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Abstract:  

Autonomous mobile robot navigation refers to the ability of robots to navigate and move in 

their environment without human intervention. It is of great significance in various industries 

as it enables robots to perform tasks efficiently and safely, leading to increased productivity 

and cost-effectiveness. Industries such as manufacturing, logistics, healthcare, and agriculture 

all benefit from the implementation of autonomous mobile robot navigation.   An analysis of 

the challenges involved in achieving efficient and flexible movement planning and control for 

autonomous robots is necessary.   Highlight the benefits of employing machine learning 

methodologies to address these issues.   This work proposes the utilization of an Augmented 

Gradient Support Vector Machine (AG-SVM) to facilitate movement scheduling and 

management in the context of autonomous mobile robot navigation.   Create a thorough dataset 

containing historical data on the locomotion of mobile autonomous robots in various scenarios.   

Collect data regarding the robots' positions and velocities, the surrounding environment, the 

sequence of jobs, and any relevant sensor information.   To ensure data cleanliness and 

preprocessing, it is necessary to eliminate outliers, handle missing values, and normalize the 

acquired dataset.   If needed, conduct feature engineering to extract relevant characteristics for 

the task of movement scheduling and management.   The most advantageous elements of the 

dataset that aid in movement planning and management are extracted using the Histogram of 

Oriented Gradients (HOG).   This method aids in decreasing dimensionality and enhancing the 

efficacy of learning algorithms. AG-SVM is utilized for the management and coordination of 

movements.   In order to enhance the implementation of self-governing robots across different 

sectors, it is crucial to underscore the significance of adaptable and efficient movement 

scheduling and administration. 

 

Keywords: autonomous mobile robot navigation, Augmented Gradient Support Vector 

Machine (AG-SVM), movement scheduling, management, Histogram of Oriented Gradients 

(HOG) 
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1. Introduction 

Machine learning-based movement refers to the utilization of machine learning algorithms and 

techniques to enable independent or partially independent movement in various systems, such 

as robots, autonomous vehicles, drones, and virtual characters.   It involves instructing these 

systems to progressively enhance their mobility capabilities over time without explicit 

programming.   In the field of machine learning-driven mobility, the system frequently utilizes 

sensor inputs, such as camera images, lidar data, or other environmental information, to identify 

and understand its surroundings [1].   After the data is processed and evaluated, machine 

learning algorithms are used to detect and extract relevant patterns and traits.   The system has 

the ability to generate appropriate movement commands by analyzing acquired patterns and 

making informed decisions.   During the training phase, a substantial assortment of samples, 

which may be labeled or unlabeled, is often collected to represent different movement 

scenarios.   The goal is to enable the system to extrapolate from the training data and adapt its 

movement strategies for unfamiliar, unexpected situations.   The term "machine learning-based 

movement" encompasses a range of tasks including as navigation, route planning, obstacle 

avoidance, object tracking, gesture recognition, and locomotion control [2].   Machine learning 

can enhance the effectiveness, adaptability, and responsiveness of these systems, hence 

increasing their reactivity to changing surroundings.   Autonomous mobile robot navigation is 

the term used to describe a robot's ability to independently and without human intervention 

move about its environment.   The robot utilizes a diverse range of algorithms, sensors, and 

control systems to facilitate its ability to perceive its environment, plan a trajectory, and execute 

the necessary actions to reach its destination.   The robot perceives its environment through the 

utilization of sensors such as cameras, lidar, sonar, or infrared sensors.   These sensors [3] give 

obstacles, landmarks, and other crucial elements.   Utilizing the sensor data, the robot generates 

a map or model of its immediate environment.   To understand the arrangement, positioning of 

barriers, and other navigational cues, make use of this map.   The robot autonomously 

determines its position within the mapped environment.   Simultaneous localization and 

mapping (SLAM) techniques, which combine sensor data and movement information to 

accurately anticipate the robot's position, could be beneficial in addressing this issue.   Once 

the robot obtains a map of the surrounding region and determines its own location, it calculates 

a route that avoids all potential collisions to reach the desired destination.   In order to establish 

an optimal or ideal path, considerations such as robot dynamics and other limitations must be 

taken into account [4].   A robot consistently identifies and circumvents impediments in its 

trajectory throughout its locomotion.   In order to safely maneuver around obstacles, the system 

modifies its trajectory, speed, or direction by utilizing real-time sensor data.   The control 

system translates the desired course into actual robot movements.   In order to ensure the 

accurate implementation of the intended path, this includes motor control, motion planning, 

and feedback systems.   Autonomous mobile robots can utilize machine learning techniques to 

improve their ability to navigate [5].   They can adapt their behavior in accordance with 

fluctuating environmental conditions, enhance their route planning algorithms, or acquire 

knowledge from past encounters.   A self-governing mobile robot has the ability to 

independently navigate various environments, including restricted spaces, uneven surfaces, and 

complex industrial situations, by integrating these components.    
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The goal is to enable the robot to navigate swiftly and safely to its intended location, while also 

avoiding potential dangers and making astute decisions based on its perception of the 

environment [6].   The process of using machine learning techniques to improve the efficiency 

of scheduling and controlling the movements of robots in a changing environment is referred 

to as machine learning-based movement scheduling and management for autonomous mobile 

robot navigation.   Machine learning can be employed to devise the movements of multiple 

robots operating inside a shared environment.   Machine learning models have the ability to 

determine the optimal method for allocating movement tasks, considering factors such as robot 

capabilities, energy usage, workload distribution, and job prioritization [7].   Machine learning 

approaches can enhance the trajectory planning process for autonomous mobile robots.   These 

algorithms acquire information from historical or simulated data to predict optimal paths and 

generate seamless trajectories that conserve energy, mitigate the risk of collisions, and account 

for robot dynamics and environmental constraints.   Traffic management   Machine learning 

techniques can be used to aid in the management of traffic and the prevention of collisions in 

environments where multiple autonomous mobility robots operate simultaneously.   Robots 

have the ability to make intelligent decisions in order to avoid traffic, navigate lanes, and 

synchronize their motions to optimize overall efficiency. They achieve this by analyzing sensor 

data and incorporating knowledge gained from previous experiences [8].   Machine learning 

technologies enable autonomous mobile robots to make adaptive judgments during navigation.   

Robots have the ability to modify their movement techniques, select alternative paths, and 

adjust their actions in order to enhance efficiency and adapt to evolving circumstances. They 

achieve this by continuously acquiring knowledge from sensor inputs, environmental 

alterations, and human preferences.   Machine learning algorithms can be employed to detect 

anomalies in robot movements or system malfunctions.   Machine learning models have the 

ability to identify abnormal behavior, trigger alerts, and initiate corrective actions to ensure 

secure and reliable navigation by constantly monitoring sensor data, control signals, and robot 

responses [9].   Mobile autonomous robots can acquire information through user interactions 

and feedback.   Machine learning models can adapt their movement strategies to align with 

user expectations by considering user preferences, feedback, or demonstrations.   This enhances 

customer satisfaction and the quality of the navigation experience.   Machine learning-based 

movement scheduling and management algorithms enable autonomous mobile robots to 

traverse efficiently, adjust to dynamic circumstances, and optimize their motions to enhance 

performance.   These techniques utilize historical and present data, along with human 

interactions, to detect patterns, predict results, and enhance the navigational capabilities of 

autonomous robots [10]. 

 

2. Related Works 

This paper presents a standardized framework for integrating task scheduling and routing 

control on a shop floor operated by mobile autonomous robots, which is an increasingly popular 

industrial manufacturing pattern.   We propose a multi-agent architecture that explicitly 

incorporates human beings, machines, and mobile robots.   The effectiveness of IM systems is 

influenced by the architecture of the core software platform and the choice of the underlying 

algorithm, as is the case with any other cyber-physical system [11].    
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The article proposes a reinforcement learning approach where an agent creates paths on a pre-

determined layout and receives rewards depending on several criteria that represent the desired 

characteristics of the system.   The results indicate that when there is a high number of AMRs 

operating in the system, the proposed method performs better than the traditional shortest-path-

based approach in terms of both throughput and reliability.   Although the area in which the 

robots work may be relatively small, the need for high throughput requires a significant number 

of AMRs to be in operation. Therefore, it is recommended to implement the suggested 

technique [12].   The objective of the project was to determine the potential of geographic data 

mining, simulation-based digital twins, and real-time monitoring technologies in improving the 

capabilities of remote sensing robots.   The flow diagram of evidence-based data was generated 

using the Shiny software, following the Preferred Reporting Items for Systematic Reviews and 

Meta-analysis (PRISMA) standards.   The initial bibliometric mapping employed Dimensions 

for data visualization, and VOSviewer for the layout algorithms [13].   The intricacy of robotic 

tasks and environments tends to escalate in tandem with the intricacy of control interfaces.   

Conventional input techniques such as touch, voice, and gesture may not be suitable for every 

user.   Individuals with restricted mobility may be unable to operate such devices, despite being 

the ones who are most in need of robotic assistance.   While certain users may exert effort to 

familiarize themselves with a robotic system [14].   This study aims to develop a unique 

architecture that enables customers to communicate with a robotic service assistant just through 

their thoughts in a closed-loop environment.   The system includes a brain-computer interface 

(BCI) as one of its interconnected components. The BCI utilizes non-invasive methods to 

record neural signals and employs co-adaptive deep learning techniques.   Additional elements 

encompass advanced task planning that relies on reference expressions, planning for navigation 

and manipulation, and environmental perception [15].   This study addresses the challenge of 

autonomously mapping unfamiliar small celestial objects during near encounters.   This study 

proposes a Deep Reinforcement Learning (DRL)-based forecast strategy to enhance the 

effectiveness of surface mapping. This is achieved through the intelligent autonomous selection 

of the image capture epochs.   The comparison between learned policies and standard policies 

is conducted in a range of possible circumstances, and the methodologies of Neural Fitted Q 

(NFQ) and Deep Q Network (DQN) are analyzed [16]. 

3. Methodology 

Machine learning-based movement scheduling and management is a crucial element of 

autonomous mobile robot navigation, as it allows for efficient and intelligent navigation in 

many circumstances.   Figure 1 illustrates the progression of this study. 

 
Fig.1. Flow of this study 
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3.1 Data set 

The inputs for the proposed adaptive method are the distances between the left and right wheels, 

as well as their estimated probabilities obtained from the AMR at each time.   The output 

velocity in this context is denoted as Vout, and it represents the disparity between the computed 

probabilities of velocities for both wheels.   The computed value is compared to the desired 

velocity or VD.   The discrepancy between VD and VOUT is utilized to compute the error 

signal, E(x).   The block coordinate descent method utilizes the signal to iteratively update the 

weights W1, W2, and W3. These weights are represented by a combined weight vector, denoted 

as Pk = [D P(VRW) P(VLW)].   The dataset consists of a total of 2920 data points, with each 

of the six sets containing 17520 data points in total (2920 x 6).   Validation is performed using 

the remaining 5256 data points, while 12264 data points are allocated for training. 

3.2 Preprocessing using Z-Score Normalization 

Z-score normalization, sometimes referred to as zero-mean normalization, is the procedure of 

standardizing output descriptors by computing the normalized mean and standard deviation for 

each parameter over many test datasets.   The mean and standard deviation are assigned to each 

attribute.   The equation 1 provides a general description of the replacement process: 

v′ =
v−μA

𝜎𝐴
                         (1) 

The term "A differences in values" refers to the standard deviation of the attribute, denoted as 

σ_(A). Consequently, every characteristic in the dataset exhibits no variation and no 

importance.   Prior to creating a trainee collection and commencing the training procedure, 

each training sample in the data set undergoes the Z-Score normalization process.   The 

average, variance, and statistical significance of a training data collection must be computed, 

recorded, and employed as weights in the final system design.   The preprocessing phase is an 

integral part of the neural network architecture.   Due to the neural network being trained on a 

dissimilar dataset, its outputs may exhibit substantial variations compared to the normalized 

data.   Statistical normalization reduces the volume of data, hence mitigating the impact of data 

anomalies. 

3.3 Feature extraction using Histogram of Oriented Gradients (HOD) 

The Histogram of Oriented Gradients (HOG) is a popular technique in computer vision for 

extracting features. It is commonly employed for tasks such as object detection and 

identification.   The algorithm captures the gradient information present in an image and 

converts it into a feature vector.   The HOG method is frequently employed to assess the quality 

of a certain distribution of local gradients.   When employed for target identification, it yields 

exceptional outcomes.   The HOG feature can be efficiently utilized to represent the distribution 

of local gradients.  

Determine the gradient's magnitude and orientation: 

Using these formulas, we can calculate the A and B orientation intensity gradients: 

𝐻𝑤 = (𝑤 + 1, 𝑧) − (𝑤 − 1, 𝑧) (2) 

ℎ𝑧 = (𝑤, 𝑧 + 1) − (𝑤, 𝑧 − 1) (3) 

where 𝐻𝑤 and ℎ𝑧 are the horizontal and vertical gradients, respectively; the gradient amplitude 

m(x, z) indicates the variance in the size of the grey level. 

Equations (4) and (5) may also be used to compute gradient amplitude and direction: 

n(w, z) = √𝐻𝑤
2 + 𝐻𝑤

2                          (4) 
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θ(w, z) =
arctan(𝐻2 )

𝐻𝑤
                              (5) 

 

3.3.1 The Process of a Cell Histogram 

Histograms are constructed by counting the frequency at which each orientation of a gradient 

occurs in each of the bins assigned to that orientation.   The orientation of each gradient is 

utilized to establish the specific bin to which it is allocated.   The histogram depicts the 

distribution of internal gradient orientations of cells, which in turn shows regional edge 

directions.   Normalization is an accessible option to enhance the histogram's tolerance towards 

slight variations in brightness and contrast.   In L1 normalization, each bin value is divided by 

the total bin value, while in L2 normalization, each bin value is divided by the Euclidean norm 

of the histogram vector.   The HOG approach captures the local edge information in an image 

by constructing histograms of cells that are dependent on gradient orientations.   These 

histograms are utilized as features to provide a more detailed description of the picture in tasks 

such as item identification and recognition. 

3.3.2 Block specification 

A feature vector is formed by combining the normalized histograms of each block in the image.   

The feature vector not only contains information about local gradients in individual cells but 

also include spatial correlations, which are quantified using block normalization.   Normalizing 

cell contributions within blocks is an essential step in HOG for addressing variations in light 

and contrast.   Applying the HOG feature descriptor to a cluster of cells within a block and 

subsequently normalizing it enhances its ability to withstand changes in illumination and 

contrast. 

3.3.3 The block's gradient is normalized 

The HOG technique is frequently employed for picture feature extraction.   By dividing an 

image into small cells, calculating histograms of gradient orientations within each cell, and 

concatenating the resulting feature vectors, it is possible to capture detailed local gradient 

information.   The density of each histogram is determined. 

𝑈∗ = √𝑢||𝑈||𝐿 + 1.1𝑠                               (6) 

Density can be defined as the proportion of all occurrences or values that are contained within 

a specific interval.   Density measures the degree to which gradients are focused within 

histograms. 

3.4 Augmented Gradient- Support Vector Machine (AG-SVM) 

AG-SVM is a supervised learning algorithm that utilizes a predetermined function to forecast 

the label of an output by considering the input values.   Minimizing the errors of the sample 

points and reducing structural hazards can enhance the model's ability to generalize.   Let's 

suppose that there are l data points and n indices in the datasets that require categorization.  

The AG-SVM algorithm, a widely recognized supervised machine learning technique, is 

employed for both classification and regression tasks.   It has the ability to handle complex data 

and operate in feature spaces with a large number of dimensions.   The main goal of AG-SVM 

is to identify a hyperplane that effectively divides data points into their respective classes while 

minimizing the distance between the hyperplane and the closest data points.    
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The objective of AG-SVM is to optimize the margin by maximizing its size and minimizing 

the classification error.   To commence, gather a substantial amount of training data that has 

been previously annotated, ensuring that each data point is already assigned to its respective 

category.   AG-SVM is a binary classifier, hence it is necessary to divide the data into two 

distinct groups.   Complex problems including diverse categories often necessitate the 

utilization of various approaches for resolution.   Refine the data to extract pertinent attributes 

for the categorization process.   While AG-SVM excels with numerical characteristics, it is still 

feasible to encode categorical features.   To ensure that no single feature dominates the learning 

process, it is advisable to normalize or standardize the values of the features.   Min-max scaling 

and z-score normalization are two frequently used methods of scaling.   The AG-SVM model 

is trained during the SVM Model Training step by providing it with the labeled data.   The ideal 

hyperplane is the one that maximizes the distance between the two sets of data.   By employing 

a mathematical optimization technique, AG-SVM is capable of solving this problem.   AG-

SVM utilizes kernel functions to transfer data into a higher dimensional space, enabling linear 

separation.   The linear kernel, polynomial kernel, Gaussian (RBF) kernel, and sigmoid kernel 

are examples of common kernel functions.   The choice of kernel is contingent upon the 

intricacy of the problem and the nature of the data being processed.   The resolution of a 

quadratic programming issue is necessary in order to determine the ideal hyperplane by AG-

SVM optimization.   The optimization procedure aims to maximize profit by minimizing a cost 

function that penalizes misclassified data points.   In order to identify the support vectors, the 

Lagrange multipliers are calculated using the data points that lie on the boundary or in close 

proximity to it.   One way to achieve this is by use techniques such as grid search or randomized 

search.   The AG-SVM algorithm has been applied in various domains, such as text 

categorization, visual perception, biology, and even the financial industry.   They are 

extensively utilized due to their strong theoretical basis, capacity to handle diverse data 

distributions, and resilience against overfitting.   

 

4. Results and Discussion 

This section provides a comprehensive analysis of the results obtained from the suggested 

methodology, AG-SVM, in comparison to the existing methods employed in this research, 

namely Conventional Neural Networks (CNN), Deep Neural Networks (DNN), and long short-

term memory (LSTM).   This research utilizes criteria like as accuracy, precision, recall, and 

f1-score to analyze the efficacy of the suggested strategy.   TP represents the number of true 

positive cases, TN represents the number of true negative cases, FP represents the number of 

false positive cases, and FN represents the number of false negative cases. 

Table.1. Numerical outcomes of proposed and existing methods 

Methods Accuracy 

% 

Precision % F1- score % Recall % 

CNN [17] 75 70 80 73 

DNN [18] 78 77 70 87 

LSTM [19] 83 85 83 89 

AG-SVM 

[Propose d] 

96 89 92 95 
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A. Accuracy 

Inadequate accuracy is the reason of the discrepancy between the result and the true value.   The 

proportion of observed results indicates the general equilibrium of the data.   Accuracy is 

evaluated through the utilization of a mathematical equation. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃+𝑇𝑁

 

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

 
Fig.2. Comparison of Accuracy 

Figure 2 displays the corresponding values for the accuracy metrics.   When compared to 

established methods such as CNN, which achieves an accuracy rate of 75%, DNN, which 

achieves an accuracy rate of 78%, and LSTM, which achieves an accuracy rate of 86.64%, the 

suggested method's AG-SVM value is 96%.   The AG-SVM suggested exhibits superior 

accuracy compared to current methodologies and effectively categorizes autonomous mobile 

robot navigation. 

B. Precision  

Precision is the key criterion for accuracy, and it is precisely defined as the proportion of 

correctly classified cases to all occurrences of positively predicted data.   The equation is 

utilized to calculate the precision. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Fig.3. Comparison of Precision 
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The accuracy measurements' equivalent values are displayed in Figure 3.   This demonstrates 

that the proposed strategy has the potential to yield performance outcomes that surpass those 

achieved with the present study methods.   The suggested approach AG-SVM achieves a 

precision of 89%, surpassing the performance of existing methods.   The precision rates for 

DNN, CNN, and LSTM are 77%, 70%, and 85% respectively. 

C. Recall 

Recall refers to the capacity of a model to accurately recognize and classify significant samples 

within a dataset.   The recall is determined by utilizing a mathematical calculation. 

 
Fig.4.Comparison of Recall 

 

Figure 4 displays the comparative data for the recall measures.   The recall rates for CNN, 

DNN, LSTM, and AG-SVM were 73%, 87%, 89%, and 95% respectively. The proposed 

strategy outperformed the present results, with a recall rate of 95%. 

D. F1-score 

The f1-score is calculated as the harmonic mean of the recall and precision measures in the 

proposed model.   Equation (18) is utilized for calculating the f1-score. 

F1 − score =
2 × precision × recall 

precision + recall 
 

 
Fig.5. Comparison of F1-score 
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Figure 5 displays the comparative data for the recall measures.   The recall rates for CNN, 

DNN, LSTM, and AG-SVM are 80%, 70%, 83%, and 92% respectively. The proposed 

approach surpasses the existing outcomes, achieving an F1-score of 95%. 

 

 

5. Conclusion 

The AG-SVM algorithm, specifically developed for this study, utilizes augmented gradient 

optimization techniques to improve decision-making abilities, leading to more accurate and 

efficient movement scheduling and control.   Overall, the AG-SVM algorithm and HOG feature 

extraction are suggested for their significant contribution to the system's exceptional 

performance. Specifically, the system achieves an accuracy of 96%, precision of 89%, recall 

of 95%, and F1-score of 92% in the context of movement scheduling and management for 

autonomous mobile robot navigation [20].   These measurements are related to the system's 

capacity to navigate independently within its surroundings.   The machine learning-based 

movement scheduling and management system, which incorporates HOG feature extraction 

and the recommended AG-SVM method, greatly enhances the navigation of autonomous 

mobile robots.   The impressive performance indicators demonstrate its potential in various 

domains, including manufacturing, supply chain management, and security.   Through 

additional study, it may be feasible to create intuitive and seamless interfaces that allow 

individuals to provide advanced commands or preferences to the robot.   This will enable 

seamless collaboration between people and robots in shared workspaces or collaborative 

projects.  

 

 

References 

[1] Jokić A, Petrović M, Kulesza Z, Miljković Z. Visual Deep Learning-Based Mobile Robot 

Control: A Novel Weighted Fitness Function-Based Image Registration Model. InNew 

Technologies, Development and Application IV 2021 May 12 (pp. 744-752). Cham: Springer 

International Publishing. 

[2] Hu H, Jia X, He Q, Fu S, Liu K. Deep reinforcement learning based AGVs real-time 

scheduling with the mixed rule for the flexible shop floor in industry 4.0. Computers & 

Industrial Engineering. 2020 Nov 1;149:106749. 

[3] Zeng J, Ju R, Qin L, Hu Y, Yin Q, Hu C. Navigation in unknown dynamic environments 

based on deep reinforcement learning. Sensors. 2019 Sep 5;19(18):3837. 

[4] Eskandari M, Savkin AV. Deep Reinforcement Learning Based Joint 3D Navigation and 

Phase Shift Control for Mobile Internet of Vehicles Assisted by RIS-equipped UAVs. IEEE 

Internet of Things Journal. 2023 May 18. 

[5] Fan T, Long P, Liu W, Pan J. Distributed multi-robot collision avoidance via deep 

reinforcement learning for navigation in complex scenarios. The International Journal of 

Robotics Research. 2020 Jun;39(7):856-92. 

 

 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 09 (Sep) - 2024

http://ymerdigital.com

Page No:406



[6] Wesselhöft M, Hinckeldeyn J, Kreutzfeldt J. Controlling fleets of autonomous mobile 

robots with reinforcement learning: a brief survey. Robotics. 2022 Aug 30;11(5):85. 

[7] Le AV, Kyaw PT, Veerajagadheswar P, Muthugala MV, Elara MR, Kumar M, Nhan NH. 

Reinforcement learning-based optimal complete water-blasting for autonomous ship hull 

corrosion cleaning system. Ocean Engineering. 2021 Jan 15;220:108477. 

[8] Pei M, An H, Liu B, Wang C. An improved dyna-q algorithm for mobile robot path planning 

in an unknown dynamic environment. IEEE Transactions on Systems, Man, and Cybernetics: 

Systems. 2021 Jul 26;52(7):4415-25. 

[9] Ho TM, Nguyen KK, Cheriet M. Federated deep reinforcement learning for task scheduling 

in a heterogeneous autonomous robotic system. IEEE Transactions on Automation Science and 

Engineering. 2022 Nov 14. 

[10] Chehelgami S, Ashtari E, Basiri MA, Masouleh MT, Kalhor A. Safe deep learning-based 

global path planning using a fast collision-free path generator. Robotics and Autonomous 

Systems. 2023 May 1;163:104384. 

[11] Agrawal A, Won SJ, Sharma T, Deshpande M, McComb C. A multi-agent reinforcement 

learning framework for intelligent manufacturing with autonomous mobile robots. Proceedings 

of the Design Society. 2021 Aug;1:161-70. 

[12] Kozjek D, Malus A, Vrabič R. Reinforcement- learning-based route generation for heavy-

traffic autonomous mobile robot systems. Sensors. 2021 Jul 14;21(14):4809. 

[13] Andronie M, Lăzăroiu G, Iatagan M, Hurloiu I, Ștefănescu R, Dijmărescu A, Dijmărescu 

I. Big Data Management Algorithms, Deep Learning-Based Object Detection Technologies, 

and Geospatial Simulation and Sensor Fusion Tools in the Internet of Robotic Things. ISPRS 

International Journal of Geo- Information. 2023 Jan 21;12(2):35. 

[14] Thakur A, Das S, Kumari R, Mishra SK. Machine Learning based Intelligent Model for 

Path Planning Obstacle Avoidance in Dense Environments for Autonomous Mobile Robot. 

[15] Piccinin M, Lunghi P, Lavagna M. Deep Reinforcement Learning-based policy for 

autonomous imaging planning of small celestial bodies mapping. Aerospace Science and 

Technology. 2022 Jan 1;120:107224. 

[16] Ho DK, Ben Chehida K, Miramond B, Auguin M. Learning-Based Adaptive Management 

of QoS and Energy for Mobile Robotic Missions. International Journal of Semantic 

Computing. 2019 Dec;13(04):513-39. 

[17] Jokić A, Petrović M, Kulesza Z, Miljković Z. Visual Deep Learning-Based Mobile Robot 

Control: A Novel Weighted Fitness Function-Based Image Registration Model. InNew 

Technologies, Development and Application IV 2021 May 12 (pp. 744-752). Cham: Springer 

International Publishing. 

[18] Lee S, Kim Y, Kahng H, Lee SK, Chung S, Cheong T, Shin K, Park J, Kim SB. Intelligent 

traffic control for autonomous vehicle systems based on machine learning. Expert Systems 

with Applications. 2020 Apr 15;144:113074. 

[19] Niranjan DR, VinayKarthik BC. Deep learning-based object detection model for 

autonomous driving research using Carla simulator. In2021 2nd international conference on 

smart electronics and communication (ICOSEC) 2021 Oct 7 (pp. 1251- 1258). IEEE. 

 

 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 09 (Sep) - 2024

http://ymerdigital.com

Page No:407



[20] Sundar Ganesh, C. S. & Daisy Mae, R. B. (2022). A Study on the Usage of Robot 

Navigation to Determine Robot’s Own Position in its Frame of Reference and then to Plan a 

Path towards Some Goal Location. Technoarete Transactions on Industrial Robotics and 

Automation Systems (TTIRAS). 2(4), 1–6. 

[21] Kapoor, E. ., Kumar, A. ., & Singh , D. . (2023). Energy-Efficient Flexible Flow Shop 

Scheduling With Due Date and Total Flow Time. International Journal on Recent and 

Innovation Trends in Computing and Communication, 11(2s), 259–267. 

https://doi.org/10.17762/ijritcc.v11i2s.6145 

[22] Paul Garcia, Ian Martin, Laura López, Sigurðsson Ólafur, Matti Virtanen. Enhancing 

Student Engagement through Machine Learning: A Review. Kuwait Journal of Machine 

Learning, 2(1). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/163 

[23] Kumar, S.A.S., Naveen, R., Dhabliya, D., Shankar, B. M., Rajesh, B. N. Electronic 

currency note sterilizer machine (2020) Materials Today: Proceedings, 37 (Part 2), pp. 1442-

1444. 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 09 (Sep) - 2024

http://ymerdigital.com

Page No:408


