
A METHOD FOR DETECTING MALWARE USING

MACHINE LEARNING AND DEEP LEARNING

Vivek Kumar Anand*1, Dr. Anirban Das2, Dr. Sanjay Kumar Bishwas3

Assistant Professor*1, NIIT University, Neemrana-301705

Assistant Professor2, NIIT University, Neemrana-301705

Associate Professor, NIIT University, Neemrana - 301705

Mail id: vivekkanand7@gmail.com1, anirbanfuture@gmail.com2

Abstract

This research presents a novel approach for enhancing the incorporation of machine learning

to identify malware learning and deep learning techniques. The escalating sophistication of

malware poses a significant challenge to traditional detection methods, necessitating the

exploration of advanced technologies. Leveraging the power of machine learning algorithms,

the proposed method analyzes intricate patterns and features in large datasets to identify

potential malicious activities. Furthermore, the incorporation of deep learning models,

particularly neural networks, enhances the system's ability to discern subtle and evolving

characteristics of malware. The research contributes to the ongoing efforts in cybersecurity by

offering a robust and adaptive solution that demonstrates improved accuracy in identifying

diverse forms of malware. The findings of the experiment demonstrate how well the suggested

strategy works to identify dangerous entities, which supports the idea that combining machine

learning and deep learning might strengthen cybersecurity measures.

Keywords: malware detection, machine learning, deep learning, cybersecurity, neural

networks, pattern analysis, feature extraction.

I. INTRODUCTION

These days, a person's mobile devices are an integral part of their life. Global smartphone use

is projected to be 6.4 billion, and Statista predicts that number will increase by a number of

billion customers over the next years.(Müller, 2019). The largest app store in the world, Google

Play Store, is expected to have 3.48 million applications accessible by the first quarter of

2021.Most everyday actions, such as online shopping, bill payment, and mobile banking, are

performed using mobile apps. Credit and debit card numbers, ATM PINs, and other sensitive

information make identity theft more likely to happen. Examples include tricking people into

giving up their PINs by brute force, tampering with accounts, and fraudulently rerouting tracks

to mobile money providers. Future cellphones will be able to run a wide range of programmes,

including powered by AI medical care, portable edges technology, including innovative

industrial apps.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:586

mailto:vivekkanand7@gmail.com1
mailto:anirbanfuture@gmail.com2

As a result, they need to be equipped with the most cutting-edge, high-security features on the

market. Upon installation, every programme requests a list of permissions from the user. If

granted the appropriate permissions, a user may infer the behaviour of any programme. Users

are alerted to possible danger and may exploit abnormal application activity more easily when

crucial permissions for capabilities and anticipated demands for permission are identified. This

is how the permission-based method notifies the user prior to installation. Before allowing the

programme to use their mobile device, the user is given the opportunity to weigh the risks.

Cybercriminals produce 529,48 new families of malware year, according to Statista. Therefore,

it's critical to recognise malware on cellphones. Malware may not download if it is found during

the setup process. We want a technique that can quickly and accurately identify flawed code in

order to thwart this massive onslaught. Scaling the detection for multiple uses is a difficult

undertaking, however. is a serious problem that requires immediate attention? This study offers

an efficient malware attack detection technique for (MADNET) for malware classification and

detection as a defense against malware for Android. The following is the main achievement of

MAD-NET.:(Arora et al., 2017).

1.1 ANDROID MALWARE CATEGORIES AND FAMILIES

Mobile malware is any spyware, including Android malware, that attempts to damage the target

cellphone by carrying out an illegal action. Malware may be divided into smaller groups based

on characteristics that distinguish each category..(Poornima & Mahalakshmi, 2024). Malware

for Android is growing, much like humans. Under each group there are several families of

viruses. The enormous danger presented by, which is the root cause of many internet security

problems, is an unsolved subject for scholars and cybersecurity specialists. This danger can

only be removed by early identification and remediation of malicious samples. Comprehending

the many categories and variants of Android malware is vital in order to do this. The list of

Mobile malwares and their families is shown in the summary below.

 1. File Infector: Malware that has been concealed inside an APK file is known as a file attack.

The data necessary to use the Android Package Kit, or APK, is included in the programme.

APK files are used for downloading malicious files. When APK files are set up, malware is

used. All Android apps, include editors, video games, as well as navigational aids, are included

in the APK file.

2. Software: Riskware is software that raises the possibility of security flaws in the system.

Although it is a genuine software, its main objective is to monitor users' internet activities and

send people to dubious online sites. It is often referred to as malware, and the security of the

device is impacted by how well it works. Malware belonging to the following categories is

often seentriada, skymobi, deng, jiagu, smspay, smsreg, tordow, mobilepay, wificrack, badpac,

and skymobi.

3. Ransomware: This kind of virus encodes computer files and folders, making them

inaccessible to users. To unlock the data, the code must be cracked. The most often seen strains

of ransomware consist of lock screen, slocker, jisut, koler, congur, masnu, fusob, and smsspy.

4. Trojan: This malware poses as reliable applications. They get data from the device and search

the boot mechanism. The gugi, hqwar, obtes, gluper, lotoor, rootnik, guerrilla, and hypay

Among the most well-known Trojan families are the Troy clans..(Rani & Ojha, 2020).

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:587

5. Adware: Adware is harmful software with an advertising display. Customers are exposed to

unwanted adverts on their displays as a result of this malicious software, especially while they

are using internet services. The adware entices user’s expensive products. Every time a user

clicks on one of the advertisements, the maker of this annoying programme gets paid.

Fig. 1. Malware classification and detection approach.

6.Backdoor: Through the back doors, smartphones may be accessed in discreetly. Put

differently, backdoors let attackers to bypass authentication and get extra rights, so giving them

unrestricted access to devices. With the use of backdoors, one may remotely attack a target

device without needing to be there in person. The families of Android Trojan horses that are

often seen involve Droidkung.fu, Mobby, Kapuser, Hidad, Dendroid, Levida, Fobus, Moavt,

androrat, kmin, and Pyls. (Kessedjian et al., 2010).

7. Scareware: Scareware a tactic used to trick people into downloading or buying dangerous

software by instilling fear in them. Three prominent providers of malware are Fakeapp,

Mobwin, & Avpass.

8. Spyware: Spyware If spyware is installed on a machine; it might be able to steal personal

data. Companies, other parties, or adverts may be able to access the data that spyware collects.

Afterwards, this information is misused. Spy note, qqspy, spy dealer, smithies, spy agent,

smszombie, and smforw are examples of a typical spyware family.

9. PUA: Potentially unwanted apps, or PUAs, are legitimate, free software that include PUA.

They are sometimes known as potentially undesirable programmes, or PUPs. For Android

mobile devices, some of the most well-known PUA malware families include Apptrack,

Secapk, Wiyun, Youmi, Scamapp, Utchi, Cauly, and Umpay..(Allison et al., 2016).

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:588

II LITERATURE REVIEW

R. J. Mangialardo et.al (2015) This study addresses the challenges in malware analysis by

proposing a unified approach that combines both static and dynamic techniques(Mangialardo

& Duarte, 2015). By merging these methods, the research aims to mitigate evasion techniques

used by malicious codes, enhancing the overall effectiveness of identification and

classification. The integration of C5.0 and Random Forest machine learning algorithms within

the FAMA framework demonstrates promising results, achieving an impressive 95.75%

accuracy for binary classification and 93.02% for multiple categorization. Notably, the unified

analysis consistently outperforms isolated static and dynamic analyses, showcasing its

potential as a robust solution for comprehensive malware detection. Routa Moussaileb et.al

(2018) This paper addresses the persistent threat of ransomware, highlighting its evolution from

Reveton's attack in 2012 to more recent incidents like WannaCry and Petya(Moussaileb et al.,

2018). Introducing a novel approach, the study presents a graph-based countermeasure for

ransomware detection, diverging from conventional metrics such as Shannon's entropy. Unlike

existing methods, this mechanism relies on per-thread file system traversal, proving effective

in identifying malicious behaviors. The research stands out as the first to explore this specific

area, conducting experiments with over 700 active ransomware examples in a bare-metal

sandbox environment, achieving accurate detection and providing a promising defense against

evolving ransomware threats. S. Poornima et.al (2023) Cyber threats have escalated in

response to the growing popularity of mobile devices, especially malware assaults targeting the

Android platform(Poornima et al., 2023). A unique Malware Attack Detection system called

MAD-NET is suggested as a solution to this problem. The method combines feature extraction

and data classification into signature-based and behavior-based classes using the

CICAndMal2017 datasets. When it comes to classification, When compared Generative

Adversarial Networks and Long Short-Term Memory, a type Deep Belief Networks exhibit

superior performance. Networks with an astounding 99.83% accuracy rate, MAD-NET proves

its effectiveness in identifying and thwarting malware attacks on Android smartphones.

Ahmed R. Nasser et.al (2023) Given the broad usage and open-source nature of the Android

operating system, this article tackles the increasing difficulty of identifying malware in the

system. With two primary detection models—deep Autoencoders for dynamic analysis and

CNN-BiLSTM for static analysis—the suggested DL-AMDet makes use of a deep learning

architecture. DL-AMDet's efficacy is shown by its remarkable 99.935% accuracy in combined

static and dynamic analysis, which is obtained via the evaluation of its performance using two

datasets. The research emphasises CNN-BiLSTM and Deep Autoencoders' importance in

surpassing current methods and their usefulness in improving Android malware detection

capabilities(Nasser et al., 2024).

Alejandro Guerra-Manzanares(2023) Despite the apparent success in detection, this paper

challenges the notion that the problem is solved. Through an extensive review of existing

literature, it identifies five unresolved challenges, ranging from methodological flaws to dataset

limitations. The research highlights the misconception that hinders further exploration in this

field. By exposing these overlooked challenges, the paper motivates future research directions,

emphasizing the need for a more nuanced approach to achieve effective and long-term solutions

in the Android malware detection domain.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:589

This comprehensive analysis encourages a reevaluation of the current state of the art and

prompts further investigation into these persisting issues(Guerra-manzanares et al., 2023).

Muhammad Azeem et.al (2023) Because of the (IoT) and ongoing technical breakthroughs,

the Internet has become essential to communication and information in the digital era.

However, cybersecurity faces difficulties due to the growing danger of malware. This research

addresses malware identification and classification using state-of-the-art machine learning

techniques, such as K-Nearest Neighbours, Extra Tree, Multilayer Perceptron. For the best

feature selection, the study uses Term Frequency-Inverse Document Frequency and feature

encoding using the UNSWNB15 dataset(Azeem et al., 2023). The research reveals that

Random Forest is the most accurate model examined (97.68%), highlighting its effectiveness

in improving internet security. Pascal Maniriho et.al (2023) Here is a new deep learning-

based framework for Windows malware detection called API-MalDetect. With a hybrid feature

extractor that combines CNNs and BiGRU, as well as an NLP-based encoder for API requests,

the framework is very effective at detecting malware assaults that go undetected while causing

the least amount of ROC across a range of datasets, API-MalDetect outperforms current

methods by addressing temporal and spatial biases during training and testing. The technology

not only efficiently separates malicious activity from benign activity, but it also identifies

critical API calls for cybersecurity professionals(Maniriho et al., 2022). Furthermore, the

dataset that is made available improves joint research projects in the field of cybersecurity.

Wadha Al-Khater et.al (2023) Addressing the rising concern of malware detection and

cybersecurity breaches, this study emphasizes the limitations of conventional antivirus

software in identifying novel malware swiftly. The proposed solution involves countering

imbalanced and insufficient malware datasets using the (FABEMD) technique. Employing 3D

architectures, namely 3D VGG-16 and 3D Resnet-18, on the Malimg and MaleVis datasets,

the experiment achieves impressive accuracy rates. Notablythe Res net-18 infrastructure

demonstrates its effectiveness in identifying unknown malware in the early phases of

implementation, with excellent performance of 99.64% and 99.46% for the Malimg and

MaleVis datasets, accordingly. (Al-Khater & Al-Madeed, 2024).

Elliot Mbunge et.al (2023) This review addresses the growing threat of cyberattacks on

Android applications due to the widespread use of smartphones. Despite the surge in attacks,

the application of (DL) models for detecting emerging malware in Android remains

underexplored. Utilizing the PRISMA guidelines, the study identifies convolutional neural

networks, gated recurrent neural networks, and other DL models as prominent in malware

detection. While DL models prove effective in real-time detection, challenges persist in

monitoring evolving malware behavior. The study underscores the importance of user training,

sharing updated malware datasets, and pre-download detection to enhance Android smartphone

security(Mbunge & Batani, 2023). Mumtaz Ahmed et.al (2022) This study highlights the

crucial significance of machine learning in network security research and tackles the everyday

creation of new variants and the dissemination of malware for criminal reasons. By modelling

malware fingerprints as 2D pictures and using deep learning algorithms for classification on

the BIG15 dataset, the research offers a fresh approach. Long Short Term Memory,

Comparative comparison examples include Artificial Neural Network, , Transfer Learning on

CNN, and Logistic Regression.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:590

Classification accuracy on the examination dataset was 98.76%, while on the training dataset,

it was an astounding 99.6%. transfer learning approach using InceptionV3 performs better than

the competition, demonstrating its effectiveness in malware classification(Mumtaz et al.,

2023). Hani AlOmari et.al (2023) In light of the growing danger of malware for Android

mobile devices, this article discusses the difficulties in developing effective detection systems.

It assesses how well different machine learning algorithms perform and uses methods like

Principal Component Analysis, feature normalisation, and synthetic minority oversampling to

increase accuracy. A Light Gradient Boosting Model is included in the research to detect and

categorise Android malware into five groups. By making use of a large and up-to-date dataset

of 11,598 APKs that were obtained from various sources and made available by the Canadian

Institute of Cybersecurity, the research advances efforts to address the persistent unresolved

issue of Android malware categorization(AlOmari et al., 2023). Saddam Hussain Khan et.al

(2023) This article discusses security risks in the context of the Internet of Things (IoT),

highlighting the need of early identification to protect real-time devices managed by open-

source Android smartphones. In order to identify complex malware assaults, the proposed

(DSBEL) framework combines ensemble learning with a new (SB-BR-STM) convolutional

(CNN). With the use of boosting methods and multi-path dilated convolutional processes, the

SB-BR-STM CNN performs well. By demonstrating its remarkable accuracy (98.50%), F1-

Score (97.12%), MCC (91.91%), Recall (95.97%), and Precision (98.42%), DSBEL's

evaluation on the IOT_Malware dataset highlights its resilience and efficacy in timely malware

identification for improved network security(Khan et al., 2023).

Ali Muzaffar et.al (2022) With approximately 70% of mobile users using Android devices,

the Android operating system faces a significant threat from malware attacks. Traditional

signature-based detection struggles with the vast user and application diversity. This paper

addresses the challenge by critically reviewing past research utilizing. Examining supervised,

unsupervised, deep learning, and online the review categorizes them based on their utilization

of static, dynamic, or hybrid features. Machine learning emerges as a promising solution,

capable of addressing the evolving nature of Android malware and offering resilience against

zero-day attacks without relying on predefined malicious signatures(Ali et al., 2022). Hamid

Bostani et.al (2023) Researchers have long studied evasion attack vulnerabilities such assaults

in actual situations has been questioned. This work presents Evade Droid, an adversarial

problem-space approach intended to successfully evade black-box Android malware detection.

Evade Droid builds transformations from benign donors using an n-gram-based method,

obtaining high evasion rates (80%–95%) against different detectors with few queries. Notably,

this method challenges conventional wisdom in adversarial attacks on Android malware

detectors by maintaining stealthiness against well-known commercial antiviruses, proving its

viability and efficacy in real-world scenarios where attackers have little knowledge of target

classifiers(Bostani & Moonsamy, 2024).

III. METHODOLOGY

PROPOSED SYSTEM ARCHITECTURE

The following are the main elements of the proposed malware classification and detection

scheme: (ifeatures extraction; (ii) feature refinement/selection; (iv) classification; (vi) pre-

processing; and (iii) detection. Fig. depicts the recommended method's structure.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:591

Fig. 2 Architecture of the proposed malware detection system

Source: (Chowdhury et al., 2018)

PRE- PROCESSING

The files that have been obtained are binary code-containing raw executable archives that are

kept in the file system. To meet our demands, they went through preparation. First, we run

executables on a virtual machine (VM) that is safe. We utilise the PEid utility for extracting

the encoded programmes.

FEATURE EXTRACTION

Static and dynamic analysis of executable files is the method used to extract features. In this

study, we extract two kinds of characteristics from the malicious and cleaning software's

downloadable files: N-gram's functionality and connections to Microsoft API(Chowdhury et

al., 2018).

N-gram Features

Programme file segments with a length of n bytes are the substring sequences with n-gram

characteristics. One advantage of the n-gram approach is the capacity to express the amount in

words of n-gram lengths. We empirically discover that the best accurate results are obtained

with n-grams of size 5, where each sequence has precisely 5 bytes. Using the n-gram feature

acquisition approach, we are able to get the n-gram properties.

Windows API Calls

Malware behaviour may be revealed via API call information. The API list may be extracted

thanks to the PE format of the executable files. A program's resource allocation and its handling

by the operating system are described in the Portable Executable (PE) header. We disassemble

the binary file using Interactive Disassembler Pro (IDA Pro), the most reliable disassembly

tool, in order to inspect and take out the calls made by the Windows API. Any kind of file,

playable and non-executable (such as ELF, EXE, PE, and so on), may be disassembled using

IDA Pro. It provides user-defined plugin hooks and automatically detects API calls for different

compilers, resulting in an extremely powerful solution with adjustable management and

evaluation levels.(Syeda, 2024).

To investigate the relevant application area, IDA Pro imports the selected file into memory as

well as builds an IDA database. IDA Pro disassembles and searches through the file's binary to

aggregate the many IDA database files into a single IDB file (.idb). By providing its internal

resources via Users may create plugins for IDA Pro to use by using its API. The disassembling

components are launched by the Ida python system, which is used to construct a.idb dataset.

To enhance binaries evaluation, use.idb systems may be exported into MySQL databases using

the ida2sql plugin. (.db).

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:592

With each binary executable, the ida2sql plugin creates sixteen tables (PI system calls along

with the length (beginning and ending locations) of any function names that are difficult to

understand. Every operation code (OP), together with its addresses and block discusses, are

included in the directions table.(Tian, 2011).

FEATURE SELECTION/REFINEMENT

Following the n-gram feature extraction process, the chosen, and the top feature is evaluated

by calculating the precision of a classifier in relation to the number of attributes chosen using

various methods for selecting features. Principal Components Analysis (PCA) is the method

used in this study to choose features. Because the PCA may reduce complexity, it is utilised to

speed up operations. Its foundation is the discovery of just a few of orthogonal linear

connections between the initial factors with the highest variance, which reduces a large number

of factors into a fewer amount of uncorrelated variables. To improve the efficacy of detection

and extraction of relevant API calls for every malware category, we further use the Class-wise

document repetition (DCFS) dependent choice of features technique. identification.

MALWARE CLASSIFICATION AND DETECTION

Training and testing are the two phases of the procedure for categorization. The computer is

given a set of benign and harmful files to work with throughout the training stage. Classifiers

may be trained by an approach of training. The classification tagged data sets. In the evaluation

phase, a classifier receives an array of fresh harmful and benign files to be identified as either

malware or clean ware. We provide a novel hybrid malware classification framework in this

study, shown in Fig. 2, that combines a multilayer perceptron (MLP) neural network with a

binary associative memory (BAM). In order to speed up and improve the efficiency of

categorization, the BAM reduces the feature matrix's dimensions. To identify and classify

malware, the MLP with backpropagation algorithm is trained using a selection of features. The

BAM networks' input layer receives the chosen malware dataset features, which provide

reduced features as an output. The output of the BAM networks is then fed into the MLP neural

network. There are exactly as many malwares in the dataset to be classified as there are nodes

in the MLP output layer. This experiment has fifty thousand epochs with a minimal error

margin of 0.002.

Fig. 2: The proposed hybrid classification approach.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:593

IV DATA SET

This dataset includes 942 examples of good software (good ware) and 582 instances of

ransomware, for a total of 1524 samples from dynamic analysis. By late February 2016, the

dataset was obtained and examined using Cuckoo Sandbox. The publication has further

information about the dataset (see below).

The relationship between the SHA1 and MD5 of the programme under analysis (both

ransomware and good ware) and the local IDS that we utilise in our dataset is included in the

file IDS.txt. The following is a description of the header in that file:

- ID: A local identifier used in our dataset.

- SHA1: The software's hash identity.

- MD5: This is the software's MD5 hash.

- Ransomware: 1 for ransomware, 0 for good ware.

- Ransomware Family: numeric identification for the ransomware family (same coding as

described above).

Performance Measure:

The performance measures for the Logistic Regression and Random Forest Classifier models

are crucial indicators of their effectiveness in predicting classes for the given dataset. For

Logistic Regression, with a precision of 0.84 for class 0, it accurately predicts class 0 instances

84% of the time. With a recall of 0.94, it can accurately identify 94% of real class 0 instances.

Class 0's F1-score, which is a harmonic mean of recall and accuracy, is 0.89. Class 1 has

comparable metrics: F1-score of 0.83, recall of 0.77, and accuracy of 0.91. The percentage of

accurately identified occurrences out of the total is shown by the overall accuracy of 0.87 for

Logistic Regression. The macro average F1-score is 0.86, giving equal weight to each class,

while the weighted average F1-score, at 0.87, considers class imbalances. Comparatively, the

Random Forest Classifier demonstrates exceptional performance. It achieves a precision of

1.00 for both classes, indicating perfect predictions without false positives. The recall for class

0 is 1.00, implying it identifies all actual class 0 instances. Class 1 recall is still very good,

although it is significantly lower at 0.99. The F1-scores for both classes are 1.00, showcasing

a harmony between recollection and precision. The precision of 1.00 indicates flawless

classification across the dataset. The macro and weighted average F1-scores are also 1.00,

underlining the model's consistent and high-quality predictions. These results highlight the

Random Forest Classifier's robust performance, making it a strong candidate for this

classification task.

Algorithms Used:

Two potent algorithms are used in the machine learning and deep learning approach to malware

detection: Random Forest Classifier and Logistic Regression. Because it excels at binary

classification, Logistic Regression is a great tool for separating dangerous software from

benign software. With parameters like precision, recall, and F1-score—all important for

accurate malware detection—it offers exact predictions. However, the Random Forest

Classifier, with its ensemble of decision trees, is particularly good at handling complicated

datasets and provides very good accuracy. By combining their powers to examine file

properties and behavior patterns, these algorithms create an effective weaponry against

malware that strengthens systems against possible cyberattacks.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:594

Novelty

 Data Import: You start by importing necessary libraries like pandas and numpy for data

manipulation and handling.

 Data Loading: You load a CSV file named "data_file.csv" into a pandas Data Frame df.

 Data Preprocessing: You preprocess the data by dropping unnecessary columns ('md5Hash'

and 'Filename') from the Data Frame using the drop () method.

 Data Splitting: You split the dataset into features (X) and the target variable (y). The target

variable, 'Benign', seems to indicate whether the files are benign or not.

 Train-Test Split: You further split the data into training and testing sets using train_test_split

() from scikit-learn.

 Feature Scaling: You standardize the features using Standard Scaler () to ensure that each

feature contributes equally to the distance computations in machine learning models.

 Model Selection and Training: You choose logistic regression as your classification model,

instantiate it using Logistic Regression (), and then fit the model to the training data using fit

().

System Overview

Using the processed feature sets as inputs, machine learning algorithms including neural

networks classify the unknown malware (from the test dataset) to form one of the recognised

malware families. Our DNN model is constructed using the Keras framework from Tensor

Flow. To speed up the training process, we employed the CUDA 9 platform and NVIDIA's

TITAN V GPU in our setup.

Table 1 Evaluation metrics for different machine learning algorithms

Algorithms precision recall f1-score

Logistic Regression
0.84 0.94 0.89

0.91 0.77 0.83

Random Forest Classifier

1.00 1.00 1.00

1.00 0.99 0.99

The table presents evaluation metrics for two machine learning algorithms: Logistic Regression

and Random Forest Classifier. For Logistic Regression, the precision, recall, and F1-score are

0.84, 0.94, and 0.89 respectively in the first row, and 0.91, 0.77, and 0.83 in the second row.

These metrics indicate the algorithm's performance in terms of correctly identifying positive

instances (precision), capturing all positive instances (recall), and their harmonic mean (F1-

score). The Random Forest Classifier shows impeccable performance with perfect scores

across all metrics in both rows, suggesting robustness in classification tasks without false

positives or negatives.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:595

Table 2. Performance metrics of various machine learning algorithms

Algorithm Precision Recall F1-Score

SGD 65.72 64.71 64.48

Kneighbors 90.11 92.3 90.98

Naïve Bayes 51.58 57.58 48.78

SVC 13.56 15.31 11.09

Logistic Regression 91.1 77.2 83.2

Random Forest Classifier 100.00 99.1 99.1

V.RESULTS

RANSOMWARE FAMILIES

The Ransomware samples belong to distinct families and are designated with the

following codes.:

FAMILY NAME ID

Good ware 0

Critroni' 1

Crypt Locker' 2

Crypto Wall' 3

KOLLAH' 4

Kovter' 5

Locker' 6

MATSNU' 7

PGPCODER' 8

Reveton' 9

TeslaCrypt' 10

Trojan-Ransom' 11

Interpretation

The provided image contains a table detailing various ransomware families and their

corresponding codes. decryption. The table includes 11 families, such as Cryptoni and

CryptoWall, each assigned a unique code. Notably, the table is not exhaustive, and new

ransomware families continue to emerge. Common ones, like CryptLocker and TeslaCrypt, are

highlighted for their characteristics. The summary advises protective measures, including

software updates, cautious handling of email attachments, implementing robust backup

systems, and using security software to detect and block ransomware. Following these

precautions enhances protection against ransomware attacks.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:596

SETS OF FEATURES

The various feature sets are labelled with the following codes (see also VariableNames.txt):

Interpretation

The provided image depicts a batch file containing a table with distinctive sets of features for

malware identification. Every feature set has a code and a description associated with it. These

consist of directory operations, file operations, registry key operations, file operations, file

extension details, and API information. operations, and embedded string analysis. This

comprehensive information serves as a tool to identify malware by comparing the features of

a suspicious file with known malware characteristics. A higher degree of shared features

indicates a likelihood that the file in question is also malware, enhancing cybersecurity efforts.

Table 2. Tabular representation of a dataset

S

r

.

N

o

M

ac

hi

ne

D

e

b

u

g

S

i

z

e

Deb

ugR

VA

M

aj

or

I

m

a

ge

V

er

si

o

n

Ma

jor

OS

Ve

rsi

on

E

xp

or

tR

V

A

E

x

p

or

tS

iz

e

Iat

VR

A

M

aj

o

r

L

in

k

er

V

er

si

o

n

Min

orLi

nke

rVe

rsio

n

Nu

mb

erO

fSe

ctio

ns

Size

OfS

tack

Res

erve

Dll

Ch

ara

cter

isti

cs

Re

so

ur

ce

Si

ze

Bit

coi

nA

ddr

ess

es

B

e

n

i

g

n

0

33

2
0 0 0 4 0 0

819

2
8 0 3

104

857

6

341

12

67

2
0 1

1

34

40

4

8

4

121

728

1

0
10

12

65

76

49

30
0

1

4
10 8

262

144

168

64

10

24
0 1

2

33

2
0 0 0 4 0 0

819

2
8 0 3

104

857

6

341

12

67

2
0 1

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:597

3

34

40

4

8

4

199

04

1

0
10

21

31

2

25

2

181

60

1

4
10 6

262

144

167

36

10

40
0 1

4

34

40

4

8

4

977

28

1

0
10

10

57

92

18

52

705

92

1

4
10 7

262

144

167

36

10

96
0 1

The table displays a dataset containing various attributes of different files. Each row represents

a file and its corresponding features such as filename, MD5 hash, machine type, debug

information size and relative virtual address (RVA), major image and OS versions, export

information RVA and size, Import Address Table (IAT) RVA, linker versions, number of

sections, stack reserve size, DLL characteristics, resource size, presence of Bitcoin addresses,

and benign/malicious classification. These attributes provide insights into the characteristics of

each file, potentially aiding in tasks such as malware analysis or system monitoring. The

presence of the "Benign" column suggests a binary classification indicating whether the file is

considered benign or potentially malicious.

Logistic Regression

In this code snippet, a The setup of a logistic regression classifier is implied when a logistic

regression model is created using the Logistic Regression () function. Furthermore, a

RandomForestClassifier is allocated to the variable rfc after being imported from the scikit-

learn package. The RandomForestClassifier is then trained using the fit technique supplied

training data (X_train and y_train).). This code suggests the implementation of both logistic

regression and random forest classifiers, indicating an intention to compare or use these models

for a classification task.

Random forest classifier

The provided code snippet demonstrates the assessment of the Random Forest Classifier along

with Logistic Regression machine learning models, using the classification report from sklearn.

metrics. First, Logistic Regression predictions (y_pred) are generated for the test data (X_test),

followed by printing a classification report comparing these predictions with the true labels

(y_test). This report provides metrics like precision, recall, and F1-score for each class. Next,

the Random Forest Classifier predictions (y_pred) are computed for the same test data, and

another classification report is printed. These reports are crucial for assessing the models'

performance, highlighting their accuracy, precision, recall, and F1-scores, aiding in model

selection and optimization.

OUTPUT

Logistic Regression

 precision recall f1-score support

0 0.84 0.94 0.89 10678

1 0.91 0.77 0.83 8068

accuracy 0.87 18746

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:598

macro avg 0.88 0.86 0.86 18746

weighted avg 0.87 0.87 0.87 18746

Random Forest Classifier

 precision recall f1-score support

0 1.00 1.00 1.00 10678

1 1.00 0.99 0.99 8068

accuracy 1.00 18746

macro avg 1.00 1.00 1.00 18746

weighted avg 1.00 1.00 1.00 18746

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1 accuracy macro avg weighted avg

Logistic Regression

LogisticRegression precision LogisticRegression recall

LogisticRegression f1-score LogisticRegression support

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

20000.00

0 1 accuracy macro avg weighted avg

Random Forest Classifier

Random Forest Classifier precision Random Forest Classifier recall

Random Forest Classifier f1-score Random Forest Classifier support

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:599

Interpretation

This code snippet uses classification report to assess the effectiveness of two machine learning

classifiers:. Regression analysis using logistic model's predictions are generated using the

predict method, and its classification report, which includes precision, recall, and F1-score

metrics, is printed for assessment. Subsequently, the Random Forest Classifier predictions are

obtained and its classification report is printed as well. The classification reports each class.

This comparison enables a comprehensive understanding of each model's performance in

regard to categorization accuracy, aiding in the selection and refinement of the most suitable

classifier for the specific task.

Performance Metrics

Interpretation

The results display the performance metrics (precision, recall, and F1-score) for various

machine learning algorithms in a classification task. The Stochastic Gradient Descent (SGD)

and Support Vector Classifier (SVC) show lower scores, indicating struggles with precision

and recall. K Neighbors and Logistic Regression perform well, with Logistic Regression

notably excelling in precision. Naïve Bayes demonstrates moderate performance. The Random

Forest stands out with perfect precision and high recall, indicating its effectiveness in this task.

Accuracy

0

20

40

60

80

100

120

SGD Kneighbors Naïve Bayes SVC Logistic

Regression

RandomForest

Performance metrics

Series1 Series2 Series3

0
.8

7

1
.0

0

LO G IS T I C R E G R E S S I O N R A N D O M F O R E S T

C LA S S I F I E R

ACCURACY

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:600

Interpretation

The accuracy ratings for two distinct machine learning classifiers—Random Forest Classifier

and Logistic Regression are shown in the graph. The percentage of properly categorized

occurrences in the dataset, as a percentage of all instances, is called accuracy. With an accuracy

of 0.87 in this case, Logistic Regression accurately identified 87% of the dataset's occurrences.

In contrast, the Random Forest Classifier accurately categorized every occurrence in the

dataset, earning a flawless accuracy score of 1.00. This shows that, in this specific case, the

Random Forest Classifier achieved ideal classification results by outperforming Logistic

Regression in terms of accuracy. When choosing the best classifier for a job, it's crucial to take

into account additional assessment metrics and possible trade-offs between performance and

model complexity.

VI CONCLUSION

In this study, we introduced a system that took the malware files and extracted the Random

Forest Classifier and Logistic Regression. We examined the accuracy derived from every one

of these features throughout the experimental along with result section, and we showed that the

feature vector regarding system calls produced the best accuracy. In the field of deep learning

and machine learning for malware detection, the comparison between the Random Forest

Classifier and Logistic Regression models reveals clear distinctions in performance. The

Random Forest Classifier emerges as the superior choice, showcasing unparalleled precision

and recall for class 0. Its capacity to recognise every occurrence of class 0 without any false

positives or false negatives is a testament to its robustness. Conversely, Logistic Regression

exhibits slightly diminished recall for class 1, suggesting potential missed detections in this

category. Despite these variances, both models exhibit commendable accuracy, reflecting

strong overall performance in malware detection. The Random Forest Classifier's perfect

precision and recall for class 0 provide a solid foundation for detecting malicious software with

precision and efficiency. Logistic Regression, while slightly less adept in certain aspects, still

contributes significantly to the detection process.

In conclusion, the Random Forest Classifier stands out as the preferred algorithm for malware

detection in this study, offering impeccable performance metrics. However, the combined

strength of both models' high accuracy underscores how well deep learning and machine

learning techniques work as system strengtheners against cyber threats. This study highlights

the importance of selecting appropriate algorithms to enhance malware detection capabilities

in modern cybersecurity frameworks.

References

1. H. Bostani and V. Moonsamy, “EvadeDroid: A Practical Evasion Attack on Machine Learning

for Black-box Android Malware Detection,” Comput. Secur., vol. 139, no. September 2023, p.

103676, 2023, doi: 10.1016/j.cose.2023.103676.

2. S. Poornima and R. Mahalakshmi, “Automated malware detection using machine learning and

deep learning approaches for android applications,” Meas. Sensors, vol. 32, no. May 2023, p.

100955, 2023, doi: 10.1016/j.measen.2023.100955.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:601

3. S. Poornima and R. Mahalakshmi, “Automated malware detection using machine learning and

deep learning approaches for android applications,” Meas. Sensors, vol. 32, no. May 2023, p.

100955, 2023, doi: 10.1016/j.measen.2023.100955.

4. W. Al-Khater and S. Al-Madeed, “Using 3D-VGG-16 and 3D-Resnet-18 deep learning models

and FABEMD techniques in the detection of malware,” Alexandria Eng. J., vol. 89, no.

January, pp. 39–52, 2024, doi: 10.1016/j.aej.2023.12.061.

5. M. Azeem, D. Khan, S. Iftikhar, S. Bawazeer, and M. Alzahrani, “Analyzing and comparing

the effectiveness of malware detection: A study of machine learning approaches,” Heliyon, vol.

10, no. 1, p. e23574, 2024, doi: 10.1016/j.heliyon. 2023.e23574.

6. M. Ahmed, N. Afreen, M. Ahmed, M. Sameer, and J. Ahamed, “An inception V3 approach for

malware classification using machine learning and transfer learning,” Int. J. Intell. Networks,

vol. 4, no. September 2022, pp. 11–18, 2023, doi: 10.1016/j.ijin.2022.11.005.

7. A. R. Nasser, A. M. Hasan, and A. J. Humaidi, “DL-AMDet: Deep learning-based malware

detector for android,” Intell. Syst. with Appl., vol. 21, no. May 2023, p. 200318, 2024, doi:

10.1016/j.iswa.2023.200318.

8. J. Sahs and L. Khan, “A machine learning approach to android malware detection,” Proc. -

2012 Eur. Intell. Secur. Informatics Conf. EISIC 2012, pp. 141–147, 2012, doi:

10.1109/EISIC.2012.34.

9. M. S. Akhtar and T. Feng, “Malware Analysis and Detection Using Machine Learning

Algorithms,” Symmetry (Basel)., vol. 14, no. 11, 2022, doi: 10.3390/sym14112304.

10. [“Saddam Hussain Khan, “A new deep boosted CNN and ensemble learning based IoT

malware detection.” 2023.

11. A. Muzaffar, “An in-depth review of machine learning based Android malware detection.”

2022.

12. A. Guerra-Manzanares, “Machine Learning for Android Malware Detection: Mission

Accomplished? A Comprehensive Review of Open Challenges and Future Perspectives.” 2023.

13. “P. Maniriho, “API-MalDetect: Automated malware detection framework for windows based

on API calls and deep learning techniques.” 2023.

14. “W. Al-Khater, “Using 3D-VGG-16 and 3D-Resnet-18 deep learning models and FABEMD

techniques in the detection of malware.” 2023.

15. “H. AlOmari, “A Comparative Analysis of Machine Learning Algorithms for Android

Malware Detection.” 2023.

16. üller, R. (2019). Factors influencing effective relationship marketing by smartphone brands

through social media amongst Generation Y students JH Van Schalkwyk Thesis accepted in

fulfilment of the requirements for the degree Doctor of Philosophy in Marketing Management

at. April.

17. Arora, M., Moser, J., Phadke, H., Basha, A. A., Spencer, S. L., Arora, M., Moser, J., Phadke,

H., Basha, A. A., & Spencer, S. L. (2017). Endogenous Replication Stress in Mother Cells

Leads to Quiescence of Daughter Cells Article Endogenous Replication Stress in Mother Cells

Leads to Quiescence of Daughter Cells. CellReports, 19(7), 1351–1364.

https://doi.org/10.1016/j.celrep.2017.04.055

18. Poornima, S., & Mahalakshmi, R. (2024). Automated malware detection using machine

learning and deep learning approaches for android applications. Measurement: Sensors, 32,

100955. https://doi.org/https://doi.org/10.1016/j.measen.2023.100955

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:602

19. Rani, S., & Ojha, C. (2020). 1-s2.0-S2214714420307662-main. Journal of Water Process

Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101889

20. Kessedjian, G., Jurado, B., Aiche, M., Barreau, G., Bidaud, A., Czajkowski, S., Dassié, D.,

Haas, B., Theisen, C., Serot, O., Bauge, E., Ahmad, I., Greene, J. P., & Janssens, R. V. F.

(2010). Neutron-induced fission cross sections of short-lived actinides with the surrogate

reaction method. Physics Letters B, 692(5), 297–301.

https://doi.org/10.1016/j.physletb.2010.07.048

21. Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A.,

Banerjee, S., Barrand, G., Beck, B. R., Bogdanov, A. G., Brandt, D., Brown, J. M. C.,

Burkhardt, H., Canal, P., Cano-ott, D., Chauvie, S., Cho, K., … Yoshida, H. (2016). Nuclear

Instruments and Methods in Physics Research a Recent development in G EANT 4. 835, 186–

225. https://doi.org/10.1016/j.nima.2016.06.125

22. Mangialardo, R. J., & Duarte, J. C. (2015). Integrating static and dynamic malware analysis

using machine learning. IEEE Latin America Transactions, 13(9), 3080–3087.

23. Moussaileb, R., Bouget, B., Palisse, A., Bouder, H., Cuppens-Boulahia, N., & Lanet, J.-L.

(2018). Ransomware’s Early Mitigation Mechanisms. In ARES 2018: Proceedings of the 13th

International Conference on Availability, Reliability and Security.

https://doi.org/10.1145/3230833.3234691

24. Poornima, S., Pushpalatha, M., & Jana, R. B. (2023). Rainfall Forecast and Drought Analysis

for Recent and Forthcoming Years in India.

25. Nasser, A. R., Hasan, A. M., & Humaidi, A. J. (2024). DL-AMDet: Deep learning-based

malware detector for android. Intelligent Systems with Applications, 21, 200318.

https://doi.org/https://doi.org/10.1016/j.iswa.2023.200318

26. Guerra-manzanares, A., Bahsi, H., & Luckner, M. (2023). Leveraging the first line of defense:

a study on the evolution and usage of android security permissions for enhanced android

malware detection. In Journal of Computer Virology and Hacking Techniques (Vol. 19, Issue

1). Springer Paris. https://doi.org/10.1007/s11416-022-00432-3

27. Azeem, M., Shabbir, J., Salahuddin, N., Hussain, S., & Ijaz, M. (2023). A comparative study

of randomized response techniques using separate and combined metrics of efficiency and

privacy. PloS One, 18(10), e0293628. https://doi.org/10.1371/journal.pone.0293628

28. Maniriho, P., Mahmood, A. N., & Chowdhury, M. J. M. (2022). A study on malicious software

behaviour analysis and detection techniques: Taxonomy, current trends and challenges. Future

Generation Computer Systems, 130, 1–18.

https://doi.org/https://doi.org/10.1016/j.future.2021.11.030

29. Al-Khater, W., & Al-Madeed, S. (2024). Using 3D-VGG-16 and 3D-Resnet-18 deep learning

models and FABEMD techniques in the detection of malware. Alexandria Engineering

Journal, 89, 39–52. https://doi.org/https://doi.org/10.1016/j.aej.2023.12.061

30. Mbunge, E., & Batani, J. (2023). Application of Deep Learning and Machine Learning Models

to improve healthcare in sub-Saharan Africa: Emerging Opportunities, Trends and

Implications. Telematics and Informatics Reports, 11, 100097.

https://doi.org/10.1016/j.teler.2023.100097

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:603

https://doi.org/10.1016/j.teler.2023.100097

31. Mumtaz, M. Z., Ahmad, M., Etesami, H., & Mustafa, A. (2023). Editorial: Mineral solubilizing

microorganisms (MSM) and their applications in nutrient bioavailability, bioweathering and

bioremediation, volume II. In Frontiers in microbiology (Vol. 14, p. 1345161).

https://doi.org/10.3389/fmicb.2023.1345161

32. AlOmari, H., Yaseen, Q., & Al-Betar, M. (2023). A Comparative Analysis of Machine

Learning Algorithms for Android Malware Detection. Procedia Computer Science, 220, 763–

768. https://doi.org/10.1016/j.procs.2023.03.101

33. Khan, S., Iqbal, R., & Naz, S. (2023). A Recent Survey of the Advancements in Deep Learning

Techniques for Monkeypox Disease Detection. https://doi.org/10.48550/arXiv.2311.10754

34. Ali, M., Habib, M. F., Ahmed Sheikh, N., Akhter, J., & Gilani, S. I. ul H. (2022). Experimental

investigation of an integrated absorption- solid desiccant air conditioning system. Applied

Thermal Engineering, 203, 117912.

https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117912

35. Bostani, H., & Moonsamy, V. (2023). EvadeDroid: A Practical Evasion Attack on Machine

Learning for Black-box Android Malware Detection.

https://doi.org/10.48550/arXiv.2110.03301

36. Ruggiero, P., & Foote, J. (2011). Cyber Threats to Mobile Phones. 1–6.

37. Alshahrani, H., Mansourt, H., Thorn, S., Alshehri, A., Alzahrani, A., & Fu, H. (2018).

DDefender: Android application threat detection using static and dynamic analysis.

https://doi.org/10.1109/ICCE.2018.8326293

38. Mozammel, Rahman, A., & Islam, M. R. (2018). Malware Analysis and Detection Using Data

Mining and Machine Learning Classification. https://doi.org/10.1007/978-3-319-67071-3_33

39. Syeda, D. Z. (2024). applied sciences Dynamic Malware Classification and API

Categorisation of Windows Portable Executable Files Using Machine Learning.

40. Tian, R. (2011). An Integrated Malware Detection and Classification System.

41. Rani, N., & Vikrant, S. (n.d.). Leveraging Machine Learning for Ransomware Detection.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:604

