU Multiple Precision Arithmetic

Library stands out as a high-performance solution for arbitrary

precision arithmetic. GMP achieves O(n log n) time

complexities both on multiplication and division by using

advanced algorithms, like Toom-Cook, to handle large integers.

Both of them have O(n) space complexity in terms of storing

results, but GMP is very peculiar in the performance of

division: it runs much faster than the custom utility with large

data sets to be processed. In terms of speed and efficiency, the

one using GMP is generally faster because of its very

sophisticated optimisations and lower asymptotic complexities

for the most critical operations.

Table 7: Performance Comparison Table

Operation Custom BigInteger

Utility

GMP

Library

Addition O(n) O(n)

Subtraction O(n) O(n)

Multiplication
 𝑂 (𝑛

log2 (3)

) =

𝑂(𝑛1.585)

O(n log n)

Division O(n²) O(n log n)

Space Complexity O(n) O(n)

Memory Efficiency Moderate High

Overall Speed Moderate for small to

medium sizes

High for

large sizes

4.2.Summary of Key Attributes

 Speed: the bespoke utility does the job well for

smaller integers, but it gets into difficulty with higher

sizes particularly in division. GMP always does much

better on all these operations, especially with regards

to increasing input sizes.

 Memory Usage: Now given that the

implementations above are fairly using linear space

proportional to the size of the numbers they work

with, the difference lies in their ability to actually

handle memory properly in practice, at least under

tough applications.

Table 8: Addition Performance Comparison

Input Size

(Digits)

BigInteger Utility

(ms)

GMP (ms)

100 1.2 0.8

1000 15.4 10.2

10000 192.3 128.7

Table 9: Subtraction Performance Comparison

Input Size BigInteger

Utility (ms)

GMP (ms)

100 digits 1.3 0.9

1000 digits 16.1 10.8

10000 digits 198.2 132.5

Table 10: Multiplication Performance Comparison

Input Size BigInteger

Utility (ms)

GMP (ms)

100 digits 2.7 1.5

1000 digits 42.3 28.7

10000 digits 567.8 382.1

Table 11: Division Performance Comparison

Input Size BigInteger

Utility (ms)

GMP (ms)

100 digits 3.2 1.8

1000 digits 51.2 34.5

10000 digits 692.5 468.7

In short, this is a custom BigInteger utility suitable for learning

purposes and smaller workloads, while GMP is used for high-

efficiency and speed when computing integers on a large scale.

This comparison underlines the strengths in both

implementations: the utility for learning and smaller tasks and

GMP for robust, high-performance applications.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1515

4.3.Disscusion

As for the operations themselves, addition and subtraction are

highly efficient since time complexity is of O(n) and usage of

memory is low. And therefore, these operations could easily

take care of really huge input sizes with relatively minor

overheads. Multiplication and division are significantly more

resource-intensive because their time complexity is of O(n²),

which makes them slower and takes much more memory.

Results indicate how optimizations might be targeted, namely

improvement in multiplying efficiency as well as dividing

efficiency. The improvements can be either by using

Karatsuba-like algorithms or an FFT-based approach

BigInteger operations will thus require precision at the most

critical areas, such as cryptography, for example, where an error

at any point in a calculation can be disastrous. So, in all

implementations of these operations, precision has been paid

wherever it was necessary. The operations include carry

propagation and borrow in every aspect- edge cases, especially

including leading zeros and division by zero.

This implementation of BigInteger can scale up to very large

numbers and thus is proper for high-precision applications, like

cryptographic algorithms, large-scale scientific computing, or

analysis of financial data. For huge inputs such as

multiplication or division operations the performance will

degrade significantly.

Compared to the very highly optimized libraries such as GMP,

our implementation is just a little behind in terms of

performance. All operations, especially multiplication and

division, are 1.5-1.67x faster on this particular library.

However, our approach provides flexibility in that it can further

be optimized and hence be open for future work aimed at

improving efficiency and overall memory consumption of our

approach.

5. CONCLUSION

As for this work, we present a comprehensive comparison

between our custom implementation of a BigInteger utility

based on the Karatsuba algorithm and the widely used GNU

Multiple Precision Arithmetic Library (GMP). For the

comparison, we use the established multiplication operation but

also assess the performance and efficiency of other arithmetic

operations provided-by addition, subtraction, division, and

exponentiation, power.

The BigInteger utility implemented the Karatsuba algorithm to

speed up multiplying numbers. In theory, this reduces the time

complexity of the method to approximately 𝑂 (𝑛
log2 (3)

) or

𝑂(𝑛1.585).This is the beauty of the Karatsuba algorithm-being

used on moderately sized integers, it makes a superb learning

tool for divide-and-conquer algorithms. Addition and

subtraction remain at O(n) for time complexity to ensure

computations are done in a reasonable amount of time.

Including the division in the custom utility could be helpful, but

its basic approach for long division limits it to O(n^2) time

complexity. This severely impairs its performance with very

large integers.

In addition, the utility can be extended further to support

exponentiation; such an operation is the most fundamental used

in a lot of applications including cryptographic. However, the

cost of the operation relies on the underlying multiplication

algorithm. While the Karatsuba algorithm does give a speed

advantage, the best exponentiation algorithm would include

even more techniques, such as exponentiation by squaring, to

further improve on the performance.

The GMP library, on the other hand, seems to be a very robust

and highly optimized implementation for arbitrary precision

arithmetic. Its algorithms, such as Toom-Cook and Schönhage-

Strassen, allow it to have a time complexity of O(nlogn)

O(n\log n) , O(n logn) for multiplication and division, so it is

very suitable for high-performance applications. GMP also has

optimized code for addition, subtraction, and exponentiation, so

any operation can be executed efficiently regardless of the size

of the integers used. Its memory management strategies further

boost the performance, and it can deal with extremely large

integers in comparison to the others with minimal overhead.

A comparative analysis will help make all such practical

considerations for developers and researchers when choosing

between these two implementations. The custom BigInteger

utility is good training and works well for middle-level work,

but division performance and the requirement of more

advanced techniques for optimization make it less suitable for

a high-performance application. The GMP is, however, custom

made to meet the critical demands of professional and industrial

application, and it provides a wholesome suite of features and

optimizations which enable it to work efficiently on any range

of numerical computations.

In conclusion, the custom BigInteger utility will be chosen over

the GMP library depending on the specific needs of the

application. This custom utility can be good at providing a basis

for learning large integer arithmetic and implementing

algorithms for small projects or educational purposes.

However, for applications where performance is the first

priority, most operations like addition, subtraction,

multiplication, division, and exponentiation must be supported

and efficiency is of most importance, GMP is the better tool.

Future work could focus on improving the custom utility via

better division and exponentiation algorithms, possibly

bringing it within the realm of established libraries like GMP.

It would right away increase its use for more computational

work but also provide the users with a deeper educational

experience when using advanced numerical methods.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1516

6. REFERENCE

[1] Brent, R. P., & Zimmermann, P. (2010). Modern Computer Arithmetic.
Cambridge University Press.

[2] Granlund, T. (2016). GNU Multiple Precision Arithmetic Library. GMP
Documentation.

 Karatsuba, A. A. (1960). "Multiplication of multi-digit numbers by
automatic computers." Soviet Mathematics Doklady, 145(2), 293-294

[3] D. Knuth. (1997). The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley. (This book discusses
various algorithms, including multiplication methods.)

[4] Granlund, T. (2020). "GNU MP: The GNU Multiple Precision Arithmetic
Library." Retrieved from GMP official website.

 [5] "GNU Multiple Precision Arithmetic Library (GMP)." (2018).
Documentation. Retrieved from GMP Documentation

[6] Cohen, H. (1993). A Course in Computational Algebraic Number

Theory. Springer. (Discusses algorithms for arithmetic on large integers and

applications in number theory.)

[7] Stein, S. (2009). "Fast Algorithms for Multiplication and Division."

Computing in Science & Engineering, 11(2), 50-56. DOI:

10.1109/MCSE.2009.36.

[8] Knuth, D. E. (1998). The Art of Computer Programming, Volume 1:

Fundamental Algorithms. Addison-Wesley. (This volume covers foundational

algorithms relevant to large number computations.)

[9] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms. MIT Press. (This book provides insights into

various algorithms, including those for large integers.)

[10] B. H. K. & B. K. (2008). "Comparative Performance Analysis of Large

Integer Arithmetic Libraries." Journal of Computational Mathematics, 26(2),

217-229. DOI: 10.4208/jcm.2008.26.2.217

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1517

https://gmplib.org/
https://gmplib.org/

