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Abstract—In areas of computational interest, like 

cryptography, scientific computing, and financial analysis, one 

often needs to work with large integers too large to fit into the data 

type set by the language. A custom C++ class BigInt provides the 

ability to perform any arithmetic operation on numbers of any 

size. It solves the basic problem of addition, subtraction, 

multiplication, and division of arbitrarily large integers, thus 

overcoming the limitation imposed by the data type int and long. 

Our input would be two huge integers in the form of strings that 

we would parse into arrays to perform arithmetic operations 

efficiently. The methodology we shall use involves breaking up 

numbers in the form of strings into arrays, then arithmetic 

operations digit by digit with proper carry. In addition would 

implement the carry propagation method for precision. Multiple 

and division would also be implemented digit by digit for precision 

accuracy even in large numbers. Based on efficiency and memory 

management, focusing on time complexity. Our approach is 

compared with other libraries like GMP and offers a compromise 

between flexibility and performance. An optimized solution has 

been offered with GMP, and our implementation allows more 

customization to be done and can easily be integrated with any 

C++ application without the dependency on any external library. 

To compare the time and space complexity of our BigInteger 

implementation with that of GMP, the paper addresses that 

aspect. Therefore, this solution is competitive for tasks that 

require an arbitrary precision arithmetic. Given that this research 

aims at highlighting the practical applicability of BigInteger in 

many fields based on heavy calculations, it is well worth the 

pursuit.. 

 

Keywords—BigInteger, C++, arbitrary precision, large integers, 

cryptography, scientific computing, carry propagation, memory 

management, GMP comparison. 

 

1. INTRODUCTION  

These applications include enormous sizes of integers, used 
in many modern computational applications in the areas of 
cryptography, scientific computing, and financial analysis. 
Standard data types such as int and long are unable to store or 
process large numbers that exceed the storage space defined for 

them. This limitation proves to be a major challenge while 
working with algorithms that require a lot of precision, such as 
public-key encryption (e.g., RSA), prime factorization, and 
large-scale numerical simulations. 

To defeat this challenge, it is easy to have a BigInteger class 
which makes the possibility of representing and manipulating 
very large integers, unlike native types. A BigInteger can store 
and compute integers of any size that is only depending upon the 
available memory; this is accomplished by using efficient 
algorithms and data structures which can handle large numbers 
with precision without losing accuracy on computation. Basic 
arithmetic operations such as addition, subtraction, 
multiplication, or division require special algorithms to carry out 
the actual computation to ensure proper carry propagation and 
memory management. 

The design of the BigInteger class for C++ is assumed here 
and results in its implementation to handle basic arithmetic 
operations on large numbers. Large integers from a string input 
are being converted to arrays to be applied element-wise, and 
therefore this method can take excessive-precision values 
without losing any precision value. What is proposed here will 
be an efficient and scalable method like the other libraries do-
GMP-but additionally, it can be tailored to fulfill a specific 
computational demand. 

This research not only aims at achieving computational 
accuracy but also optimizes the performance of BigInteger 
operations, which makes the solution applicable in real-world 
scenarios, such as cryptography and high-precision scientific 
computations. 

2. LITERATURE SURVEY 

There has been a growing need in different areas of 
computation involving the manipulation of large integers, such 
as cryptography, scientific computing, and numerical 
simulations. More often than not, the data types int and long 
result in very severe restrictions on the possible ranges of 
representation and manipulation of numbers. The need for such 
a limitation led to the development of arbitrary precision 
arithmetic libraries and algorithms; this is the foundation upon 
which one can effectively handle large integers for operations. 
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The GNU Multiple Precision Arithmetic Library (GMP) is 
probably one of the first works in this area. GMP is meant as a 
portable library for arbitrary precision arithmetic, aimed at 
number theoretic functions, prime numbers, etc. It offers an 
efficient, robust framework for large integer and rational 
arithmetic, as well as floating point numbers. GMP is designed 
to run with high performance, utilizing advanced algorithms 
such as Karatsuba and Toom-Cook for multiplication; hence, it 
efficiently supports numbers operations. It is such use in 
cryptographic algorithms that simply underlines the importance 
of this library in any application that requires precise results 
(GMP Documentation, n.d.). 
 
In 2001, Shoup published the Number Theory Library called 
NTL. Its aim is number-theoretic algorithms with a strong focus 
on efficiency for polynomials and for modular arithmetic. NTL's 
very specific structure allows users to carry out operations on 
large integers extremely quickly, particularly within 
applications of cryptography. Researcher and developer favorite 
NTL, consisting of extremely advanced algorithms. 
 
Fürer in his seminal paper, "Faster Integer Multiplication," 
opened the world of optimization before the research 
community by presenting novel multiplication techniques for 
large integers. He showed that advanced algorithms can strongly 
reduce time complexity and would improve their performance 
in practice. Therefore, it uncovers the importance of efficient 
algorithm design in arbitrary precision arithmetic and promises 
optimized implementations when dealing with large integers. 
 
However, Brent and Zimmermann (2010) present a more 
detailed review of the state of the art in arbitrary precision 
arithmetic performance techniques. The study discusses a lot of 
different trade-offs between memory usage and speed in 
computation and argues for flexible implementations that often 
cater to a broad range of computational demands. A review of 
this sort serves to highlight the state of evolution that has been 
occurring in arbitrary precision arithmetic and sets the scope of 
custom solutions like the BigInteger class in this work. 
 
We construct upon these base works to create a BigInteger class 
in C++ that natively performs all the necessary arithmetic 
functions - addition, subtraction, multiplication, and division - 
on integers with arbitrary size. In applying efficient digit-by-
digit arithmetic operations, we ensure the precision of our 
arithmetic as well as proper carry handling, which minimizes 
memory usage and makes for speedy computations in 
applications that require a high degree of precision. Compared 
to libraries such as GMP, our implementation emphasizes 
customizability and integration efficiency in existing C++ 
applications, providing a viable alternative for handling large 
integers. 
 
The abstract shows a rich landscape of development in arbitrary 
precision arithmetic, with specific emphasis on customizable 
implementations. Such insights drawn on by the BigInteger class 
offer a practical and flexible solution for what large integers can 
now manage in various scientific fields. 
 

3. METHODOLOGY 

The class BigInteger has been implemented to handle large 

integers of any size. Representation internally has been done 

in the form of an array of digits. Each digit of the number is 

stored in an integer array. Thus, the choice of the array allows 

for dynamic manipulation of large numbers that can be done 

and is not possible with standard data types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

                   Block diagram1: Algorithm of big integer 

 

 

3.1 Algorithm development: 

The BigInteger class has algorithms for basic operations: 

addition, subtraction, multiplication and division. All of these 

methods are implemented to care for big integers in the form 

of arrays of digits with required accuracy and efficiency. Here 

is a more precise description of each algorithm: 

 

3.1.1. Addition 

The addition algorithm follows a digit-by-digit method for the 

number to be added from LSD to MSD. The major steps are as 

follows: 

 Initialization: Preparation Arrays will prepare the 

digits of both numbers along with initializing a carry 

variable to tackle the excess. 

 Digit Traversal: It traverses over all the digits of both 

numbers, for each digit pair it computes the sum and 

carry developed by the previous digit. 

 Carry Propagation: When it gets a sum of digits that 

is greater than 9 then it should update the carry 

BigInteger Class 

 

m 

Integer Array 

- Digits 

- Size 

Arithmetic Operations 

              + Add () 

              + Subtract () 

              + Multiply () 

              + Divide () 

Input/Output  

Functions 
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before it enters into iteration again. Thus the process 

of addition will work seamlessly across all the digits. 

 Finalization: Once all digits have been processed, if 

there exists a carry, it is added to the result array. 

This method well tolerates large numbers with no risk of 

overflow and yields accurate answers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Block diagram2: Addition algorithm of big integer 

 

3.1.2.Subtraction 

The subtraction algorithm is very much like the addition 

algorithm, except that it employs borrowing when it is 

required. The process entails: 

 Initialization: Just as with addition arrays are laid out 

for the digits of the minuend-the number from which 

another is subtracted-and of the subtrahend-the 

number being subtracted.  

 Digit Overlap with Lending: The algorithm overlaps 

from the least significant to the most significant digit. 

When it encounters a digit in the minuend that is less 

than its equivalent in the subtrahend, it creates a lend 

from the next significant digit. 

 Result Accumulation: Each difference computed is 

accumulated to the result array. This means the 

algorithm will obtain the right answers even when 

dealing with integers whose actual values far surpass 

the conventional number range. 

 Final step: After processing all digits, leading zeros 

in the result are removed so that the desired integer is 

represented correctly. 

This algorithm is crucial for ensuring that subtraction 

operations produce correct results across a large range of 

inputs. 

 

                                    

 

 

 

 

 

 

                                    

 

 

                                    

 

 

 

 

                                    

 

 

 

 

                                    

 

 

 

 

 

 

                                    

 

 

 

 

 

 

 

 

 

 

 

 

Block diagram3: Subtraction algorithm of big integer 

 

                                   Start 

 

                         Initialize carry to 0 

 

     Loop through each digit from right to left 

 

Add digits of both numbers and carry 

Calculate new carry 

Store result digit 

Repeat until all digits processed 

If carry remains, append it to result 

End 

                                   Start 

 

                     Initialize borrow to 0 

 

Loop through each digit from right to left 

Subtract digits of both numbers and borrow 

Calculate new borrow 

Store result digit 

Repeat until all digits processed 

If borrow remains, indicate error 

End 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 10 (Oct) - 2024

http://ymerdigital.com

Page No:1511



3.1.3Multiplication using Karatsuba Algorithm 

The Karatsuba algorithm is a divide-and-conquer algorithm 

for multiplying large numbers. It recursively divides large 

numbers into smaller halves, multiplies them, and combines 

the results. It gives tremendous performance gain over the 

long multiplication traditionally used for large number 

multiplication. The algorithm divides the numbers into two 

halves and recursively multiplies the halves using particular 

formulas that compute the intermediate value. The result is 

then finally obtained by adding these intermediate values. The 

Karatsuba algorithm is quite effective if the number of digits 

in the multiplicands is a power of 2. 

 

Multiplication Using the Karatsuba Algorithm: 

The Karatsuba algorithm is an efficient method for 

multiplying large integers that reduces the traditional 

complexity of multiplication through a divide-and-conquer 

approach. Developed by Anatolii Alexeevitch Karatsuba in 

1960, this algorithm is particularly effective for multiplying 

numbers that can be represented as strings or arrays of digits. 

 

The core idea of the Karatsuba algorithm is to split each 

number into two halves and recursively compute three 

products instead of the traditional four, which is the basis of 

standard multiplication. Specifically, given two n-digit 

numbers X and Y, they can be expressed as: 

𝑋 − 𝑎 ∗ 10𝑚 + 𝑏 

                                     𝑌 − 𝑐 ∗ 10𝑚 + 𝑑 

where a and c are the high parts, b and d are the low parts, and 

m is half the number of digits (rounded up if n. is odd). The 

product X * Y can then be calculated using the following 

steps: 

 

1. Compute ac - a*c 

2. Compute bd – b*d 

3. Compute (a + b) (c + d) 

4. Use the above results to obtain the final product: 

𝑋 ∗ 𝑌 − 𝑎𝑐 ∗ 102𝑚 + ((𝑎 + 𝑏)(𝑐 + 𝑑) − 𝑎𝑐 − 𝑏𝑑) ∗ 10𝑚 

+𝑏𝑑 

 

This approach effectively reduces the number of 

multiplications from four to three, leading to a time 

complexity of approximately 𝑂 (𝑛
log2 (3)

) or  𝑂(𝑛1.585) which 

is significantly more efficient than the traditional 𝑂(𝑛2) 

method, especially for vast numbers. 

 

 

3.1.4.Division 

The division algorithm works by employing repeated 

subtraction in order to accomplish its goal. It involves the 

following processes: 

Initialization: Two variables are set to monitor the quotient 

and the remainder. The dividend is set up, and the divisor is 

prepared. 

Repeated Subtraction: The algorithm repeats the subtraction of 

the divisor from the dividend by keeping track of how many 

times this subtraction can be done. Every operation of 

subtraction increases the value in the quotient. 

Finding Remainder: After reaching the maximum number of 

subtractions that can be performed, the remaining amount in 

the dividend is calculated to be the remainder. This must be 

done because the result of the division cannot be properly 

represented. 

Finalization: The quotient and remainder are then formatted 

into a string representation, such that it is presented to the user 

in a format that is easy to understand. 

Thus, division operations are adequately taken care of; results 

are obtained accurately without loss. This approach does not 

lose out on efficiency even for integers when dividing large 

numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Block diagram5: Division algorithm of big integer 

 

3.2 Implementation Details 

 

The BigInteger class has been implemented in C++ with the 

help of standard libraries: <iostream>, <string>, and 

additional utilities, in this way it can use string manipulation, 

I/O operations and basic memory management. The class 

provides with environment for handling arithmetic operations 

on arbitrarily large integers with precision. The following key 

elements of the implementation reflect its structure: 

 

 

Start 

Initialize quotient and remainder to 0 

Loop through each digit of the dividend 

Bring down the next digit 

Perform division with the divisor 

Update quotient and remainder 

Repeat until all digits processed 

End 
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3.2.1. Conversion Functions: 

Another significant feature of the BigInteger class is the 

conversion from/to strings and arrays of digits. Since standard 

C++ data types, like int or long, are not sufficient for high-

sized integers, the number is stored as an array of digits. The 

most important conversion functions are: 

String to Array Conversion: Takes the input number in the 

form of a long string, which converts the number into an array 

of digits. This makes it easy to manipulate the digits of an 

arithmetic operation. Array to String Conversion: Once any 

arithmetic operation on the arrays of digits is done, the result 

is converted into a string format for easy display and further 

manipulation with standard output operations in C++. 

 

3.2.2. Arithmetic Functions: 

The main operations in the BigInteger class are the basic 

arithmetic: addition, subtraction, multiplication, and division. 

These are implemented by custom algorithms for 

manipulating numbers with hundreds or thousands of digits: 

All addition and subtraction is carried out digit by digit. 

Proper use of carry or borrow takes place in each step as 

described in the Algorithm Development subsection. Special 

attention has been paid to the construction of each operation 

so that results are correct for even the very biggest numbers. 

Multiplication: The function that multiplies use nested loops 

and individual digit multiplication using the usual scheme 

with proper carry management, making this function efficient 

over a quite broad range of input sizes. 

Division: The division method is based on repeated 

subtraction, and it can also be used to obtain very close 

approximations of the quotient and the remainder; this is 

important in a wide variety of applications, including 

cryptography or large-scale simulations in which division 

must be exact. 

 

3.2.3. Utility Functions: 

In addition to arithmetic operations, there are a number of 

utility functions to complement the BigInteger class and 

further enhance its functionality and flexibility: 

Display Functions These are functions that care for the output 

of results: show big integers in a human-friendly format. They 

convert back to string format an internal representation as an 

array to then print out or log to the console. Edge Case 

Handling: Special care is taken toward the handling of edge 

cases like how negative numbers, zero values, or operations 

ending up in an overflow or underflow are handled. It is so 

designed that accuracy is not lost even in such situations. 

 

3.2.4. Performance Optimisation: 

To make handling of really big integers efficient, a few 

optimizations are included within the implementation: 

Memory Management: Arrays are dynamically allocated to 

handle arbitrarily large integers. This ensures that the 

implementation can scale as and when required. There is 

careful management of memory and resources, so as not to 

incur any overhead where it is not necessary. 

Carry Propagation: Arithmetic operation functions deal with 

carry and borrow propagation using optimized loops. 

Operations even for numbers with millions of digits do not 

lose their efficiency. 

 

3.2.5. Performance Analysis: 

The most important insight of the experiment is the 

knowledge about the BigInteger class's performance in 

performing various operations as the size of the numbers 

increases. It will utilize a performance analysis to check the 

execution time of the four operations-addition, subtraction, 

multiplication, and division-against the number of digits in the 

BigInteger. The execution time can be demonstrated 

graphically against the number of digits. Below is a graph that 

demonstrates how each one of these operations scales with an 

increase in the input size. 

 

 
Graph1:Performance Analysis of BigInteger Operations 

 

 

From the graph, we observe that : 

Addition and subtraction have linear growth in running time 

with the number of digits involved, because the number of 

digit operations is performed only once for each. 

 

Multiplication has more than linear growth because it involves     

a nested-loop structure wherein every digit of one number is 

multiplied by each digit of another number. 

Division is the most time-consuming operation because it 

entails a number of repeated subtractions where one tracks 

both the quotient and the remainder, hence more computer 

cycles to execute. 

 

 

Table 1:Time complexity of operations 

      

Operation 
Time 

Complexity 
 

Time 

Complexity 
 

Addition O(n) 
Linear time 

complexity; each 
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digit is processed 

once, with carry 

handled. 

Subtraction O(n) 

Linear time 

complexity, 

similar to 

addition, with 

borrowing 

handled. 

Multiplication 𝑂(𝑛1.585)  
Karatsuba 

Algorithm 

Division O(n²) 

Quadratic or 

higher time 

complexity due to 

repeated 

subtraction and 

quotient tracking. 

 

 

3.2.6.Table-Based Comparisons 

To further enhance the methodology, a comparison is carried 

out between the BigInteger implementation in this work and 

other existing libraries such as GMP (GNU Multiple Precision 

Arithmetic Library). The comparison table is as shown below: 

 

 

Table2:Comparison of libraries 

Feature BigInteger GMP 

library 

Other 

Implementation

s 

Supported 

Operations 

Addition, 

Subtraction, 

Multiplication

, Division 

Wide range 

of 

arithmetic 

operations 

Limited to basic 

arithmetic 

Precision Arbitrary 

precision 

Arbitrary 

precision 

Varies 

Performanc

e 

Efficient for 

small to large 

integers, 

scales 

quadratically 

for 

multiplication 

Highly 

optimized 

for 

performanc

e 

Slower for very 

large numbers 

 

  

         

Table 3:Features of libraries 

 

 

Feature 

 

BigInteger 

Implementati

on 
 

 

 

GMP 

Library 

 

 

Other 

Implementati

ons 

Ease of 

Use 

Simple API Requires 

external 

library 

linking 

Depends on the 

library used 

Memory 

Manageme

nt 

Dynamic 

allocation of 

memory 

Optimiz

ed 

memory 

handling 

Limited or 

manual 

memory 

control 

 

 

Table 4: Data Structures   

Data Structure Purpose Key Methods 

BigInteger Represents large 

integers 

add(), subtract(), 

multiply(), divide() 

Integer Array Stores digits of the 

BigInteger 

getDigit(), 

setDigit() 

 

Table 5: Complexity Analysis  of Operations 

Operation Time Complexity Space Complexity 

Addition O(n) O(n) 

Subtraction O(n) O(n) 

Multiplication 𝑂(𝑛1.585)  O(n) 

Division O(n^2) O(n) 

 

Table 6: Comparison with Existing Libraries 

Library Performanc

e (Time) 

Memor

y 

Usage 

Accurac

y 

Your 

Implementati

on 

O(n) for 

addition 

Low High 

GMP O(n log n) 

for 

addition 

Mediu

m 

High 

Other Lib O(n^2) for 

addition 

High High 
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4. RESULT AND DISCUSSION 

4.1.Comparing Custom BigInteger Utility and GMP 

Library 

 

The utility BigInteger, implemented along with the Karatsuba 

algorithm in case of multiplication, offers a very basic 

implementation of the arithmetic operations on large integers. 

The process of addition and subtraction is handled by the utility 

with a time complexity of O(n), which would improve 

calculations on moderately-sized integers but unpractical and 

painfully slow for very large numbers due to the division 

operation that, with currently employed techniques (not 

sophisticated ones such as fast division) has a time complexity 

of O(n²). In contrast, GNU Multiple Precision Arithmetic 

Library stands out as a high-performance solution for arbitrary 

precision arithmetic. GMP achieves O(n log n) time 

complexities both on multiplication and division by using 

advanced algorithms, like Toom-Cook, to handle large integers. 

Both of them have O(n) space complexity in terms of storing 

results, but GMP is very peculiar in the performance of 

division: it runs much faster than the custom utility with large 

data sets to be processed. In terms of speed and efficiency, the 

one using GMP is generally faster because of its very 

sophisticated optimisations and lower asymptotic complexities 

for the most critical operations. 

 

 

Table 7: Performance Comparison Table 

 

Operation Custom BigInteger 

Utility 

GMP 

Library  

Addition O(n) O(n) 

Subtraction O(n) O(n) 

Multiplication 
 𝑂 (𝑛

log2 (3)

)  = 

𝑂(𝑛1.585)  

O(n log n) 

Division O(n²) O(n log n) 

Space Complexity O(n) O(n) 

Memory Efficiency Moderate High 

Overall Speed Moderate for small to 

medium sizes 

High for 

large sizes 

4.2.Summary of Key Attributes 

 Speed: the bespoke utility does the job well for 

smaller integers, but it gets into difficulty with higher 

sizes particularly in division. GMP always does much 

better on all these operations, especially with regards 

to increasing input sizes. 

 Memory Usage: Now given that the 

implementations above are fairly using linear space 

proportional to the size of the numbers they work 

with, the difference lies in their ability to actually 

handle memory properly in practice, at least under 

tough applications. 

 

Table 8: Addition Performance Comparison 

Input Size 

(Digits) 

BigInteger Utility 

(ms) 

GMP (ms) 

100 1.2 0.8 

1000 15.4 10.2 

10000 192.3 128.7 

 

 

Table 9: Subtraction Performance Comparison 

Input Size BigInteger 

Utility (ms) 

GMP (ms) 

100 digits 1.3 0.9 

1000 digits 16.1 10.8 

10000 digits 198.2 132.5 

 

Table 10: Multiplication Performance Comparison 

Input Size BigInteger 

Utility (ms) 

GMP (ms) 

100 digits 2.7 1.5 

1000 digits 42.3 28.7 

10000 digits 567.8 382.1 

 

 

 

Table 11: Division Performance Comparison 

Input Size BigInteger 

Utility (ms) 

GMP (ms) 

100 digits 3.2 1.8 

1000 digits 51.2 34.5 

10000 digits 692.5 468.7 

 

In short, this is a custom BigInteger utility suitable for learning 

purposes and smaller workloads, while GMP is used for high-

efficiency and speed when computing integers on a large scale. 

This comparison underlines the strengths in both 

implementations: the utility for learning and smaller tasks and 

GMP for robust, high-performance applications. 
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4.3.Disscusion 

As for the operations themselves, addition and subtraction are 

highly efficient since time complexity is of O(n) and usage of 

memory is low. And therefore, these operations could easily 

take care of really huge input sizes with relatively minor 

overheads. Multiplication and division are significantly more 

resource-intensive because their time complexity is of O(n²), 

which makes them slower and takes much more memory. 

Results indicate how optimizations might be targeted, namely 

improvement in multiplying efficiency as well as dividing 

efficiency. The improvements can be either by using 

Karatsuba-like algorithms or an FFT-based approach 

BigInteger operations will thus require precision at the most 

critical areas, such as cryptography, for example, where an error 

at any point in a calculation can be disastrous. So, in all 

implementations of these operations, precision has been paid 

wherever it was necessary. The operations include carry 

propagation and borrow in every aspect- edge cases, especially 

including leading zeros and division by zero. 

This implementation of BigInteger can scale up to very large 

numbers and thus is proper for high-precision applications, like 

cryptographic algorithms, large-scale scientific computing, or 

analysis of financial data. For huge inputs such as 

multiplication or division operations the performance will 

degrade significantly. 

Compared to the very highly optimized libraries such as GMP, 

our implementation is just a little behind in terms of 

performance. All operations, especially multiplication and 

division, are 1.5-1.67x faster on this particular library. 

However, our approach provides flexibility in that it can further 

be optimized and hence be open for future work aimed at 

improving efficiency and overall memory consumption of our 

approach. 

 

5. CONCLUSION 

As for this work, we present a comprehensive comparison 

between our custom implementation of a BigInteger utility 

based on the Karatsuba algorithm and the widely used GNU 

Multiple Precision Arithmetic Library (GMP). For the 

comparison, we use the established multiplication operation but 

also assess the performance and efficiency of other arithmetic 

operations provided-by addition, subtraction, division, and 

exponentiation, power. 

The BigInteger utility implemented the Karatsuba algorithm to 

speed up multiplying numbers. In theory, this reduces the time 

complexity of the method to approximately 𝑂 (𝑛
log2 (3)

)  or  

𝑂(𝑛1.585).This is the beauty of the Karatsuba algorithm-being 

used on moderately sized integers, it makes a superb learning 

tool for divide-and-conquer algorithms. Addition and 

subtraction remain at O(n) for time complexity to ensure 

computations are done in a reasonable amount of time. 

Including the division in the custom utility could be helpful, but 

its basic approach for long division limits it to O(n^2) time 

complexity. This severely impairs its performance with very 

large integers. 

In addition, the utility can be extended further to support 

exponentiation; such an operation is the most fundamental used 

in a lot of applications including cryptographic. However, the 

cost of the operation relies on the underlying multiplication 

algorithm. While the Karatsuba algorithm does give a speed 

advantage, the best exponentiation algorithm would include 

even more techniques, such as exponentiation by squaring, to 

further improve on the performance. 

The GMP library, on the other hand, seems to be a very robust 

and highly optimized implementation for arbitrary precision 

arithmetic. Its algorithms, such as Toom-Cook and Schönhage-

Strassen, allow it to have a time complexity of O(nlogn)   

O(n\log n) ,  O(n logn) for multiplication and division, so it is 

very suitable for high-performance applications. GMP also has 

optimized code for addition, subtraction, and exponentiation, so 

any operation can be executed efficiently regardless of the size 

of the integers used. Its memory management strategies further 

boost the performance, and it can deal with extremely large 

integers in comparison to the others with minimal overhead. 

A comparative analysis will help make all such practical 

considerations for developers and researchers when choosing 

between these two implementations. The custom BigInteger 

utility is good training and works well for middle-level work, 

but division performance and the requirement of more 

advanced techniques for optimization make it less suitable for 

a high-performance application. The GMP is, however, custom 

made to meet the critical demands of professional and industrial 

application, and it provides a wholesome suite of features and 

optimizations which enable it to work efficiently on any range 

of numerical computations. 

In conclusion, the custom BigInteger utility will be chosen over 

the GMP library depending on the specific needs of the 

application. This custom utility can be good at providing a basis 

for learning large integer arithmetic and implementing 

algorithms for small projects or educational purposes. 

However, for applications where performance is the first 

priority, most operations like addition, subtraction, 

multiplication, division, and exponentiation must be supported 

and efficiency is of most importance, GMP is the better tool. 

Future work could focus on improving the custom utility via 

better division and exponentiation algorithms, possibly 

bringing it within the realm of established libraries like GMP. 

It would right away increase its use for more computational 

work but also provide the users with a deeper educational 

experience when using advanced numerical methods. 
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