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Structured abstract 

Background: Multi-drug resistance is the major impediment to chemotherapy, and most of the 

drug resistance in cancer cells emerges from over expression of specific proteins, such as P-

glycoprotein, which increases the efflux of chemotherapeutic agents from cancer cells especially 

from liver. Inhibition of certain types of proteins to eliminate the therapeutic inefficiency of 

chemotherapy has increased the need for a large number of attempts to develop effective P-gp 

inhibitors. Objective: The objective of the present study is to evaluate physicochemical 

properties, ADMEt parameters, and binding interaction of various flavones with P-gp (PDB Id. 

3G5U) to get the potential Pg-P inhibitor. Methods: In this study, we investigated the 
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physicochemical properties, ADMEt profile, and binding affinity of flavones. Verapamil which 

is a first-generation P-gP inhibitor is considered as a positive control. Prediction of binding 

affinity and molecular interaction of flavones with the potential binding cavity of P-gP were 

made with Molegro Virtual Docker while physicochemical properties and ADMEt profile were 

evaluated by SWISS ADME and pkCSM web servers, respectively. Results: The docking results 

reveal that out of 45 flavones, only 10 flavones having the MolDock score higher than 

verapamil; however, the MolDock score of 6-Prenylapigenin (4.7) was the highest among all the 

tested compounds.  Conclusion: The present study provides valuable information about the 

physicochemical properties, ADMAEt profile, and binding interaction of flavone; these 

compounds may serve as a potential lead to the development of new P-gP inhibitors to overcome 

multi-drug resistance in chemotherapy of liver cancer. 

Keywords 

Anticancer; Flavone; Molecular docking; ADMET; P-glycoprotein; P-gP inhibitors. 

 

1. Introduction  

Liver cancer is a deadly prevalent over other cancer, and chemotherapy is a preferred option for 

the treatment of cancer as well as microbial infections despite progressing resistance 

development[1-2]. Understanding of molecular mechanism involved in drug resistance is a 

meaningful effort since the chemotherapeutic agent develops resistance [3-6].  Complex 

molecular mechanism, including increased efflux of drugs[7], impaired drug influx[8], Alteration 

of drug target, Enhanced DNA damage repair[9],  enhanced drug extrusion mediated by MDR 

efflux transporters[10], intrinsic genetic and epigenetic alteration in drug-metabolizing 

enzymes[11], cellular senescence escape[12], tumor heterogeneity[13], ATP and ATP-mediated 

drug resistance[14], P-gp based drug resistance[15], receptor kinase based drug resistance[16], as 

well as anti-apoptotic mechanisms are involved in the progression of drug resistance[17-18]. 

Over expression of certain ATP-binding cassettes which produce the transporter-mediated 

resistance has been recognized as one of the major mechanisms among these aforementioned 

complex molecular mechanisms[19-20]. There are 48 members of the ABC transporter super 

family, which effluxes out a diverse group of substances such as drugs, toxins, ions, salts, lipids, 

cholesterol, peptides, and bile salts[21]. Nowadays, MDR causes over 90% failure of 
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chemotherapy in metastatic cancer patients [22]. The most prevalent of these MDR transporters, 

is P-glycoprotein (P-gp), a member of the ATP Binding Cassette (ABC) Super family[23].P-gp 

is an ATP-dependent efflux pump with broad substrate specificity, discovered in 1971 by victor 

ling[24]. This protein was identified for the first time in multidrug-resistant in 1974[25]. 

Glycoproteins are important integral membrane proteins that contain oligosaccharides chain 

covalently attached to amino acids side chain[26]. Plasma- glycoprotein is a cell surface protein, 

which acts as a localized drug transport mechanism actively exporting drug out of the cell and 

evolved as a defense mechanism against foreign harmful substances in fungi, bacteria as well as 

in animals[27]. P-glycoprotein, also known as multidrug resistance protein 1(MDR 1) or ATP- 

binding cassette sub-family B member-1(ABC B1),which is well-characterized ABC- transporter 

in human and encoded by the ABCB1 gene [28-30]. P-glycoprotein acts as an energy-dependent 

drug efflux pump and is composed of 1280 amino acids (170 kDa) organized in two 

transmembrane domains, each one comprised of twelve highly hydrophobic α-helices and two 

intracellular nucleotide binding regions with ATPase activity, these two ATP binding regions 

separated by a flexible linker polypeptide region [31].Intracellularly, there are two ATP-binding 

domains, which are also known as nucleotide-binding domains (NBDs), which constitute the 

power units of P-glycoprotein[32]. The NBDs are located in the cytoplasm and transfer energy to 

transport the substrates across the membranes. The structure of P-gp represents a nucleotide-free 

inward-facing conformation arranged as two “halves” with pseudo-two-fold molecular symmetry 

spanning ∼136 Å perpendicular to and ∼70 Å in the plane of the bilayer[33]. The nucleotide-

binding domains (NBDs) are separated by ∼30 Å. The inward-facing conformation, formed from 

two bundles of six helices, results in a large internal cavity open to both the cytoplasm and the 

inner leaflet[34].P-gp containing energy-dependent drug efflux pump encoded by the human 

MDR1 gene [29]. It is responsible for decreased drug accumulation in multidrug-resistant cells 

and often mediates the development of resistance to anticancer drugs[35]. This protein also 

functions as a transporter in the blood-brain barrier[36]. Efflux transporters such as P-

glycoprotein play an important role in drug transport in many organs[37]. In the gut, P-

glycoprotein pumps drugs back into the lumen, decreasing their absorption[38]. Drugs that 

induce P-glycoprotein, such as rifampicin, can reduce the bioavailability of some other drugs 

[37]. Inhibitors of P-glycoprotein, such as verapamil, increase the bioavailability of susceptible 

drugs[39]. P-glycoprotein is one of the drug transporters that determine the uptake and efflux of 
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a range of drugs[40]. This process affects their plasma and tissue concentrations and ultimately 

their final effects [32]. P-glycoprotein functions as a transmembrane efflux pump, pumping its 

substrates from inside to outside the cell. P-glycoprotein is a major barriers that can actively 

efflux out the variety of therapeutic agents and reduce the bioavailability of different 

drugs[41].MDR1 and MDR3 are two members of the P-gp gene family, which exist in humans, 

whereas MDR1A, MDR1B, and MDR2, are found in animals[42]. The human MDR1is widely 

distributed and is known to excrete a wide range of drugs across the cell membrane. However, 

MDR3 shows its highest expression in the canalicular membranes of hepatocytes[23]. The 

human MDR1 is ubiquitously expressed and is perhaps one of the most significant ABC 

transporters for drug disposal in humans and thus carries pharmacological importance. It has 

been identified as a primary cause of MDR. P-gp shows MDR by affecting the absorption, 

distribution, excretion, and metabolism of drugs that reduce the effectiveness of certain drugs 

like anticancer, antibiotic, antidepressant, antihypertensives, antiarrhythmic, calcium channel 

blockers, immunosuppressant, HIV protease inhibitors, and cardiac glycosides[43-45]. The 

overexpression of P-gp which pumps chemotherapeutic drugs outside the cell via ATP 

hydrolysis is the major mechanism of drug resistance[46]. By this process, P-gp restricts the 

intracellular retention and cytotoxicity of chemotherapeutic agents and manifests an MDR 

phenotype to the tumor. Hence inhibition of p-gp could play important role in cancer 

chemotherapy, treatment of HIV as well as antimicrobial therapy. The nature of interaction of a 

particular compound with a receptor or protein detects it either as a P-gp inhibitor or substrate or 

an inducer[47]. Based on their affinity, specificity, and toxicity, P-gp inhibitors are classified 

into three generations and the chemical structures are given in Fig. 1[31]. 

The First Generation inhibitors are- verapamil, cyclosporine A, vincristine, reserpine, 

tamoxifen, trifluoperazine, etc, and the Second Generation inhibitors are- dexniguldipine, 

elacridar, dofequidar, and cyclosporin D derivative i.evalspodar while inhibitors that belong to 

the third Generation are- tariquidar, zosuquidar, laniquidar, annamycin. P-gp inhibitors/blockers 

are potential enhancers for the cellular bioavailability of several clinically important anticancer 

drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins[48-50]. Besides 

several chemically synthesized P-gp inhibitors/ blockers, some naturally occurring compounds 

and plant extracts were reported for their modulation of multidrug resistance[51]. Inhibition of P-

gp by herbal constituents is an innovative technique for reversing drug resistance in 
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chemotherapies [42, 52-53]. Therefore, many efforts are currently being done to find natural 

compounds from plant sources that inhibit P-gp, reverse the MDR phenotype and sensitize the 

target cells to conventional chemotherapy without undesirable toxicological effects[54]. The 

inhibitors of P-gp are obtained from various natural sources in the form of alkaloids, flavonoids, 

coumarins, resins, saponins, terpenoids, and miscellaneous other species [23, 55]. 

Flavonoids are the secondary metabolites of plant polyphenols having structural arrangements of 

two benzene rings (Ring A & B) attached with an oxygen-containing six-membered heterocyclic 

pyran ring (Ring C)[56-57]. According to the attachment pattern of ring B at the varying position 

of the pyran ring (ring C), the flavonoids are categorized into three main groups including- 

flavonoid (ring B is linked at C-2 of Pyran ring), isoflavonoids (ring B is linked at C-3 of Pyran 

ring) and neoflavonoids (ring B is linked at C-4 of Pyran ring)[58]. Based on unsaturation and 

varying hydroxy substitution of heterocyclic pyran ring (ring C), the flavonoid is further 

categorized into flavone, flavonols, flavanone, and flavan compounds (Fig. 2). Flavone belongs 

to the flavonoid subgroup of polyphenols with a basic 15-carbon phenylpropanoid skeleton (C6-

C3-C6 core) containing a double bond between C-2 and C-3 with a carbonyl group at the C-4 

position[59].Flavonoid compounds like flavones are nonessential dietary factors present in 

regular human diets are generally occurring in green vegetables, fruits, soybean oils, tea, and 

chocolate[60]. One significant link between the human diet and the prevention of chronic 

disorders such as cancer has been set up by these flavones. Flavones are already reported as an 

antiallergic[61], antioxidant[62], anti-inflammatory[63], hepato protective[64], antiviral[65], 

antiproliferative[66], anticarcinogenic activities[67-68], and estrogen-like activities[69]. In the 

present study, we analyzed the physicochemical properties, ADMEt parameters, and also 

performed molecular docking simulation of 45 flavones with P-gp (PDB Id. 3G5U), and 

compared all the results with verapamil, which is taken as a standard Pg-P inhibitor. 

2. Material and methods 

2.1. Ligand preparation 

The chemical structures of 45 flavones were drawn by using Chem Draw Professional 15.0 these 

structures were further subjected to Chem 3D software for energy minimization. The energy 

minimization was done with the molecular mechanics (MM2) tool of Chem 3D software[70]. 

The root-mean-square (RMS) gradient value was set up at 0.0001 kcal/mol Å for the geometrical 
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optimization and the process was run until the RMS value reaches to lesser than 0.0001 kcal/mol 

Å. These energy-minimized ligands were imported into the Molegro Virtual Docker software 

workspace and further ligand preparation was done to assign bond order & hybridization and 

detect flexible torsions & create explicit hydrogen if missing[71].  

2.2. Prediction of ADMEt score and physicochemical properties of flavones 

Screening of physicochemical parameters of desired compound is important to get an idea of 

whether this leads to having a drug-like activity or not. The SWISS ADME 

(http://www.swissadme.ch/) [72] and pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction) 

[73]server was used to predict physicochemical properties and ADMEt profile of flavones 

respectively. To predict the physicochemical property and ADMEt profile of flavones the 

SMILES of all selected flavones were generated in Chem Draw Professional 15, furthermore, 

these SMILES were pasted in the respective webserver to find the desired results[74]. Various 

parameters that exhibit physicochemical properties of flavones were predicted by the SWISS 

ADME server and obtained parameters are molecular weight, Log P, hydrogen donor, hydrogen 

acceptor, total polar surface area, and the number of rotatable bonds. Assessment of ADMEt is a 

critical step to determine the absorption, distribution, metabolism, excretion, and toxicity profile 

of lead compounds in the early stage of drug discovery[75]. Different parameters related to 

ADMEt properties of lead compounds were evaluated by using pkCSM webserver and the 

obtained parameters are Caco2 permeability, intestinal absorption, skin permeability, VDss, BBB 

permeability CNS permeability, effect on cytochromes P450 and P-gp substrate, total clearance, 

renal OCT2 substrate, AMES toxicity, and hepatotoxicity were well correlated with a standard 

value. 

2.3. Protein preparation and receptor grid generation 

The x-ray crystal structure of P-glycoprotein (PDB Id. 3G5U) at a resolution of 3.80 Å was 

retrieved from RCSB protein data bank having a total structure weight of 286.14 kDa, atom 

count 18352, sequence length 1284, unique protein chain 1,and complex with Mercury Hg2+ as a 

cofactor Fig. 3[33, 76]. The retrieved protein was imported into Molegro Virtual Docker 

software to repair the warning errors and preparation for docking. Maximum five cavities where 

ligand can bind were detected with the volume size of 1520.64 Å3, 160.256 Å3, 99.328 Å3, 

66.048 Å3, and 70.656 Å3. For the molecular docking study, the highest volume occupied cavity 
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(1520.64 Å3) was selected out of the detected five cavities and the detail of all detected cavities 

are shown in Table 1. Then the receptor grid generation was done to specify the binding site of 

the protein where ligand can bind. The center coordinates of protein were set with a grid spacing 

of 0.30 Å, the grid size was 59.67×75.63×51.38 point and the binding site radius was 20Å. 

2.4. Molecular docking study 

Molegro Virtual Docker (MVD 20019.7.0.0) developed by: Molexus IVS, Denmark was used for 

molecular docking of flavones with Plasma-glycoprotein[71]. MVD provides an integrated 

environment for ligand and protein interaction by flexible ligand docking[77]. Verapamil as 

reference standard along with all the energy minimized ligand of flavone compounds were 

imported into the pre-saved workspace of MVD having optimized P-glycoprotein. Molecular 

docking simulation of ligand was done with most potential binding sites of the highest volume 

occupied cavity (cavity 1 with a volume size of 1520. 64 Å3), the verapamil was used as a 

positive control to check the reliability & accuracy of docking simulations. The grid-based 

scoring function of Molecular docking simulation at 0.3 Å grid resolutions was done with 

MolDock SE (MolDock Simplex Evolution) search algorithm with 10 runs and 50 population 

size[71]. Other parameters such as maximum iterations, binding site radius, and RMSD were set 

to 1500, 20 Å, and 1.00 Å respectively[78]. Total 10 number of runs means ten times docking 

simulation was repeated for each ligand and returning to a single final pose. For the analysis of 

binding interaction with target P-glycoprotein (H-bond and steric interaction), the highest 

MolDock score was selected[79]. 

3. Result and Discussion 

Multidrug resistance (MDR) represents a major challenge in cancer chemotherapy because it 

limits the effectiveness of many clinically important drugs[46, 80]. In humans, two closely 

related genes, MDR 1 and MDR2 or MDR3 (the so-called multidrug-resistance genes), encode 

highly homologous P-glycoproteins[81]. Only the MDRlgene has been linked to then multidrug-

resistance phenomenon however[37]. Many cancers fail to respond to chemotherapy by 

acquiring MDR, to which has been attributed the failure of treatment in over 90% of patients 

with metastatic cancer[82].  Although MDR can have several causes, one major form of 

resistance to chemotherapy has been correlated with the presence of at least three molecular 

“pumps” that actively transport drugs out of the cell[26, 83]. The normal excretion of xenobiotic 
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back into the gut lumen by p-gp and reduce efficacy of some pharmaceutical substances, those 

substances effluxes by p-gp are called substrate for p-gp[84]. There are several p-gp substrate 

are- lipids[85], steroid[86], xenobiotic[87], peptide[88], bilirubin[89], cardiac glycoside[90], 

immunosuppressive agent[91], glucocorticoid[92] and various chemotherapeutic 

agents[93].According to some published reports, several isolated pure plant compounds have 

resistance modulating activity by inhibiting P-gp[94]. Natural molecules have structural 

diversity, which provide a valuable tool in the search of highly target specific P-gp inhibitors 

[50]. It has been observed that many P-gp inhibitors from natural sources are very non-specific, 

but less toxic in nature [41]. Therefore, due to their low toxicity level, the research on natural P-

gp inhibitors is getting more and more attention nowadays[95]. The main challenges of using 

natural products instead of conventional inhibitors are structural diversity and non-specific target 

bindings [96]. Some of the plant-based bioactives are reported to involve non-specific P-gp 

inhibition, and the process could affect other proteins and enzymes[42]. Therefore, it is necessary 

to use some standard methods to evaluate all-natural molecules to avoid this contradiction 

through specific and targeted research [97]. Therefore, efforts to develop effective P-gp 

inhibitors with less toxicity, high specificity, and different mechanisms of action are completely 

logical [42].Several compounds of flavone category, including chrysin [98], oroxylin A [99], 

hesperidin [100], apigenin [101], baicalin [102], wogonin [103], sinensetin[99], and 

tangeritin[104], etc. have been reported to inhibit P-gp mediated efflux and enhance the 

accumulation and efficacy of anticancer drugs[105].  

Therefore, we decided to select additional flavonoids to screen their interaction with the P-gP 

binding pocket, which can also have Pg-P inhibitory activity. In present study we have selected 

45 flavone compounds for analysis purposes and compared the physicochemical properties, 

ADMEt profile, and molecular docking study results of all selected flavones with verapamil as a 

reference standard. The chemical structures of all selected flavones are given in Fig. 4. 

 

3.1. Prediction of ADMEt score and physicochemical properties of flavones 

The physicochemical property of chemical compounds influences the ability of a chemical 

compound to elicit a pharmacological and or therapeutic effect with physical properties and 

chemical properties[106]. Evaluation of physicochemical properties at the optimum level is an 

elemental segment to determine the solubility of drug-like compounds[107]. SWISS ADME 
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server predicts all the parameters required for Lipinski’s rules[108] and Veber’s rules [109]of 

drug-likeness. According to Lipinski’s rules thelogP< = 5, Molecular weight < = 500, number of 

hydrogen bond acceptors < = 10, number of hydrogen bond donors < = 5, while Veber’s rules is 

based on the total polar surface area (TPSA < = 140 Å2) and number of rotatable bonds (No. of 

rotatable bond < = 10) of compounds. For the prediction of ADMEt parameters the pkCSM web 

server was used which predicts all relevant parameters of absorption (Caco2 permeability, 

intestinal absorption, Skin permeability), distribution (VDss, BBB permeability, CNS 

permeability), Metabolism (Pg-P substrate, effect on cytochromes P450), excretion (total 

clearance, renal OCT2 substrate), and toxicity (AMES toxicity, hepatotoxicity) of 45 flavones 

including verapamil as reference P-gp inhibitor. According to the pkCSM web server, less than 

30% intestinal absorption is considered a poorly absorb the drug, for skin permeability log Kp> -

2.5 considered as relatively low skin permeable, and Caco2 permeability (log Papp > 0.9 is 

considered as high Caco2 permeable. The volume of distribution, BBB permeability, and CNS 

permeability has been considered as critical parameters to understand the distribution pattern of 

drugs[110]. The PkCSM give the predefined value of log VDss< -0.15 (VDss< 0.71 L/kg) and 

log VDss> 0.45 (VDss> 2.81 L/kg) is considered as drug with low volume of distribution and 

drug with high volume of distribution respectively. To understand the BBB permeability the 

pkCSM webserver considered the drug with logBB< -1 is poorly distributed to the brin while 

drug having logBB> 0.3 can readily cross the BBB. Moreover, drugs having logPS> -2 can 

easily penetrate the CNS while drugs with logPS< -3 are unable to penetrate CNS. The inhibitory 

effect of Cytochrome P450 and P-gP are important parameters to understand the metabolism 

pattern of drugs. To understand the excretion rate of the drug the PkCSM webserver measure the 

drug clearance by the proportional constant i.eCLtot which is given in log (ml/min/kg). The 

predicted result of physicochemical properties and ADMEt profile of 45 flavonoids including 

verapamil as a reference drug is tabulated in the Table 2. The obtained parameters of 

physicochemical properties result showed that among the 45 screened compounds, there were 

only 26 compounds, including 4.1. 4.2. 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.10, 4.12, 4.14, 4.17, 4.18, 

4.20, 4.22, 4.23, 4.24, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32, 4.41, 4.42, and 4.43, follow Veber’s rule 

& Lipinski’s rule of five.  

 

3.2. Molecular Docking Study  
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All the flavones along with verapamil as a positive control were subjected to the molecular 

docking study with P-gp to predict the ligand-target binding interactions by using Molegro 

Virtual Docker.After successful ligand-protein docking, various outcomes such as Mol Dock 

score, Rerank Score, and H-bond score were obtained which are further used to understand the 

ligand-protein binding affinity. The MolDock score is the best plausible orientation of the ligand 

which applies piecewise linear potential (PLP) for the calculating of stearic energy while the 

weighted combination of the energy terms with MolDock score denoted by Re-rank score which 

represents the accuracy of molecular docking study. The strength of hydrogen bond interaction 

between ligand and the target protein is represented by the H-bond score. The result of molecular 

docking simulation of flavones with potential binding cavity (1) of P-gP (PDB Id. 3G5U) is 

tabulated in Table3, which contains MolDock score; Re-rank score and H-bond score. After the 

successful completion of the molecular docking study, the MolDock score and Rerank score of 

Verapamil with P-gp protein was found -79.6711 Kcal/mol and -38.3384 Kcal/mol respectively. 

The molecular docking study reveals that verapamil shows the steric interaction through the 

residues Asp382 (A) and Tyr461(B) while hydrogen bond interaction through the residue 

Tyr461(A) and Lys380(B) of P-gP. The obtained molecular docking results were compared with 

standard P-gP inhibitors, and it has found that out of 45 flavones only 10 flavones having the 

MolDock score higher than verapamil; however, the MolDock score of 6-Prenylapigenin (4.7) 

was highest among all the tested compounds and it shows the steric interaction through the 

residues His379(B), Pro381(B), Asp382(B), and Asn458(B) as well as hydrogen bond interaction 

through the residue Ser377(B) and Lys380(B) of P-gP. The 2D and 3D interaction diagrams of 

verapamil and flavones exhibiting highestMolDock score with target P-gP within the constraints 

of the highest volume occupied cavity 1 is pictured in Fig 5 and Fig 6 respectively. 

Nobiletin (4.5) exhibits the MolDock score of -131.488 Kcal/mol and the Re-rank score of -

67.9994 Kcal/mol. It shows H-bond interactions with Ser377(B), Lys380(B), Glu464(B), and 

steric interactions with Pro381(B), asn458(B), Tyr461(B), residues of the target. Entadanin 

(4.30) is the compound that exhibits the third-highest MolDock score of -102.911 Kcal/mol with 

the Re-rank score of -78.2184 Kcal/mol, it shows hydrogen bond interactions with Ser377(B), 

Gly378(B), Asp458(B), Arg460(B) the residues and steric interactions with Lys 376(B), 

His379(B), Asn458(B) residues of the target protein. Diosmetin (4.18) shows the hydrogen bond 

interactions with the Ser375(A), Ser377(A), Arg460(A), Glu464(A), Asp490(B), Glu495(B) 
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residues and steric interaction with Ser375(A), Lys376(A), Arg460(A) residues of P-gP with 

MolDock score of -100.986 Kcal/mol and Re-rank score of     -60.2849 Kcal/mol.Vitexin (4.33) 

exhibits the MolDock score of -88.7793 Kcal/mol and Re-rank score of -79.3577 Kcal/mol. The 

hydrogen bond interaction of vitexin with P-gP target was seen at  Ser377(B), Gly378(B), 

Lys380(B), Pro381(B),Lys546(A) residues while it shows stearic interactions with His379(B), 

Pro381(B), Ile384(A) residues.Licoflavone (4.27) exhibits the MolDock score of -88.5816 

Kcal/mol and Re-rank score of -78.6427 Kcal/mol. It shows hydrogen bond interaction with 

His149(A), Arg460(A), Asp490(B), Thr492(B), Gln910(A) and stearic interaction with 

His149(A), Thr492(B), Glu909(A) residues of target protein. The MolDock score and Re-rank 

score of Apigenin(4.14) is -88.2421 Kcal/mol and -78.6427 Kcal/mol respectively and it shows 

stearic interaction with Lys376(A), Ser375(A),Glu495(B), Ala999(B), Val542(B) and hydrogen 

bond interactions with His149(A), Lys368(A), Glu495(B), Lys498(B) residues of P-gP pocket. 

The MolDock score of the compound 6-hydroxyflavone (4.8) was -88.2311 Kcal/mol and Re-

rank score was -78.6339 Kcal/mol. It shows hydrogen bond interaction to Ser377(B), Glu464(B), 

Asp490(A) residues and stearic interactions to Asp382(B), Asn458(B), Arg460(B) residues of 

target protein. Wogonin (4.31) shows the H-bond interactions at Ser375(A), Lys376(A), 

Ser377(A), Lys380(A) residues and stearic bond interactions at Ser375(A), Lys376(A), 

Lys380(A),Asn458(A), Arg460(A) residues of the P-gP with the MolDock score of -87.7968 

Kcal/mol and Re-rank score of -82.547 Kcal/mol. Amentoflavone (4.21) exhibits the MolDock 

score -80.6874 Kcal/mol and Re-rank score of -70.5523 Kcal/mol, which shows hydrogen bond 

interactions with Ser377(B), Lys380(B) and stearic interactions with Asp382(B), Asn458(B) 

residues of the target protein. 

Conclusion 

P-gp can expel a broad range of structurally different exogenous compounds out of the cells. For 

this reason, a very active P-gp transporter could potentially diminish drug delivery to the target 

organ and has been correlated to treatment resistance, despite peripheral drug concentrations that 

are within their therapeutic range. As a result, P-gp mediated drug efflux is recognized as a 

desirable target for therapeutic intervention in order to target and optimize the drug delivery of 

drugs to tumor cells [111]. Inhibition of P-gp leads to an increase in the permeability of some 

target organs[112]. This result could permit administering lower drugs oral doses, and it may 

help to decrease drug toxicity. Some plant-based molecules are also active against microbial 
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efflux systems and some are active in both humans and microbes, so there may be a probability 

those molecules that are active against microbial efflux systems may affect the efflux system in 

cancer cells. Further research is needed to prove this hypothesis and find new novel P-gp 

inhibitors. Finally, modern experimental methodologies and techniques, such as structure-

activity relationships (SAR), quantitative structure-activity relationships(QSAR), 3-dimensional 

structure-activity relationships (3DQSAR), and pharmacophore studies should also be taken into 

consideration and should be regarded as an important guiding tool for the modern researchers in 

discovering very selective and potent P-gp inhibitors[113].This study provides a piece of 

valuable information about the physicochemical properties, ADMAEt profile, and flavone 

binding interaction with the bonding cavity of P-gP as a target protein; however, the result of this 

study indicate that these compounds can serve as potential lead to the development of new P-gP 

inhibitors to overcome multi-drug resistance in chemotherapy. 

Figure legends: 

Figure 1: Representation of classification of P-gp inhibitors along with their chemical structures. 

Figure 2: Representation of chemical structure of basic flavonoid system with its varying 

subclasses. 

Figure 3: Predicted binding cavity 1 (green) of P-gp (PDB Id. 3G5U). 

Figure 4: Chemical structures of the natural flavone selected for screening in the present study. 

Figure 5: The 2-D molecular docking view of verapamil and flavone exhibiting highest 

MolDock score; 6-Prenylapigenin (4.7) is shown in (a) and (b) respectively. 

Figure 6: The 3-D molecular docking view of verapamil and flavone exhibiting highest 

MolDock score; 6-Prenylapigenin (4.7) is shown in (a) and (b) respectively. 
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Figure 2 
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Figure 3 

  

Binding Cavity 1 
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Figure 5 
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Figure 6 
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Table 1Predicted potential binding cavities (1–5) within P-gp (PDB Id.3G5U) along with their 

volume, surface area and position coordinates. 

Cavity Volume Area (Å3) Surface Area (Å2) Position co-ordinates (Å) 

X Y Z 

1 1520.64 3333.12 61.5715 80.4877 50.8652 

2 160.256 540.16 8.3139 57.8180 17.7671 

3 99.328 386.56 11.9955 83.2312 62.7272 

4 66.048 284.16 71.0084 23.2991 65.2342 

5 70.656 208.64 10.1031 43.7275 7.9668 
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Table 2 In silico predicted ADMET and physicochemical properties of the flavones implicated 

for the designing of lead-like P-gP inhibitors. 

Name of 

Flavones 

Physiochemical Parameters ADMEt Profile 
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Verapamil 454.6 5.093

1 

0 6 63.95 13 1.33

6 

97.362 -2.774 0.871 -0.218 -2.48 CYP3A4 

inhibitior 

Yes 1.023 No No No 

Luteoline 

(4.1) 

286.24 2.282

4 

4 6 111.1

3 

1 0.21

8 

78.901 -2.735 -0.218 -1.326 -2.45 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

CYP2C9 

inhibitior 

Yes 0.556 No Yes No 

Baicalin 

(4.2) 

270.24 2.576

8 

3 5 90.9 1 0.99

7 

95.472 -2.735 -0.506 -1.219 -2.296 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

Yes 0.252 No No No 

Scutellarin 

(4.3) 

460.39 0.511

4 

7 11 198.1

2 

4 -

0.47 

32.747 -2.735 -0.114 -1.988 -4.651  Yes 0.63 No No No 

Hesperetin 

(4.4) 

300.26 2.585

4 

3 6 100.1

3 

2 0.71

3 

83.152 -2.899 0.263 -1.027 -2.322 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

Yes 0.648 No No No 

Nobiletin 

(4.5) 

402.39 3.511

6 

0 8 85.59 7 1.50

5 

100 -2.738 -0.452 -1.16 -2.992 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP3A4 

inhibitior 

Yes 0.897 No No No 

Sinensetin 

(4.6) 

372.37 3.503 0 7 76.36 6 1.40

7 

100 -2.74 -0.12 -0.952 -2.935 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP3A4 

inhibitior 

No 0.886 No No No 

6-

Prenylapige

nin (4.7) 

338.35 4.085

5 

3 5 90.9 3 0.85

8 

92.167 -2.738 0.027 -1.049 -2.072 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

Yes 0.475 No No No 

6-

Hydroxyfla

vone (4.8) 

238.24 3.165

6 

1 3 50.44 1 1.25 94.327 -2.744 -0.233 0.297 -1.747 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP2D6 

inhibitior 

Yes 0.277 Yes Yes No 
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Neoeriocitri

n (4.9) 

596.49 -

2.462

8 

10 16 269.4

3 

6 -

0.48

8 

5.168 -2.735 -0.18 -2.387 -5.898  Yes 0.17 No Yes No 

Negletein(4.

10) 

284.26 2.879

8 

2 5 79.9 2 1.00

9 

94.206 -2.784 -0.352 -0.298 -2.132 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP3A4 

inhibitior 

Yes 0.311 No Yes No 

Neohesperi

din (4.11) 

610.52 -

2.159

8 

9 16 258.4

3 

7 -

0.24

5 

9.68 -2.735 -0.241 -2.216 -5.791  Yes 0.278 No No No 

6- 

Aminoflavo

ne (4.12) 

237.25 3.042

2 

1 2 56.23 1 1.33

1 

96.07 -2.729 -0.034 0.204 -1.725 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP2D6 

inhibitio 

Yes 0.34 Yes Yes No 

Alopecuron

e A (4.13) 

648.7 8.050

3 

6 9 160.8

2 

8 0.11 100 -2.735 -1.003 -1.867 -2.96  Yes -1.071 No No No 

Apigenin 

(4.14) 

270.24 2.576

8 

3 5 90.9 1 1.11

8 

91.433 -2.737 -0.308 -1.069 -2.185 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.592 No No No 

Alopecuron

e D (4.15) 

662.72 8.353

3 

5 9 149.8

2 

9 -

0.22

2 

100 -2.735 -1.052 -1.79 -2.839  No -0.907 No No No 

Baicalin 

(4.16) 

446.36 0.142

2 

6 11 187.1

2 

4 -

0.61

2 

30.333 -2.735 -0.695 -2.016 -4.727  Yes 0.276 No No No 

Chrysin 

(4.17) 

330.29 2.594 3 7 109.3

6 

3 0.36

9 

77.89 -2.736 -0.053 -1.317 -3.261 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

Yes 0.658 No No No 

Diosmetin 

(4.18) 

300.26 2.585

4 

3 6 100.1

3 

2 0.99

5 

77.107 -2.736 -0.039 -1.147 -2.421 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

Yes 0.722 No No No 

Hesperidin 

(4.19) 

606.57 -

0.426

1 

8 14 228.9

7 

7 -

0.34

2 

27.877 -2.735 -0.2 -1.89 -5.223  Yes 0.21 No Yes No 

Techtochrys

in (4.20) 

59.67 3.174

2 

1 4 59.67 2 1.32

5 

97.046 -2.47 0.006 0.247 -1.914 CYP1A2 

inhibitior 

CYP2C19 

inhibito 

Yes 0.472 Yes No No 

Amentoflav

one (4.21) 

538.46 5.134 6 10 181.8 3 0.07

7 

82.666 -2.735 -1.202 -2.181 -3.241  Yes 0.636 No No No 

Tangeritin 

(4.22) 

372.37 3.503 0 7 76.36 9 1.42

9 

99.904 -2.739 -0.326 -0.942 -2.958 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibitor 

CYP3A4 

inhibitior 

No 0.862 No No No 

Jaceosidin 

(4.23) 

332.26 2.437

2 

4 8 129.5

9 

3 0.39

5 

69.214 -2.735 -0.111 -1.546 -3.465 CYP1A2 

inhibitior 

Yes 0.631 No No No 

Corylifol C 

(4.24) 

338.35 4.085

5 

3 5 90.9 3 0.85

4 

91.118 -2.735 -0.557 -1.084 -1.978 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.312 No No No 
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Artonin 

(4.25) 

674.69 7.846

7 

8 10 192.0

5 

7 -

0.28

2 

96.854 -2.735 -0.499 -2.359 -3.241  Yes 0.441 No No No 

Atocarpin 

(4.26) 

436.5 5.763

3 

3 6 100.1

3 

6 0.81

3 

93.766 -2.735 -0.662 -1.234 -1.953 CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.474 No No No 

Licoflavone 

(4.27 

338.35 4.085

5 

3 5 90.9 3 0.95

8 

90.112 -2.735 -0.632 -1.128 -1.959 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.413 Yes No No 

Semilicoisof

lavone B 

(4.28) 

352.34 3.761 3 6 100.1

3 

1 0.71 95.782 -2.789 0.297 -1.06 -2.022 CYP1A2 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

CYP1A4 

inhibitior 

Yes 0.215 No No No 

Oroxylin A 

(4.29 

284.26 2.879

8 

2 5 79.9 2 1.02

7 

95.112 -2.806 -0.187 0.077 -2.233 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.382 No No No 

Entadanin 

(4.30) 

344.27 2.183

4 

4 8 129.5

9 

1 0.66

5 

76.426 -2.735 0.049 -1.459 -3.61 CYP1A2 

inhibitior 

Yes 0.518 No Yes No 

Wogonin 

(4.31) 

284.267 2.879

8 

2 5 79.9 2 0.92 94.964 -2.762 -0.216 -0.041 -2.298 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Yes 0.429 No No No 

wogonoside 

(4.32) 

460.39 0.445

2 

5 10 176.1

2 

5 -

0.40

8 

36.482 -2.735 -0.934 -1.883 -4.763  Yes 0.404 No No No 

Vitexin 

(4.33) 

432.38 0.091

7 

7 10 181.0

5 

3 -

0.30

3 

50.293 -2.735 -0.008 -2.048 -4.611  Yes 0.662 No Yes No 

Isovitexin 

(4.34) 

430.4 0.755

3 

7 9 171.8

2 

3 -

0.07

1 

49.266 -2.735 0.016 -1.969 -4.301  Yes 0.617 No Yes No 

Orientin 

(4.35) 

448.38 -

0.202

7 

8 11 201.2

8 

3 -

0.61 

42.403 -2.735 0.148 -2.296 -4.911  Yes 0.594 No Yes No 

Rhamnosyli

soorientin 

(4.36) 

593.51 -

1.982

9 

9 15 263.0

3 

5 -

0.41

4 

49.241 -2.735 0.193 -2.353 -5.567  Yes 0.235 No Yes No 

Isoorientin 

(4.37) 

448.38 -

0.202

7 

8 11 201.2

8 

3 -

0.75

6 

40.733 -2.735 0.231 -2.419 -4.791  Yes 0.593 No No No 

Maysin 

(4.38) 

576.5 -

0.115

1 

8 14 236.8

1 

4 -

0.35 

68.831 -2.735 0.363 -2.355 -5.123  Yes 0.049 No Yes No 

Isoschaftosi

de (4.39) 

564.49 -

1.754

3 

10 14 250.9

7 

4 -

1.15

8 

21.533 -2.735 0.296 -2.673 -4.971  Yes -0.01 No No No 

Saponarin 

(4.40) 

594.52 -

2.435

2 

10 15 260.2 6 -

0.23

2 

18.37 -2.735 -0.033 -2.825 -6.073  Yes 0.37 No Yes No 

Acacetin 

(4.41) 

284.26 2.879

8 

2 5 79.9 2 1.00

4 

93.909 -2.778 -0.224 -0.287 -2.208 CYP1A2 

inhibitior 

CYP3A4 

Yes 0.724 No No No 
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inhibitior 

CYP2C9 

inhibitior 

CYP2C19 

inhibito 

Tricin 

(4.42) 

330.29 2.594 3 7 109.3

6 

3 0.67 77.097 -2.738 0.04 -1.306 -3.262 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

Yes 0.687 No No No 

Pectolinarig

enin (4.43) 

314.29 2.888

4 

2 6 89.13 3 1.22

4 

94.3 -2.78 -0.279 -0.443 -2.374 CYP1A2 

inhibitior 

CYP3A4 

inhibitior 

CYP2C9 

inhibitior 

Yes 0.663 No No No 

Pectolinarin 

(4.44) 

622.57 -

0.786

7 

7 15 227.2 8 -

0.11

5 

34.309 34.309 -0.209 -2.513 -5.48  Yes 0.536 No No No 

Rhoifolin 

(4.45) 

578.52 -

1.098

3 

8 14 228.9

7 

6 -

0.16

7 

30.44 -2.735 0.03 -2.327 -5.327  Yes 0.495 No No No 
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Table 3 The Mol Dock, Re-rank and H-bond score of flavones with P-gP in Kcal/mol. 

Name of ligands MolDock Score Rerank Score H Bond 

Verapamil -79.6711 -38.3384 0 

Luteoline (4.1) -66.8828 -57.4208 -7.78949 

Baicalin (4.2) -61.6734 -59.1988 -2.5 

Scutellarin (4.3) -60.1541 -57.9984 -11.2292 

Hesperetin (4.4) -66.1779 -53.4898 0 

Nobiletin (4.5) -131.488 -67.9994 -6.65563 

Sinensetin (4.6) -66.0729 -55.8129 -3.86065 

6-Prenylapigenin (4.7) -137.793 -77.3561 -2.20151 

6-Hydroxyflavone (4.8) -88.2311 -78.6339 -10.0051 

Neoeriocitrin (4.9) -65.3198 -55.7081 -1.92013 

Negletein(4.10) -66.8696 -57.7667 -4.22741 

Neohesperidin (4.11) -60.2394 -61.7761 -14.1528 

6- Aminoflavone (4.12) -66.6084 -57.6082 -7.61855 

Alopecurone A (4.13) -64.3409 -55.7061 -1.8177 

Apigenin (4.14) -88.2421 -72.0404 -13.3487 

Alopecurone D (4.15) -66.9175 -60.1083 0 

Baicalin (4.16) -76.0091 -68.0697 -6.23986 

Chrysin (4.17) -75.6822 -62.3566 -6.20847 

Diosmetin (4.18) -100.986 -60.2849 -3.5012 

Hesperidin (4.19) -75.1363 -46.0942 -4.55382 

Techtochrysin (4.20) -76.1145 -62.4932 -4.85912 

Amentoflavone (4.21) -80.6874 -70.5523 -4.51726 

Tangeritin (4.22) -67.1381 -60.536 -4.42621 

Jaceosidin (4.23) -72.3416 -50.694 -10.858 

Corylifol C (4.24) -61.5771 -56.3872 -4.72462 

Artonin (4.25) -66.86 -55.9319 -5.7821 

Atocarpin (4.26) -75.222 -71.2961 -5.86772 

Licoflavone (4.27) -88.5816 -78.6427 -12.1892 

Semilicoisoflavone B (4.28) -74.6254 -67.0388 -9.80673 

Oroxylin A (4.29 -74.8297 -66.9141 -6.76787 
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Entadanin (4.30) -102.911 -78.2184 -10.5963 

Wogonin (4.31) -87.7968 -82.547 -9.80104 

wogonoside (4.32) -56.1185 -53.9894 -9.04169 

Vitexin (4.33) -88.7793 -79.3577 -13.0655 

Isovitexin (4.34) -74.8441 -56.314 -8.10262 

Orientin (4.35) -74.7195 -70.3868 -9.43297 

Rhamnosylisoorientin (4.36) -65.7847 -56.2057 -2.49568 

Isoorientin (4.37) -71.4257 -60.9508 -5.49482 

Maysin (4.38) -62.5691 -54.1851 0 

Isoschaftoside (4.39) -64.6923 -70.1509 -8.25904 

Saponarin (4.40) -76.084 -58.0397 -10.1255 

Acacetin (4.41) -32.0354 -33.8327 0 

Tricin (4.42) -52.6876 -45.5791 0 

Pectolinarigenin (4.43) -68.5282 -54.6006 -5.89783 

Pectolinarin (4.44) -66.2112 -53.8448 0 

Rhoifolin (4.45) -71.9431 -64.5007 -7.92299 
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OCT2 Organic cation transporter-2 
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VD Volume of distribuion 

Caco-2 Cancer coli-2 

SAR Structure-activity relationships 

QSAR Quantitative structure-activity  relationships 
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