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Abstract  

This research presents a novel approach for enhancing the incorporation of machine learning 

to identify malware learning and deep learning techniques. The escalating sophistication of 

malware poses a significant challenge to traditional detection methods, necessitating the 

exploration of advanced technologies. Leveraging the power of machine learning algorithms, 

the proposed method analyzes intricate patterns and features in large datasets to identify 

potential malicious activities. Furthermore, the incorporation of deep learning models, 

particularly neural networks, enhances the system's ability to discern subtle and evolving 

characteristics of malware. The research contributes to the ongoing efforts in cybersecurity by 

offering a robust and adaptive solution that demonstrates improved accuracy in identifying 

diverse forms of malware. The findings of the experiment demonstrate how well the suggested 

strategy works to identify dangerous entities, which supports the idea that combining machine 

learning and deep learning might strengthen cybersecurity measures.  

 

Keywords: malware detection, machine learning, deep learning, cybersecurity, neural 

networks, pattern analysis, feature extraction. 

 

I. INTRODUCTION  

These days, a person's mobile devices are an integral part of their life. Global smartphone use 

is projected to be 6.4 billion, and Statista predicts that number will increase by a number of 

billion customers over the next years.(Müller, 2019). The largest app store in the world, Google 

Play Store, is expected to have 3.48 million applications accessible by the first quarter of 

2021.Most everyday actions, such as online shopping, bill payment, and mobile banking, are 

performed using mobile apps. Credit and debit card numbers, ATM PINs, and other sensitive 

information make identity theft more likely to happen. Examples include tricking people into 

giving up their PINs by brute force, tampering with accounts, and fraudulently rerouting tracks 

to mobile money providers. Future cellphones will be able to run a wide range of programmes, 

including powered by AI medical care, portable edges technology, including innovative 

industrial apps.  
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As a result, they need to be equipped with the most cutting-edge, high-security features on the 

market. Upon installation, every programme requests a list of permissions from the user. If 

granted the appropriate permissions, a user may infer the behaviour of any programme. Users 

are alerted to possible danger and may exploit abnormal application activity more easily when 

crucial permissions for capabilities and anticipated demands for permission are identified. This 

is how the permission-based method notifies the user prior to installation. Before allowing the 

programme to use their mobile device, the user is given the opportunity to weigh the risks. 

Cybercriminals produce 529,48 new families of malware year, according to Statista. Therefore, 

it's critical to recognise malware on cellphones. Malware may not download if it is found during 

the setup process. We want a technique that can quickly and accurately identify flawed code in 

order to thwart this massive onslaught. Scaling the detection for multiple uses is a difficult 

undertaking, however. is a serious problem that requires immediate attention? This study offers 

an efficient malware attack detection technique for (MADNET) for malware classification and 

detection as a defense against malware for Android. The following is the main achievement of 

MAD-NET.:(Arora et al., 2017). 

 

1.1 ANDROID MALWARE CATEGORIES AND FAMILIES 

Mobile malware is any spyware, including Android malware, that attempts to damage the target 

cellphone by carrying out an illegal action. Malware may be divided into smaller groups based 

on characteristics that distinguish each category..(Poornima & Mahalakshmi, 2024). Malware 

for Android is growing, much like humans. Under each group there are several families of 

viruses. The enormous danger presented by, which is the root cause of many internet security 

problems, is an unsolved subject for scholars and cybersecurity specialists. This danger can 

only be removed by early identification and remediation of malicious samples. Comprehending 

the many categories and variants of Android malware is vital in order to do this. The list of 

Mobile malwares and their families is shown in the summary below. 

 1. File Infector: Malware that has been concealed inside an APK file is known as a file attack. 

The data necessary to use the Android Package Kit, or APK, is included in the programme. 

APK files are used for downloading malicious files. When APK files are set up, malware is 

used. All Android apps, include editors, video games, as well as navigational aids, are included 

in the APK file. 

2. Software: Riskware is software that raises the possibility of security flaws in the system. 

Although it is a genuine software, its main objective is to monitor users' internet activities and 

send people to dubious online sites. It is often referred to as malware, and the security of the 

device is impacted by how well it works. Malware belonging to the following categories is 

often seentriada, skymobi, deng, jiagu, smspay, smsreg, tordow, mobilepay, wificrack, badpac, 

and skymobi. 

3. Ransomware:  This kind of virus encodes computer files and folders, making them 

inaccessible to users. To unlock the data, the code must be cracked. The most often seen strains 

of ransomware consist of lock screen, slocker, jisut, koler, congur, masnu, fusob, and smsspy. 

4. Trojan: This malware poses as reliable applications. They get data from the device and search 

the boot mechanism. The gugi, hqwar, obtes, gluper, lotoor, rootnik, guerrilla, and hypay 

Among the most well-known Trojan families are the Troy clans..(Rani & Ojha, 2020). 
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5. Adware: Adware is harmful software with an advertising display. Customers are exposed to 

unwanted adverts on their displays as a result of this malicious software, especially while they 

are using internet services. The adware entices user’s expensive products. Every time a user 

clicks on one of the advertisements, the maker of this annoying programme gets paid. 

 

 
Fig. 1. Malware classification and detection approach. 

 

6.Backdoor: Through the back doors, smartphones may be accessed in discreetly. Put 

differently, backdoors let attackers to bypass authentication and get extra rights, so giving them 

unrestricted access to devices. With the use of backdoors, one may remotely attack a target 

device without needing to be there in person. The families of Android Trojan horses that are 

often seen involve Droidkung.fu, Mobby, Kapuser, Hidad, Dendroid, Levida, Fobus, Moavt, 

androrat, kmin, and Pyls. (Kessedjian et al., 2010).  

7. Scareware:  Scareware a tactic used to trick people into downloading or buying dangerous 

software by instilling fear in them. Three prominent providers of malware are Fakeapp, 

Mobwin, & Avpass.  

8. Spyware: Spyware If spyware is installed on a machine; it might be able to steal personal 

data. Companies, other parties, or adverts may be able to access the data that spyware collects. 

Afterwards, this information is misused. Spy note, qqspy, spy dealer, smithies, spy agent, 

smszombie, and smforw are examples of a typical spyware family.  

9. PUA: Potentially unwanted apps, or PUAs, are legitimate, free software that include PUA. 

They are sometimes known as potentially undesirable programmes, or PUPs. For Android 

mobile devices, some of the most well-known PUA malware families include Apptrack, 

Secapk, Wiyun, Youmi, Scamapp, Utchi, Cauly, and Umpay..(Allison et al., 2016).  
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II LITERATURE REVIEW  

R. J. Mangialardo et.al (2015) This study addresses the challenges in malware analysis by 

proposing a unified approach that combines both static and dynamic techniques(Mangialardo 

& Duarte, 2015). By merging these methods, the research aims to mitigate evasion techniques 

used by malicious codes, enhancing the overall effectiveness of identification and 

classification. The integration of C5.0 and Random Forest machine learning algorithms within 

the FAMA framework demonstrates promising results, achieving an impressive 95.75% 

accuracy for binary classification and 93.02% for multiple categorization. Notably, the unified 

analysis consistently outperforms isolated static and dynamic analyses, showcasing its 

potential as a robust solution for comprehensive malware detection. Routa Moussaileb et.al 

(2018) This paper addresses the persistent threat of ransomware, highlighting its evolution from 

Reveton's attack in 2012 to more recent incidents like WannaCry and Petya(Moussaileb et al., 

2018). Introducing a novel approach, the study presents a graph-based countermeasure for 

ransomware detection, diverging from conventional metrics such as Shannon's entropy. Unlike 

existing methods, this mechanism relies on per-thread file system traversal, proving effective 

in identifying malicious behaviors. The research stands out as the first to explore this specific 

area, conducting experiments with over 700 active ransomware examples in a bare-metal 

sandbox environment, achieving accurate detection and providing a promising defense against 

evolving ransomware threats. S. Poornima et.al (2023) Cyber threats have escalated in 

response to the growing popularity of mobile devices, especially malware assaults targeting the 

Android platform(Poornima et al., 2023). A unique Malware Attack Detection system called 

MAD-NET is suggested as a solution to this problem. The method combines feature extraction 

and data classification into signature-based and behavior-based classes using the 

CICAndMal2017 datasets. When it comes to classification, When compared Generative 

Adversarial Networks and Long Short-Term Memory, a type Deep Belief Networks exhibit 

superior performance. Networks with an astounding 99.83% accuracy rate, MAD-NET proves 

its effectiveness in identifying and thwarting malware attacks on Android smartphones. 

Ahmed R. Nasser et.al (2023) Given the broad usage and open-source nature of the Android 

operating system, this article tackles the increasing difficulty of identifying malware in the 

system. With two primary detection models—deep Autoencoders for dynamic analysis and 

CNN-BiLSTM for static analysis—the suggested DL-AMDet makes use of a deep learning 

architecture. DL-AMDet's efficacy is shown by its remarkable 99.935% accuracy in combined 

static and dynamic analysis, which is obtained via the evaluation of its performance using two 

datasets. The research emphasises CNN-BiLSTM and Deep Autoencoders' importance in 

surpassing current methods and their usefulness in improving Android malware detection 

capabilities(Nasser et al., 2024).  

Alejandro Guerra-Manzanares(2023) Despite the apparent success in detection, this paper 

challenges the notion that the problem is solved. Through an extensive review of existing 

literature, it identifies five unresolved challenges, ranging from methodological flaws to dataset 

limitations. The research highlights the misconception that hinders further exploration in this 

field. By exposing these overlooked challenges, the paper motivates future research directions, 

emphasizing the need for a more nuanced approach to achieve effective and long-term solutions 

in the Android malware detection domain.  
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This comprehensive analysis encourages a reevaluation of the current state of the art and 

prompts further investigation into these persisting issues(Guerra-manzanares et al., 2023). 

Muhammad Azeem et.al (2023) Because of the (IoT) and ongoing technical breakthroughs, 

the Internet has become essential to communication and information in the digital era. 

However, cybersecurity faces difficulties due to the growing danger of malware. This research 

addresses malware identification and classification using state-of-the-art machine learning 

techniques, such as K-Nearest Neighbours, Extra Tree, Multilayer Perceptron. For the best 

feature selection, the study uses Term Frequency-Inverse Document Frequency and feature 

encoding using the UNSWNB15 dataset(Azeem et al., 2023). The research reveals that 

Random Forest is the most accurate model examined (97.68%), highlighting its effectiveness 

in improving internet security. Pascal Maniriho  et.al (2023) Here is a new deep learning-

based framework for Windows malware detection called API-MalDetect. With a hybrid feature 

extractor that combines CNNs and BiGRU, as well as an NLP-based encoder for API requests, 

the framework is very effective at detecting malware assaults that go undetected while causing 

the least amount of ROC across a range of datasets, API-MalDetect outperforms current 

methods by addressing temporal and spatial biases during training and testing. The technology 

not only efficiently separates malicious activity from benign activity, but it also identifies 

critical API calls for cybersecurity professionals(Maniriho et al., 2022). Furthermore, the 

dataset that is made available improves joint research projects in the field of cybersecurity. 

Wadha Al-Khater et.al (2023) Addressing the rising concern of malware detection and 

cybersecurity breaches, this study emphasizes the limitations of conventional antivirus 

software in identifying novel malware swiftly. The proposed solution involves countering 

imbalanced and insufficient malware datasets using the (FABEMD) technique. Employing 3D 

architectures, namely 3D VGG-16 and 3D Resnet-18, on the Malimg and MaleVis datasets, 

the experiment achieves impressive accuracy rates. Notablythe Res net-18 infrastructure 

demonstrates its effectiveness in identifying unknown malware in the early phases of 

implementation, with excellent performance of 99.64% and 99.46% for the Malimg and 

MaleVis datasets, accordingly. (Al-Khater & Al-Madeed, 2024). 

Elliot Mbunge et.al (2023) This review addresses the growing threat of cyberattacks on 

Android applications due to the widespread use of smartphones. Despite the surge in attacks, 

the application of (DL) models for detecting emerging malware in Android remains 

underexplored. Utilizing the PRISMA guidelines, the study identifies convolutional neural 

networks, gated recurrent neural networks, and other DL models as prominent in malware 

detection. While DL models prove effective in real-time detection, challenges persist in 

monitoring evolving malware behavior. The study underscores the importance of user training, 

sharing updated malware datasets, and pre-download detection to enhance Android smartphone 

security(Mbunge & Batani, 2023). Mumtaz Ahmed et.al (2022) This study highlights the 

crucial significance of machine learning in network security research and tackles the everyday 

creation of new variants and the dissemination of malware for criminal reasons. By modelling 

malware fingerprints as 2D pictures and using deep learning algorithms for classification on 

the BIG15 dataset, the research offers a fresh approach. Long Short Term Memory, 

Comparative comparison examples include Artificial Neural Network, , Transfer Learning on 

CNN, and Logistic Regression.  
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Classification accuracy on the examination dataset was 98.76%, while on the training dataset, 

it was an astounding 99.6%. transfer learning approach using InceptionV3 performs better than 

the competition, demonstrating its effectiveness in malware classification(Mumtaz et al., 

2023). Hani AlOmari et.al (2023) In light of the growing danger of malware for Android 

mobile devices, this article discusses the difficulties in developing effective detection systems. 

It assesses how well different machine learning algorithms perform and uses methods like 

Principal Component Analysis, feature normalisation, and synthetic minority oversampling to 

increase accuracy. A Light Gradient Boosting Model is included in the research to detect and 

categorise Android malware into five groups. By making use of a large and up-to-date dataset 

of 11,598 APKs that were obtained from various sources and made available by the Canadian 

Institute of Cybersecurity, the research advances efforts to address the persistent unresolved 

issue of Android malware categorization(AlOmari et al., 2023). Saddam Hussain Khan et.al 

(2023) This article discusses security risks in the context of the Internet of Things (IoT), 

highlighting the need of early identification to protect real-time devices managed by open-

source Android smartphones. In order to identify complex malware assaults, the proposed 

(DSBEL) framework combines ensemble learning with a new (SB-BR-STM) convolutional 

(CNN). With the use of boosting methods and multi-path dilated convolutional processes, the 

SB-BR-STM CNN performs well. By demonstrating its remarkable accuracy (98.50%), F1-

Score (97.12%), MCC (91.91%), Recall (95.97%), and Precision (98.42%), DSBEL's 

evaluation on the IOT_Malware dataset highlights its resilience and efficacy in timely malware 

identification for improved network security(Khan et al., 2023).  

Ali Muzaffar et.al (2022) With approximately 70% of mobile users using Android devices, 

the Android operating system faces a significant threat from malware attacks. Traditional 

signature-based detection struggles with the vast user and application diversity. This paper 

addresses the challenge by critically reviewing past research utilizing. Examining supervised, 

unsupervised, deep learning, and online the review categorizes them based on their utilization 

of static, dynamic, or hybrid features. Machine learning emerges as a promising solution, 

capable of addressing the evolving nature of Android malware and offering resilience against 

zero-day attacks without relying on predefined malicious signatures(Ali et al., 2022). Hamid 

Bostani et.al (2023) Researchers have long studied evasion attack vulnerabilities such assaults 

in actual situations has been questioned. This work presents Evade Droid, an adversarial 

problem-space approach intended to successfully evade black-box Android malware detection. 

Evade Droid builds transformations from benign donors using an n-gram-based method, 

obtaining high evasion rates (80%–95%) against different detectors with few queries. Notably, 

this method challenges conventional wisdom in adversarial attacks on Android malware 

detectors by maintaining stealthiness against well-known commercial antiviruses, proving its 

viability and efficacy in real-world scenarios where attackers have little knowledge of target 

classifiers(Bostani & Moonsamy, 2024). 

III. METHODOLOGY  

PROPOSED SYSTEM ARCHITECTURE 

The following are the main elements of the proposed malware classification and detection 

scheme: (ifeatures extraction; (ii) feature refinement/selection; (iv) classification; (vi) pre-

processing; and (iii) detection. Fig. depicts the recommended method's structure.  
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Fig. 2 Architecture of the proposed malware detection system 

Source: (Chowdhury et al., 2018) 

 

PRE- PROCESSING  

The files that have been obtained are binary code-containing raw executable archives that are 

kept in the file system. To meet our demands, they went through preparation. First, we run 

executables on a virtual machine (VM) that is safe. We utilise the PEid utility for extracting 

the encoded programmes. 

 

FEATURE EXTRACTION 

Static and dynamic analysis of executable files is the method used to extract features. In this 

study, we extract two kinds of characteristics from the malicious and cleaning software's 

downloadable files: N-gram's functionality and connections to Microsoft API(Chowdhury et 

al., 2018). 

N-gram Features  

Programme file segments with a length of n bytes are the substring sequences with n-gram 

characteristics. One advantage of the n-gram approach is the capacity to express the amount in 

words of n-gram lengths. We empirically discover that the best accurate results are obtained 

with n-grams of size 5, where each sequence has precisely 5 bytes. Using the n-gram feature 

acquisition approach, we are able to get the n-gram properties. 

Windows API Calls 

Malware behaviour may be revealed via API call information. The API list may be extracted 

thanks to the PE format of the executable files. A program's resource allocation and its handling 

by the operating system are described in the Portable Executable (PE) header. We disassemble 

the binary file using Interactive Disassembler Pro (IDA Pro), the most reliable disassembly 

tool, in order to inspect and take out the calls made by the Windows API. Any kind of file, 

playable and non-executable (such as ELF, EXE, PE, and so on), may be disassembled using 

IDA Pro. It provides user-defined plugin hooks and automatically detects API calls for different 

compilers, resulting in an extremely powerful solution with adjustable management and 

evaluation levels.(Syeda, 2024). 

To investigate the relevant application area, IDA Pro imports the selected file into memory as 

well as builds an IDA database. IDA Pro disassembles and searches through the file's binary to 

aggregate the many IDA database files into a single IDB file (.idb). By providing its internal 

resources via Users may create plugins for IDA Pro to use by using its API. The disassembling 

components are launched by the Ida python system, which is used to construct a.idb dataset. 

To enhance binaries evaluation, use.idb systems may be exported into MySQL databases using 

the ida2sql plugin. (.db). 
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With each binary executable, the ida2sql plugin creates sixteen tables (PI system calls along 

with the length (beginning and ending locations) of any function names that are difficult to 

understand. Every operation code (OP), together with its addresses and block discusses, are 

included in the directions table.(Tian, 2011). 

 

FEATURE SELECTION/REFINEMENT 

Following the n-gram feature extraction process, the chosen, and the top feature is evaluated 

by calculating the precision of a classifier in relation to the number of attributes chosen using 

various methods for selecting features. Principal Components Analysis (PCA) is the method 

used in this study to choose features. Because the PCA may reduce complexity, it is utilised to 

speed up operations. Its foundation is the discovery of just a few of orthogonal linear 

connections between the initial factors with the highest variance, which reduces a large number 

of factors into a fewer amount of uncorrelated variables. To improve the efficacy of detection 

and extraction of relevant API calls for every malware category, we further use the Class-wise 

document repetition (DCFS) dependent choice of features technique. identification. 

 

MALWARE CLASSIFICATION AND DETECTION 

Training and testing are the two phases of the procedure for categorization. The computer is 

given a set of benign and harmful files to work with throughout the training stage. Classifiers 

may be trained by an approach of training. The classification tagged data sets. In the evaluation 

phase, a classifier receives an array of fresh harmful and benign files to be identified as either 

malware or clean ware. We provide a novel hybrid malware classification framework in this 

study, shown in Fig. 2, that combines a multilayer perceptron (MLP) neural network with a 

binary associative memory (BAM). In order to speed up and improve the efficiency of 

categorization, the BAM reduces the feature matrix's dimensions. To identify and classify 

malware, the MLP with backpropagation algorithm is trained using a selection of features. The 

BAM networks' input layer receives the chosen malware dataset features, which provide 

reduced features as an output. The output of the BAM networks is then fed into the MLP neural 

network. There are exactly as many malwares in the dataset to be classified as there are nodes 

in the MLP output layer. This experiment has fifty thousand epochs with a minimal error 

margin of 0.002. 

 

 
Fig. 2: The proposed hybrid classification approach. 
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IV DATA SET 

This dataset includes 942 examples of good software (good ware) and 582 instances of 

ransomware, for a total of 1524 samples from dynamic analysis. By late February 2016, the 

dataset was obtained and examined using Cuckoo Sandbox. The publication has further 

information about the dataset (see below). 

The relationship between the SHA1 and MD5 of the programme under analysis (both 

ransomware and good ware) and the local IDS that we utilise in our dataset is included in the 

file IDS.txt. The following is a description of the header in that file: 

- ID: A local identifier used in our dataset. 

- SHA1: The software's hash identity. 

- MD5: This is the software's MD5 hash. 

- Ransomware: 1 for ransomware, 0 for good ware. 

- Ransomware Family: numeric identification for the ransomware family (same coding as 

described above). 

Performance Measure: 

The performance measures for the Logistic Regression and Random Forest Classifier models 

are crucial indicators of their effectiveness in predicting classes for the given dataset. For 

Logistic Regression, with a precision of 0.84 for class 0, it accurately predicts class 0 instances 

84% of the time. With a recall of 0.94, it can accurately identify 94% of real class 0 instances. 

Class 0's F1-score, which is a harmonic mean of recall and accuracy, is 0.89. Class 1 has 

comparable metrics: F1-score of 0.83, recall of 0.77, and accuracy of 0.91. The percentage of 

accurately identified occurrences out of the total is shown by the overall accuracy of 0.87 for 

Logistic Regression. The macro average F1-score is 0.86, giving equal weight to each class, 

while the weighted average F1-score, at 0.87, considers class imbalances. Comparatively, the 

Random Forest Classifier demonstrates exceptional performance. It achieves a precision of 

1.00 for both classes, indicating perfect predictions without false positives. The recall for class 

0 is 1.00, implying it identifies all actual class 0 instances. Class 1 recall is still very good, 

although it is significantly lower at 0.99. The F1-scores for both classes are 1.00, showcasing 

a harmony between recollection and precision. The precision of 1.00 indicates flawless 

classification across the dataset. The macro and weighted average F1-scores are also 1.00, 

underlining the model's consistent and high-quality predictions. These results highlight the 

Random Forest Classifier's robust performance, making it a strong candidate for this 

classification task. 

Algorithms Used: 

Two potent algorithms are used in the machine learning and deep learning approach to malware 

detection: Random Forest Classifier and Logistic Regression. Because it excels at binary 

classification, Logistic Regression is a great tool for separating dangerous software from 

benign software. With parameters like precision, recall, and F1-score—all important for 

accurate malware detection—it offers exact predictions. However, the Random Forest 

Classifier, with its ensemble of decision trees, is particularly good at handling complicated 

datasets and provides very good accuracy. By combining their powers to examine file 

properties and behavior patterns, these algorithms create an effective weaponry against 

malware that strengthens systems against possible cyberattacks. 
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Novelty  

 Data Import: You start by importing necessary libraries like pandas and numpy for data 

manipulation and handling. 

 Data Loading: You load a CSV file named "data_file.csv" into a pandas Data Frame df. 

 Data Preprocessing: You preprocess the data by dropping unnecessary columns ('md5Hash' 

and 'Filename') from the Data Frame using the drop () method. 

 Data Splitting: You split the dataset into features (X) and the target variable (y). The target 

variable, 'Benign', seems to indicate whether the files are benign or not. 

 Train-Test Split: You further split the data into training and testing sets using train_test_split 

() from scikit-learn. 

 Feature Scaling: You standardize the features using Standard Scaler () to ensure that each 

feature contributes equally to the distance computations in machine learning models. 

 Model Selection and Training: You choose logistic regression as your classification model, 

instantiate it using Logistic Regression (), and then fit the model to the training data using fit 

(). 

 

System Overview 

Using the processed feature sets as inputs, machine learning algorithms including neural 

networks classify the unknown malware (from the test dataset) to form one of the recognised 

malware families. Our DNN model is constructed using the Keras framework from Tensor 

Flow. To speed up the training process, we employed the CUDA 9 platform and NVIDIA's 

TITAN V GPU in our setup. 

 

Table 1 Evaluation metrics for different machine learning algorithms 

 

Algorithms precision  recall  f1-score  

Logistic Regression 
0.84 0.94 0.89 

0.91 0.77 0.83 

Random Forest Classifier 

1.00 1.00 1.00 

1.00 0.99 0.99 

 

 

The table presents evaluation metrics for two machine learning algorithms: Logistic Regression 

and Random Forest Classifier. For Logistic Regression, the precision, recall, and F1-score are 

0.84, 0.94, and 0.89 respectively in the first row, and 0.91, 0.77, and 0.83 in the second row. 

These metrics indicate the algorithm's performance in terms of correctly identifying positive 

instances (precision), capturing all positive instances (recall), and their harmonic mean (F1-

score). The Random Forest Classifier shows impeccable performance with perfect scores 

across all metrics in both rows, suggesting robustness in classification tasks without false 

positives or negatives. 
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Table 2. Performance metrics of various machine learning algorithms 

Algorithm Precision Recall F1-Score 

SGD 65.72 64.71 64.48 

Kneighbors 90.11 92.3 90.98 

Naïve Bayes 51.58 57.58 48.78 

SVC 13.56 15.31 11.09 

Logistic Regression 91.1 77.2 83.2 

Random Forest Classifier 100.00 99.1 99.1 

 

V.RESULTS  

 

RANSOMWARE FAMILIES 

The Ransomware samples belong to distinct families and are designated with the 

following codes.: 

 

FAMILY NAME ID 

Good ware 0 

Critroni' 1 

Crypt Locker' 2 

Crypto Wall' 3 

KOLLAH' 4 

Kovter' 5 

Locker' 6 

MATSNU' 7 

PGPCODER' 8 

Reveton' 9 

TeslaCrypt' 10 

Trojan-Ransom' 11 

 

Interpretation  

The provided image contains a table detailing various ransomware families and their 

corresponding codes. decryption. The table includes 11 families, such as Cryptoni and 

CryptoWall, each assigned a unique code. Notably, the table is not exhaustive, and new 

ransomware families continue to emerge. Common ones, like CryptLocker and TeslaCrypt, are 

highlighted for their characteristics. The summary advises protective measures, including 

software updates, cautious handling of email attachments, implementing robust backup 

systems, and using security software to detect and block ransomware. Following these 

precautions enhances protection against ransomware attacks. 

 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:596



SETS OF FEATURES 

The various feature sets are labelled with the following codes (see also VariableNames.txt): 

 
 

Interpretation 

The provided image depicts a batch file containing a table with distinctive sets of features for 

malware identification. Every feature set has a code and a description associated with it. These 

consist of directory operations, file operations, registry key operations, file operations, file 

extension details, and API information. operations, and embedded string analysis. This 

comprehensive information serves as a tool to identify malware by comparing the features of 

a suspicious file with known malware characteristics. A higher degree of shared features 

indicates a likelihood that the file in question is also malware, enhancing cybersecurity efforts.  

Table 2. Tabular representation of a dataset 
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The table displays a dataset containing various attributes of different files. Each row represents 

a file and its corresponding features such as filename, MD5 hash, machine type, debug 

information size and relative virtual address (RVA), major image and OS versions, export 

information RVA and size, Import Address Table (IAT) RVA, linker versions, number of 

sections, stack reserve size, DLL characteristics, resource size, presence of Bitcoin addresses, 

and benign/malicious classification. These attributes provide insights into the characteristics of 

each file, potentially aiding in tasks such as malware analysis or system monitoring. The 

presence of the "Benign" column suggests a binary classification indicating whether the file is 

considered benign or potentially malicious. 

 

Logistic Regression 

In this code snippet, a The setup of a logistic regression classifier is implied when a logistic 

regression model is created using the Logistic Regression () function. Furthermore, a 

RandomForestClassifier is allocated to the variable rfc after being imported from the scikit-

learn package. The RandomForestClassifier is then trained using the fit technique supplied 

training data (X_train and y_train).). This code suggests the implementation of both logistic 

regression and random forest classifiers, indicating an intention to compare or use these models 

for a classification task. 

 

Random forest classifier 

The provided code snippet demonstrates the assessment of the Random Forest Classifier along 

with Logistic Regression machine learning models, using the classification report from sklearn. 

metrics. First, Logistic Regression predictions (y_pred) are generated for the test data (X_test), 

followed by printing a classification report comparing these predictions with the true labels 

(y_test). This report provides metrics like precision, recall, and F1-score for each class. Next, 

the Random Forest Classifier predictions (y_pred) are computed for the same test data, and 

another classification report is printed. These reports are crucial for assessing the models' 

performance, highlighting their accuracy, precision, recall, and F1-scores, aiding in model 

selection and optimization. 

OUTPUT  

Logistic Regression         

  precision  recall  f1-score  support 

0 0.84 0.94 0.89 10678 

1 0.91 0.77 0.83 8068 

          

accuracy      0.87 18746 
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macro avg  0.88 0.86 0.86 18746 

weighted avg 0.87 0.87 0.87 18746 

Random Forest Classifier         

  precision  recall  f1-score  support 

0 1.00 1.00 1.00 10678 

1 1.00 0.99 0.99 8068 

          

accuracy      1.00 18746 

macro avg  1.00 1.00 1.00 18746 

weighted avg 1.00 1.00 1.00 18746 
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Interpretation  

This code snippet uses classification report to assess the effectiveness of two machine learning 

classifiers:. Regression analysis using logistic model's predictions are generated using the 

predict method, and its classification report, which includes precision, recall, and F1-score 

metrics, is printed for assessment. Subsequently, the Random Forest Classifier predictions are 

obtained and its classification report is printed as well. The classification reports each class. 

This comparison enables a comprehensive understanding of each model's performance in 

regard to categorization accuracy, aiding in the selection and refinement of the most suitable 

classifier for the specific task. 

 

Performance Metrics  

 
Interpretation  

The results display the performance metrics (precision, recall, and F1-score) for various 

machine learning algorithms in a classification task. The Stochastic Gradient Descent (SGD) 

and Support Vector Classifier (SVC) show lower scores, indicating struggles with precision 

and recall. K Neighbors and Logistic Regression perform well, with Logistic Regression 

notably excelling in precision. Naïve Bayes demonstrates moderate performance. The Random 

Forest stands out with perfect precision and high recall, indicating its effectiveness in this task. 

Accuracy  

 

0

20

40

60

80

100

120

SGD Kneighbors Naïve Bayes SVC Logistic

Regression

RandomForest

Performance metrics 

Series1 Series2 Series3

0
.8

7

1
.0

0

LO G IS T I C R E G R E S S I O N R A N D O M  F O R E S T  

C LA S S I F I E R

ACCURACY 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 12 (Dec) - 2024

http://ymerdigital.com

Page No:600



Interpretation  

The accuracy ratings for two distinct machine learning classifiers—Random Forest Classifier 

and Logistic Regression are shown in the graph. The percentage of properly categorized 

occurrences in the dataset, as a percentage of all instances, is called accuracy.  With an accuracy 

of 0.87 in this case, Logistic Regression accurately identified 87% of the dataset's occurrences. 

In contrast, the Random Forest Classifier accurately categorized every occurrence in the 

dataset, earning a flawless accuracy score of 1.00. This shows that, in this specific case, the 

Random Forest Classifier achieved ideal classification results by outperforming Logistic 

Regression in terms of accuracy. When choosing the best classifier for a job, it's crucial to take 

into account additional assessment metrics and possible trade-offs between performance and 

model complexity. 

 

VI CONCLUSION  

In this study, we introduced a system that took the malware files and extracted the Random 

Forest Classifier and Logistic Regression. We examined the accuracy derived from every one 

of these features throughout the experimental along with result section, and we showed that the 

feature vector regarding system calls produced the best accuracy. In the field of deep learning 

and machine learning for malware detection, the comparison between the Random Forest 

Classifier and Logistic Regression models reveals clear distinctions in performance. The 

Random Forest Classifier emerges as the superior choice, showcasing unparalleled precision 

and recall for class 0. Its capacity to recognise every occurrence of class 0 without any false 

positives or false negatives is a testament to its robustness. Conversely, Logistic Regression 

exhibits slightly diminished recall for class 1, suggesting potential missed detections in this 

category. Despite these variances, both models exhibit commendable accuracy, reflecting 

strong overall performance in malware detection. The Random Forest Classifier's perfect 

precision and recall for class 0 provide a solid foundation for detecting malicious software with 

precision and efficiency. Logistic Regression, while slightly less adept in certain aspects, still 

contributes significantly to the detection process. 

In conclusion, the Random Forest Classifier stands out as the preferred algorithm for malware 

detection in this study, offering impeccable performance metrics. However, the combined 

strength of both models' high accuracy underscores how well deep learning and machine 

learning techniques work as system strengtheners against cyber threats. This study highlights 

the importance of selecting appropriate algorithms to enhance malware detection capabilities 

in modern cybersecurity frameworks. 
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