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Abstract 

In the present paper, a finite element on the strain-based approach is developed to foresee 

the behavior of a nonlinear isotropic materials, The displacement fields of the present 

membrane element is the same as adopted by Sabir [1] and the supposed functions for 

components of strains are satisfy the compatibility equations. This element has four nodes 

and two degrees of freedom in each node as previously developed by Sabir et al.[1] for linear 

analysis. In this paper, this element is extended to predict accurately the elasto-plastic 

behavior of two-dimensional problems. In order to analyze the elasto-plastic comportment, 

several yield criterions are employed such as von-Mises, Mohr-Coulomb, Tresca and 

Drucker-Prager. In this study, the method of the tangential stiffness is adopted to 

recalculating the element stiffness matrix for each iteration. Through the numerical 

applications, the results given by the current element for the linear and nonlinear analysis 

are compared with those available in the literature. It is observed that the results obtained 

are very near to the results of the reference and this demonstrated the efficiency of the 

formulated element. By using the same number of nodes, the numerical solutions based on the 

strain-based approximation has higher precision than the element based on classical 

displacement approach. Finally, to appear the impact of a few parameters on elasto-plastic 

response, a number of applications for different strain hardening values are given and 

discussed. Very interesting comments and conclusions are pointed out for the efficiency of the 

strain based approach for the elasto-plastic analysis. 

 

Keywords: Stain-based approach, linear analysis, elasto-plastic analysis, strain hardening 

parameter, yield criterion. 
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Introduction  

For many years, researchers have proposed different finite element models based on 

various approaches to predict the linear [2, 3] and nonlinear behavior of some structural 

components [4] One of these methods is the strain-based approach. The positive features of 

this approach have been illustrated on several studies[5, 6] compared to the displacement 

approach [7]. The development of finite elements based on the strain approach has initially 

been formulated by Sabir [1] and the displacement fields are obtained by the strain 

integration. In the literature, the utilize of the strain-based approach for the improvement of a 

new family of finite elements was first applied by Ashwell and Sabir [8] for general plane 

elasticity problems. In their work, Ashwell and Sabir[9] developed a finite element to analyze 

curved structural. Several finite elements were also developed by Sabir [10] ], notably 

SBRIE, (Strain-Based Rectangular In-plane Element), the rectangular finite element based on 

a constant shearing strain and linear variation of the direct strains.  

Later, Several versions of the SBRIE were suggested by Sabir et al. [1] and used under the 

names (SBRIE1), and (SBRIE2) in order to analyze  general plane elasticity problems. On the 

other hand, the strain-based approach was also enlarged to the development of new simple 

and efficient triangular and rectangular elements having an in-plane rotation (drilling 

rotation) as a one of the nodal degrees of freedom[11] for both two-dimensional and three-

dimensional elasticity problems[12] ] proposed a new finite triangular element for the static 

bending analysis and the free vibration of plates. The proposed element contains three 

exterior degrees of freedom in each node based on Reissner/Mindlin theory. The strain-based 

approach was also applied to investigate the behavior of the geometrical nonlinear of the 

circular arches [13] and the large deflection of shells[14] In his work, Sabir et al.[14] focused 

on analyzing only the large deflection and the behavior of geometrical nonlinear shells and 

complex load-deflection curves were given for cylindrical and spherical shells by increasing 

loads as well as deflections. Recent researches have also given more importance to the 

problem of the nonlinear behavior of isotropic materials. Rebiai et al.[15-17] developed a 

quadrilateral membrane element and a triangular finite element, having an in-plane rotation 

as a nodal degree of freedom, for both elasto-viscoplastic and dynamic analysis 

respectively.[18] improved an eight-node quadrilateral membrane finite element element 

denoted PFR8 (Plane Fiber Rotation) with rotational degrees of freedom, for elasto-plastic 

analysis. [19] implemented in ABAQUS an existing robust three dimensional finite element 

based on the strain approach for the static and dynamic analysis of isotropic plates. More 

recently,[20] developed a new four node rectangular finite element for bending analysis of 

thin plates, for linear analysis. In same way, [21] developed a  pentagonal membrane element 

with the strain based approach, a pentagonal mesh was created, and the mesh quality was 

improved with Laplacian smoothing. However, in the open literature and based on the strain 

approach, there is not a deep analysis on the Elasto-plastic behavior. Based on the 

displacement approach, the literature showed that the quadrilateral membrane element with 

four nodes Q4 can be quite stiff in certain deformation modes, whereas the quadrilateral 

membrane element with eight nodes Q8 can be computationally expensive, involving as it 

does 16 degrees of freedom.  
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In this paper, a rectangular finite element, previously developed by Sabir et al. [1] for the 

linear analysis is extended to predict accurately the elastoplastic analysis of two-dimensional 

problems. In order to distinguish between the SBRIE and the present element, the extended 

element is named SBRIEPE (Strain Based Rectangular In-plane Elasto-Plastic Element), with 

four corner nodes and in each node has two degrees of freedom (two translations). For the 

elasto-plastic analysis, several yield criterions are employed such as von-Mises, Drucker-

Prager, Mohr-Coulomb and Tresca criteria. The tangential stiffness method is adopted.   

 

First, in this paper a description of the SBRIE finite element formulation is given and a 

review of some yield criterions for analyzing the elasto-plastic behavior of isotropic materials 

are defined. To make clear the efficiency and the performance of SBRIEPE, some validation 

tested are presented for the linear analysis. Then, for the main objective of this work, the two-

dimensional elastoplastic analysis is carried out through with applications. It is should be 

mention that, the numerical results given by the present element for both linear and nonlinear 

analysis are compared with those found in the literature. It is observed that the obtained 

results are very close to the reference results which illustrates the good accuracy and 

efficiency of the present element for the elasto-plastic behavior. 

 

1.Mathematical Formulation of the SBRIE Element.  

The rectangular strain-based finite element SBRIE [1] with two degrees of freedom per node 

(ui and vi) is shown in Fig. 1. With a and b are the length sides in both directions x and y, 

respectively. 

 
Fig. 1. Geometry and coordinate system of the element SBRIE 

 

The displacement field should include eight independent constants. The three strain 

components at any point in the element can be expressed in terms of displacements  as 

, ,
x y xy

u v u v

x y y x
  

   
   
   

                                                                                             (1) 

In the case where the strain equations given by eq. (1) equal to zero, the integration of the 

strains gives the displacement field in terms of the three rigid body displacements at 

presented in the following expression 

1 3

2 3

u y

v x

 

 

 

 
                                                                                                                             (2) 

Equation (2) gives the two components of rigid body displacements. The equation (1) of 

the strains is not independent since they are in relation with the displacements u and v.  
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Hence, it is essential that strains must satisfy the compatibility equation, which obtained by 

eliminating u and v form equation (1), hence 
2 22

2 2
0

y xyx

y x x y

   
  

   
                                                                                                            (3)                                                                 

The SBRIE has four nodes and two degrees of freedom per node (u, v). Hence the 

independent constants must be eight, three of three of  displacements of  rigid body

 1 2 3
, ,   given by eq. (2) and five other constants  4 5 8

, ......,   have to be added for 

expressing the displacement. The five constants among the strain are presented as follow [1]: 

4 5

6 7

8

x

y

xy

y

x

  

  

 

 

 



                                                                                                                           (4) 

It should be mentioned that the strains of equation (4) satisfy the compatibility equation 

(3) and after the integration and substitution into Eq. (2), the final displacement functions are 

given as follow:                                                                                                  

 

2

1 3 4 5 7 8

2

2 3 5 6 7 8

/ 2 / 2

/ 2 / 2

u y x xy y y

v x x y xy x

     

     

     

     
                                                                         (5) 

Equation (4) can be rewritten in  matrix form as    Q  where the matrix  Q

relating the strain fields to the unknown constants  and is given by: 

 
0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

y

Q x

 
 
 
  

                                                                                         (6) 

And the displacement functions given by eq. (5) and can also be written in a matrix form 

as[1]: 

    U C                                                                                                                            (7) 

Where {U} is the displacement vector, and  C  is the nodal coordinates matrix and is 

given in the appendix. 

The element stiffness matrix  eK can be obtained using the well-known expression  

      T

e

V

K B D B dV                                                                                                            (8) 

Where  D  is the matrix of elasticity, and  B  is the stain-displacement matrix is given as 

follow 

      1 1.B L U C Q C                                                                                                      (9) 
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 

0

0

x

L
y

y x

 
 
 
 

  
 

  
 
    

Where  L  is the differential operator matrix. 

The element stiffness matrix eK , for a unit thickness becomes 

        1 1 1 1

0.
T TT

e

s

K C Q D Q dx dy C C K C   
 

                
 
                                          (10) 

The elasticity matrices for both plane stress and plane strain problems are given in the 

appendix. 

 

2. Formulation of the Tangential Stiffens Matrix  TK  for Elasto-plastic Behavior 

To determine the beginning point of the plastic phase, it is necessary to define the yield 

function that can be written as [22, 23] 

   f Y k                                                                                                                           (11) 

Or    ( , ) 0F k f Y k                                                                                                  (12) 

Where the function of stress is f ,Y  is the function of hardening parameter,  is the stress 

vector, k is the hardening parameter, which governs the expansion of the yield surface. By 

differentiating eq. (12) one can get 

0
F F

dF d dk
k




 
  
 

                                                                                                       (13) 

Or  0Ta d Ad                                                                                                                 (14) 

where: T F
a







                                                                                                                    (15) 

and 
1 F

A dk
d k


 


                                                                                                              (16) 

The vector a is the flow vector, the incremental relationship between stress and strain of 

elasto-plastic deformation could be written as 

 
1 F

d D d d  


 
 


                                                                                                         (17) 

With  D  the elastic matrix. pre-multiplying both sides of eq. (16) by 
T

TD
d a D  and 

eliminating 
Ta d  by use of Eq. (14) one can obtain the plastic multiplier d  

1 T

DT
d a d d

A a Da
 

  

                                                                                                     (18) 

Substituting Eq. (18) into Eq. (17) could be given the stress-strain incremental elasto-

plastic relation 
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epd D d                                                                                                                         (19)                                                                                                                             

With epD is the elasto-plastic matrix 

, .
TD D

ep DT

d d
D D d Da

A d a
  


                                                                                              (20) 

The work hardening hypothesis is more general from a thermodynamic viewpoint than the 

strain-hardening assumption and will be employed for numerical work in this text. Therefore 
T

pdk d                                                                                                                              (21) 

And Eq. (12) can be rewritten in the form 

( , ) ( ) ( ) 0YF k f k                                                                                                        (22) 

Since the uniaxial yield stress, 3Y k  . Thus from Eq. (16)  

1 1 YF
A dk dk

d k d k



 


  

 
                                                                                               (23) 

Noting that the full differential may be employed in the last term since Y is a function of 

k only. Employing the normality condition in Eq. (21) to express pd  one can get 

T T T

pdk d d a d a                                                                                                    (24) 

Or, for the uniaxial case Y    and p pd d  where   and p are respectively the 

effective stress and strain. Thus Eq. (24) becomes 
T

Y pdk d d a                                                                                                                 (25) 

and  

'Y

p p

dd
E

d d



 
                                                                                                                      (26) 

For the elastoplastic solution can use the principle of virtual work, which requires that: 

 * * * 0T T Tu b d d f   


                                                                                            (27) 

With   is the internal stresses, b is the distributed loads/unit volume and f  is external 

applied forces form an equilibrating field. 
*d is the arbitrary virtual displacement, 

* is the 

compatible strain, and 
*u is the internal displacements. 

* * * *,u N d B d                                                                                                        (28) 

With N is the function shape matrix and B is the elastic strain matrix, where substituting 

Eq. (28) into Eq. (27) one can obtain 

 * * 0T T T Td B N b d d f  


                                                                                        (29) 

Or  

0T TB d f N bd
 

                                                                                                     (30) 

For the solution of nonlinear problems Eq. (30) will not be satisfied at any stage of the 

calculation in the nonlinear analysis  
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0T TB d f N bd 
 

                                                                                              (31) 

where   is the vector of residual force. In the elasto-plastic analysis, the strain/stress 

equation given by Eq. (19) and the material stiffness is continually varying. It must be added 

to the Eq. (31) for the calculation of the tangential stiffness matrix  TK  for any stage. Hence, 

at any increment of load we have: 

T TB d f N bd 
 

 
        

 
                                                                                   (32) 

Substituting for  from Eq. (19) gives 

T

TK d f N bd


 
       

 
                                                                                             (33) 

where 

T

T epK B D Bd


                                                                                                                   (34) 

2.2 The Tangential Stiffness Solution Method 

In the nonlinear analysis, the stiffness matrix  eK of a linear analysis becomes a tangential 

matrix  TK . The analysis must be proceeding in an incremental manner and the problem can 

be linearized over any increment of load. For this reason, the numerical solution processes for 

nonlinear problems named the tangential stiffness method. The solution is started from a trial 

value of displacement u0, and the tangential stiffness matrix  TK (u0) corresponding to this 

displacement will be determined as well as the residual force
0 . The solution algorithm for 

this method given as follow: 

   
1

.r r r

Tu K u u


   
                                                                                                   (35) 

An improved approximation of the displacement is then obtained as
1 0 0u u u  . The 

iteration continued until the convergence achieved.                               

3.The Yield Criterion: A yield criterion is the elasticity limit and the start of plastic 

deformation. The yield criterion utilized in the present study are Tresca criteria, von Mises 

criteria, Mohr-coulomb criteria, Drucker-Prager criteria     [22]. 

3.1 Tresca criteria: Tresca proposed that yielding begins when the extreme shear stress 

comes a certain value. The expression of the Tresca criteria is given as following 

2 cos ( ) 0F Y k                                                                                                             (36) 

Where 

 
1/2

2 2 2 2 2 21

2

, ,

x y z xy yz zx

x x m y y m z z m

s s s

s s s

   

     

 
      
 

     
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 1 3

3

2 2 2

3

1
( )

3

1 3 3
sin , with 1/ 6 1/ 6

3 2

2

m x y z

x y z xy yz xz x yz y xz z xy

J

J s s s s s s

   

   


     



  

 
     

 

    

 

( )Y k  is the yield stress obtained from a uniaxial test 

3.2 Von-Mises Criteria: Von-Mises suggested that yielding occurs when 2J =  comes a 

critical value. The von-Mises criteria expression   is given as following  

3 ( ) 0F Y k                                                                                                                  (37)  

3.3 Mohr-Coulomb Criteria: Mohr-Coulomb suggested that the complete yield surface is 

obtained by considering all other stress combinations, which can cause yielding. The 

expression of Mohr-Coulomb criteria is given as following  

sin cos / 3sin sin cos 0mF c                                                                       (38) 

Where ( )c k and ( )k  are the cohesion and angle of friction, respectively, which could 

depend on some strain hardening parameter k. 

3.4 Drucker-Prager Criteria: Drucker and Prager suggested that the effect of the 

component of hydrostatic stress on yielding was introduced by the inclusion of a 

supplemental term in the Von-Mises expression to get 

3 0mF k                                                                                                                (39) 

where  

 
2sin

3 3 sin





 


  , 

 
6cos

3 3 sin
k







 

  

4. Validation of SBRIE in the Linear Analysis 

In this section, two examples for plane elasticity problems are tested. These test problems can 

be considered as a numerical validation of the level of accuracy obtained using SBRIE 

element. The obtained results are compared with different theoretical references and other 

finite elements available in the literature. 

 

4.1 Allman’s Cantilever Beam 

In this test problem, the free end of the short cantilever beam is subjected to a vertical load 

with resultant W=40 K (see Fig. 2). The dimensions of the cantilever beam are the length L= 

48 in, the width H=12 in and the thickness t = 1 in. The material properties are the Young’s 

modulus E= 3.104 Ksi and the Poisson’s ratio ν = 0.25. This example test is usually 

considered by many researchers as a benchmark test to validate the efficiency of the 

developed plane elements. The results of the maximum displacements at the free edge of the 

beam are given in Table 1.  
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Fig. 2. Allman’s cantilever beam data and mesh 

 

Table 1. Normalized deflection for Allman’s short cantilever beam subjected 

 to a vertical load 

 

The results of the maximum deflection at the free end presented in Table 1 show that the 

accuracy of the SBRIE element is very good compared to the reference solution is slightly 

lower than the robust element Q8 (with 8 nodes). 

 

4.2Mac-Neal’s Elongated Cantilever Beam 

In the second test, the cantilever beam as presented in Fig.3 is subjected to a concentrated 

shearing load at the free edge of the beam (P=1) and to a pure bending moment (M=10). This 

test is known in the literature as a Mac-Neal’s beam [29]. The Length and the width of the 

beam respectively are L=6 and H=0.2. and the Young’s modulus E=107, the Poisson’s ratio 

v=0.3, and a thickness t is equal to 0.1. The numerical results of the normalized deflection for 

both loading cases are given in Tables 2 and 3.  

 

 
Fig. 3. Mac-Neal’s elongated cantilever beam data and mesh 

  

 

 

Elements 

Allman 

[24] 

Q4  Q8 

 [25] 

AQ  

[26] 

MAQ [27]   

SBRIE 

Normalized vertical 

displacement at point 

A 

0.852 0.679 0.985 0.918 0.918 0.928 

Reference solution [28]  

1.000 (0.3553) 
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Table 2. Normalized maximum deflection for Mac-Neal’s beam under pure bending 

Elements Q8 [25] AQ [26] MAQ [27] Q4 SBRIE 

Normalized vertical 

displacement at A 

0.987 0.904 0.904 0.093 0.903 

Reference solution 1.000 (0.1081) 

AQ = four node, 12 degree of freedom Allman-type quadrilateral obtained from Q8 

MAQ = Mixed AQ. 

 

Table 3. Normalized maximum deflection for Mac-Neal’s beam under shear loading. 

Elements          Q8 [25] AQ [26] MAQ [27] Q4 SBRIE 

Normalized vertical 

displacement at A 

0.991 0.910 0.910 0.093 0.910 

Reference solution 1.000 (0.270) 

 

One can see from both tables that the SBRIE element gives the same results compared to 

AQ [26] and MAQ [27] and it is relatively in good agreement with the Q8. On the other hand, 

the element has achieved a very acceptable convergence to the reference solution in both 

cases under consideration (the shearing and a pure bending loading). 

 

5.Validation of The Developed SBRIEPE in Elasto-plastic Behavior 

In the current structural theories, one can observe an increasing interest in the computational 

approaches to analyze the elasto-plastic behavior. The analysis of elasto-plastic accounts for 

the nonlinear comportment of the material. During the work loading stage, and after 

surpassing the yield strength, the material's stiffness is different from that in the elastic phase. 

Accordingly, the complex of analysis of the present problem create a great challenge for 

researchers. 

To overcome this difficulty, numerous studies attempted to develop new numerical 

techniques for elasto-plastic analysis. In this work, extended the SBRIE, previously 

developed by Sabir et al. [1] for the linear analysis, to predict accurately the elastoplastic 

analysis of two-dimensional problems. Several yield criterions are considered such as von-

Mises, Tresca, Drucker-Prager, Mohr-Coulomb criterion.  

In this investigation, two different tests are considered to validate the capability and the 

performance of the extended element SBRIEPE. The results are compared to some 

numerical solutions and to the other methods. 

5.1 A Cantilever Beam Subjected to a Distributed Loading 

In this test, a cantilever beam subjected to a distributed load is studied as shown in Fig. 4. 

The dimensions of the beam are chosen to be the length L=8 m and the height H=1 m and a 

unite thickness of the beam is considered and is treated as a plane stress problem. The beam 

is subjected to a distributed loading q = 1 N/m. The material properties used in the present 

analysis are the Young’s modulus E= 105 Pa, the Poisson’s ratio ν = 0.25, the yield strength 

σs = 25 Pa and the strain hardening parameter E’= 0.2 E and the Von-Mises yield criterion is 

used in this experiment. This problem has been also treated by Miaojuan et al. [30] using the 
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Complex Variable Element-Free Galerkin (CVEFG) method. The beam is divided into 10 

and 4 elements in x and y directions, respectively.  

The numerical results of the vertical displacements obtained with SBRIEPE element, 

ANSYS© and CVEFG method are presented in Table 4. It can be seen that the results 

obtained with SBRIEPE are in very acceptable. The small differences of the present results 

compared with the reference findings (ANSYS© results) can be related to the difference 

between the different approaches used from one hand, and to the numerical methods used for 

solving the problem (number of Gauss points in CVEFG method is 3x3), from another hand.  

 
Fig.4. The geometry of a cantilever beam subjected to a distributed loading 

 

Table 4. Nodal displacements of the cantilever beam subjected to a distributed load 

Node 

Coordinate 

(1.6,0.5) (3.2,0.5) (4.8,0.5) (6.4,0.5) (8.0,0.5) 

ANSYS [30] 18.279 60.587 113.120 167.960 223.190 

CVEFG [30] 18.554 60.310 111.814 166.413 221.317 

Present 

SBRIEPE 

14.880 51.910 98.554 147.504 196.877 

  

5.2 A Cantilever Beam Subjected to a Concentrated Loading 

In the second experiment test, a cantilever beam subjected to a concentrated load is studied, 

as shown in Fig. 5. The dimensions of the beam are chosen to be length L= 8 m, the height H 

= 1 m and the depth of the beam t = 1 m. This test has been also treated as a plane stress 

problem. The beam is subjected to a concentrated force at the free end of the beam. The 

concentrated applied load P = 1 N. The material properties used in the present analysis are 

the Young’s modulus E= 105 Pa, the Poisson’s ratio ν = 0.25, the yield strength σs = 25 Pa, 

and the strain hardening parameter is E’=0.2E and von-Mises yield criterion is adopted in this 

example. This problem has been also treated by Miaojuan et al. [30] using the CVEFG and 

the Element-Free Galerkin (EFG) method. The beam is divided into 10 and 4 elements in x 

and y directions, respectively. The numerical results of the vertical displacements obtained 

with SBRIEPE element are compared to those obtained with ANSYS©, CVEFG and EFG 

methods and are presented in Table 5. 

 
Fig.5. The geometry of a cantilever beam subjected to a concentrated force 
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The results found with SBRIEPE element are compared to those obtained with ANSYS© 

software, CVEFG and EFG methods. It can be concluded that the results of SBRIEPE 

element are very acceptable.  

 

Table 5. Nodal displacements of the cantilever beam subjected to a distributed loading 

Node 

coordinate 

(1.6,0.5) (3.2,0.5) (4.8,0.5) (6.4,0.5) (8.0,0.5) 

ANSYS [30]  2.020 6.837 13.227 20.600 28.460 

EFG [30] 1.946 6.728 13.077 20.409 28.236 

CVEFG [30]   2.068 6.904 13.303 20.666 28.524 

SBRIEPE 1.853 6.573 12.899 20.204 27.994 

 

6. Parametric Study: 

In this section, a parametric study will be present in the aim to determine the effect of some 

parameters, such as the strain hardening parameter on the nonlinear behavior of two-

dimensional problems. Several yield criterions are considered such as the Von-Mises, Tresca, 

Mohr-Coulomb and Drucker-Prager criterion. 

 

6.1 Short Cantilever Beam of Allman 

In this problem, the free end of the short cantilever beam is subjected to vertical load, which 

increases incrementally (Fig. 2). The yield stress of the considered material is σs= 235 ksi. 

The strain hardening parameter are E’= 0 and E’= 0.2E. This test has been treated as a plane 

stress problem. The relationship between the displacements and the resulting stress is shown 

in Fig. 5. On can see from the figure that during the loading stage and after exceeding the 

elastic limit, the material begins yielding and enters into the plastic regime. Fig. 5 shows also 

the effect of the strain hardening parameter using different yielding criterion. One can see 

from the figure that by increasing the strain hardening value the stress increases. Both Tresca 

and von-Mises yielding criterion have the almost the same behavior. The same observation 

can be noticed for Mohr-Coulomb and Drucker-Prager criterion. 

 

  
(a) Tresca criteria                                                 (b) von-Mises criteria 
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      (c) Mohr-Coulomb criteria                                     (d) Drucker-Prager criteria 

 

 

Fig.5. Stress/displacement curves of Allman’s cantilever beam using different values of strain 

hardening and various yielding criterion 

 

6.2 Plane Flexure of Cantilever Beam 

 In the second problem, the free end of the cantilever beam is subjected to a vertical load (Fig. 

6). The load is applied at the free edge of the beam incrementally. The dimensions of the 

cantilever beam are: the length L= 100, the width H=10 and the thickness t =1. The material 

properties are the Young’s modulus E= 107, the Poisson’s ratio ν = 0.25 and the yield stress 

σs = 235. The strain hardening parameter is chosen to be E’= 0 and E’=0.2E. The relationship 

between the displacements and the resulting stress is presented in Fig. 5. It can be seen from 

the figure that during the loading stage and after exceeding the elastic limit, the material 

begins yielding and enters into the plastic regime. Figure 5 shows also the strain hardening 

parameter effect with different yielding criterion. Also, by increasing the strain hardening 

value the stress increases. The Tresca and Von-Mises yielding criterion have almost the same 

behavior. Finally, the same observation for Drucker-Prager and Mohr-Coulomb criterion can 

be noticed. 

 

 
 

Fig 6. The geometry of a cantilever beam subjected to a concentrated load 
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(a) Tresca criteria                                                      (b) von-Mises criteria.

  
(c) Mohr-Coulomb criteria                                             (d) Drucker-Prager criteria. 

Fig.7. Stress/displacement curves of the cantilever beam using different values of strain 

hardening and various yielding criterion 

 

6.3 Mac-Neal's Elongated Cantilever Beam 

 

In the last test, a Mac-Neal's elongated cantilever beam schematically shown in Fig. 3, 

subjected to a concentrated load shearing at the free edge of the beam is considered. The 

dimensions of the beam are Length L= 6 and width H = 0.2 and a thickness t is equal to 0.1. 

The properties of material are Young's modulus E=107, Poisson's ratio v=0.3, yield stress σs= 

235, and the strain hardening is chosen to be E'=0. This test has been treated as a plane stress 

problem. The relation between the displacements and the resulting stress is presented in Fig. 

8.  

 

On can see from the present figure that, during the loading stage and after surpassing the 

elastic limit, the material begins yielding and enters into the plastic region. From the Fig. 8 

one can see that the stress-displacement curves obtained using Tresca and von-Mises criterion 

are the same. The same remark is observed for Mohr-coulomb and Drucker-Prager criterion.  

On the other hand, the Tresca and von-Mises yield criterion enters to the nonlinear phase 

before the Drucker-Prager and Mohr-coulomb criterion.  
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Fig.8 Stress/displacement curves of Mac-Neal’s elongated cantilever beam using various 

yielding criterion 

 

Conclusion 

In this work, a finite element based on the strain approach is developed to predict the 

nonlinear behavior of isotropic materials.  

The displacement fields of the present membrane element are the same as adopted by Sabir 

and it is based on the assumed functions for various components of strain which satisfy the 

compatibility equation. This element is extended in the present work to predict accurately the 

elasto-plastic analysis of two-dimensional problems.   

In order to analyze the elasto-plastic behavior, several yield criterions are employed such as 

von-Mises, Tresca, Drucker-Prager and Mohr-Coulomb criteria. The numerical results given 

by the present element, for both linear and nonlinear analysis are compared to those founded 

in the literature.  

 

The obtained numerical results using the present element are in well agreement with those 

from the theoretical solutions; which demonstrates the accuracy and the efficacy of this 

element. By using the same number of nodes, the numerical solution obtained with the strain-

based element has higher precision than those of the element based on classical displacement 

approach. 

  

The present element SBRIEPE (with four nodes and eight degrees of freedom) gives 

approximately similar results to those obtained by ANSYS© software and with the robust 

element Q8 even the latter element has eight nodes and sixteen degrees of freedom. This 

proves the efficiency of the strain approach used and of course leads to a considerable gain on 

computing time and data meshing.  

On the other hand, according to the obtained results, the strain hardening parameter can 

increase the stress with the same displacement in the case where the strain hardening is nil. In 

addition, the Mohr-coulomb and Drucker -Prager yield criterion get to the nonlinear point 

after the yield criterion of Tresca and von-Mises, and the yield criterion of Tresca, Von-Mises 

and Mohr-coulomb, Drucker -Prager, respectively, have the same behavior.  
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Appendix: 

The nodal coordinates matrix as given as follow:  

 

 
 
 
 

2

1 1 1 1 1 1

2

1 1 1 1 1 1

2

2 2 2 2 2 21 1

2

2 2 2 2 2 22 2

2
3 3 3 3 3 3 3 3

2
4 4 3 3 3 3 3 3

2

4 4 4 4 4 4

4 4

1 0 0 / 2 / 2

0 1 0 / 2 / 2

1 0 0 / 2 / 2,

0 1 0 / 2 / 2,

, 1 0 0 / 2 / 2

, 0 1 0 / 2 / 2

1 0 0 / 2 / 2

0 1 0

y x x y y y

x x y x y x

y x x y y yC x y

x x y x y xC x y
C

C x y y x x y y y

C x y x x y x y x

y x x y y y

x x

 



   
 

  
   
 

  

 

 2

4 4 4 4/ 2 / 2y x y x

 
 
 
 
 
 
 
 
 
 
 
 
   

 

The elasticity matrices for plane stress problems: 

 
1 0

1 0
(1 )

1
0 0

2

E
D








 
 
 

  


 
 
   

 

The elasticity matrices for plane strain problems: 

 
1 0

1 0
(1 )(1 2 )

(1 2 )
0 0

2

E
D

 

 
 



 
 
 

  
 

 
 
   
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