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Abstract

Data mining necessitates a pre-processing task to prepare and clean the data, ensuring its quality.
Missing data values occur when no data is stored for a variable in an observation. Imputation is a
popular method due to its conceptual simplicity and because it maintains the same number of
observations as the complete dataset. The industry trusts this approach to manage large datasets
effectively. Multiple imputations is a widely used technique for analyzing incomplete data, often
assuming a missing-at-random mechanism, which means the response mechanism does not
depend on the missing variable. However, assuming ignorable non-response can result in biased
estimates if the missingness is actually non-ignorable.

In this research, we adopt the selection model approach, specifying both the response model and
the respondents’ outcome model to capture the joint model of the study variable and the response
indicator. The proposed data augmentation algorithm utilizes the respondents’ outcome model
and incorporates a semi-parametric estimation. This multiple imputation method performs well if
the specified response model is accurate.

In this paper, we propose a multiple imputation method for cases of non-ignorable non-response
using data augmentation techniques, which are effective for datasets with a high proportion of
missing data. Existing imputation methods often fail to meet analysis requirements due to low
accuracy and poor stability, especially as the rate of missing data increases. Patterns of missing
data can pertain to either cases or attributes. The global impact of the imputed data is assessed
through several statistical tests, and it is found that the imputation value is high with the
DarbouX variate, which fixes the infimum and supremum of the missing data.

Keywords: Imputation, Knowledge Transfer, missing data, data patterns, multiple imputations,
Data Augmentation, Missing Random Mechanism, DarbouX Algorithm, Naive Bayesian.

Introduction

Non-response often leads to the assumption that missing data is ignorable, using the missing at
random (MAR) mechanism. This assumption implies that the probability of missingness given
the observed variables does not depend on the missing variable itself (Little & Rubin, 2002).
While MAR is reasonable in many situations, there are cases where it is more realistic to assume
non-ignorable nonresponse. For example, the ‘not missing at random’ (NMAR) assumption is
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often preferred in the analysis of income surveys or election polls, as nonresponse for the study
variable, given observed variables, is likely correlated with the unobserved values (Peress, 2010).

In such cases, specifying the joint modeling of the missing variable and the missing mechanism
is necessary to obtain consistent statistical analysis results when non-ignorable missing data is
present. In contrast, the MAR assumption does not require specifying the missing mechanism
model. Greenlees et al. (1982) proposed a conditional mean imputation method, assuming a
normal distribution for the outcome model and a logistic model for the response model. Qin et al.
(2002) considered a semi-parametric likelihood approach by combining a nonparametric
outcome model with a parametric response model. Chang and Kott (2008) and Kott and Chang
(2010) estimated response model parameters using the calibration method without making
assumptions about the outcome model.

The pattern-mixture model specifies two separate conditional distributions of the study variable
given covariates for respondents and non-respondents. In an earlier study, Rubin (1977) proposed
generating imputed values from the conditional distribution of the study variable for
non-respondents. Rubin initially assumed two parametric normal outcome models for both
respondents and non-respondents and then imputed missing values from the non-respondents’
outcome model. The imputation is drawn from the posterior distribution of parameters of the
non-respondents’ outcome model based on prior information about the relationship between the
two model parameters. Little and Wang (1996) considered a bi-variate normal pattern-mixture
model with parameter restrictions between mixture models. Giusti and Little (2011) described a
sensitivity analysis to assess the effect of non-ignorable nonresponse using the pattern-mixture
model to avoid under-identification problems.

Multiple imputations has been applied in several settings under the NMAR assumption. Using
the selection model approach, Durrant and Skinner (2006) proposed a multiple imputation
method using a data augmentation algorithm with parametric outcome and response models.
Galimard et al. (2016) proposed multiple imputation by chained equations (MICE) using
Heckman’s selection model. Rubin (1987) used the pattern-mixture approach to introduce a
linear regression approximation with the closest predictor generated by an appropriate
imputation model.

This approach was applied by van Buuren et al. (1999) to handle missing covariates in survival
analysis. Similarly, Carpenter et al. (2007) generated imputed values using multiple imputation
with the MAR model and then adjusted these values to fit the NMAR model. In this paper, we
propose a multiple imputation method for non-ignorable non-response based on the selection
model approach. Instead of specifying the outcome model for the hypothetical complete data, we
specify the respondents’ outcome model in the data augmentation algorithm for imputing
missing values, following model assumptions by Riddles et al. (2016). Additionally, we
incorporate a semi-parametric estimation of the respondents’ outcome model.

The main advantage of our proposed method is that the respondents’ outcome model is testable
with the observed data. This makes the proposed method more robust to misspecification of the
imputation model compared to previous studies, which either assume a non-testable outcome
model or require sensitivity analysis to find a plausible imputation model. A simulation study
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demonstrates that the proposed method remains robust to misspecification of the response model
unless the fitted response model significantly deviates from the true response/nonresponse
pattern.

Durant and Skinner’s (2006) data augmentation method is summarized as a comparable method.
We introduce the proposed data augmentation algorithm and present two simulation studies.
Finally, the proposed method is applied to datasets from various industries.

2. Non-ignorable missing using Data Augmentation

2.1Parametric approach

An imputation method for a parametric outcome model is based on the relationship between the
non-respondents' outcome model and the respondents' outcome model. The imputed values for
non-respondents are generated by

Where denotes the generated imputed value for unit i. However, we cannot directly use the
rejection sampling approach to generate missing values because the odds of nonresponse

probability is not bounded above in general. One possible alternative
approach which does not require iterative algorithm is to use the parametric fractional imputation
proposed by Kim (2011). To implement the parametric fractional imputation idea, first draw L
imputed values for uniti from the estimated respondent’s outcome model, and then select a final

impute value with the probability proportional to the fraction weights

, where

And y (j) i is the jth imputed value candidate generated from the estimated respondents’ outcome
model. See Kim (2011) for details. Propose a multiple imputation method using the data
augmentation algorithm with a parametrically specified respondent’s outcome model. The
proposed data augmentation algorithm draws M multiple samples from the constructed
distribution

2.2 Semi parametric approach

Semi-parametric approach the parametric respondents’ outcome model given in the previous
section is testable by usual goodness-of-fit test, but this approach can be still sensitive to model
misspecification. In this section we propose a more robust semi-parametric approach
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where is a symmetric unimodal kernel function with a bandwidth h. Note that the
uncertainty for both within variance over missing units and between variance over M repeated

imputation for multiple imputation will not be correctly captured if the values of
are directly imputed on the missing unit.

We use residuals to recover the within variance and bootstrap sample for each imputed data set to
adjust the between variance over repeated imputations

In each iteration, impute on the missing unit ,

where is randomly selected from the residuals , where

The overall multiple imputation is computed by

And the variance estimate of the mean estimator is calculated from the Rubin (1987)’s variance
formula,

The variance estimation can be preferred to the linearized variance estimation, discussed in
Riddles et al. (2016), due to complexity in computation. The Darboux theorem states that every
defined group in Rn consist of a concurrent subgroup. For instance, a subgroup is a group that
can be derived from another group by deleting any items without modifying the order of the
resting items. Every bounded real sequence has a convergent subsequence. A subset of R is
compact if and only if it is closed and bounded. The set S is rational and countable, and treat S as
a bounded sequence from 0 to 1. Then it gives the following results for each statement. There is a
convergent subsequence in S. Darboux theorem require an infinite construction, and it has no
exception. The infinite construction is easier than the constructions in other proof. If (Rn) is a
sequence of numbers in the closed segment [M, N], then it has a subsequence which converges to
a point in [M, N].

Let’s have an arbitrary point P, which is between the points M and N. Then observe the segment
[M, P]. It may contain a finite number of members from the sequence (Rn) and it may contain an
infinite number of them. If take the point P to be N, the segment [M, N] would contain an infinite
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number of members from the sequence. If take the point P to be M, the segment [M, N] would
contain at most only one point from the sequence. Let’s introducing the set S= {P ϵ [M, N] | [M,
P] contains a finite number of (Rn) members. M belongs to set S. If a point P belongs to S, it
mean that [M, P] has a finite number of members from (Rn), and it will mean that any subset of
[M, P] would also have only a finite number of members from (Rn). Therefore for any P that
belongs to S, all the point between that P and M would also belongs to S.

The set S is actually a segment, starting at M and ending in some unknown location [M, N]. Now
let’s move to next step R= Sup(S) it means R is an accumulation point of (Rn). According to the
special case R= M, and assume that R ϵ (M, N).Now we take an arbitrarily small ɛ. Observe the
segment [M, R+ɛ]. R+ɛ cannot belong to S since it is higher than the supremum. Hence [M, R+ɛ]
contains an infinite number of (Rn) members. Now the segment [M, R-ɛ]. R-ɛ must belong to S,
since it is smaller than the supremum of the segment S. Thus [M, R-ɛ] contains a finite number
of members from (Rn). But [M, R-ɛ] is a subset of [M, R+ɛ]. If the bigger set contains an infinite
number of (Rn) members and its subset contains only a finite amount, the complement of the
subset must contain an infinite number of members from (Rn). Proved that for every ɛ, the
segment (R-ɛ, R+ɛ) contains an infinite number of members from the sequence. Construct a
subsequence of (Rn) that converges to R. Take ɛ to be 1. Take any (Rn) member in (R-1, R+1) to
be the first member.

Fig.1. Enhanced accuracy of Missing Data using DarbouX variates NBC.
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This theorem proof that every bounded sequence of real numbers has a convergent subsequence,
every bounded sequence in Rn has a convergent subsequence and every sequence in a closed and
bounded set S in Rn has a convergent sub-sequence NBC technique is one of the widely used
missing data treatment methods. The basic idea of NBC is first to define the attribute to be
imputed, called imputation attribute and then, to construct NBC using imputation attribute as the
class attribute. Other attribute in the dataset are used as the training subset. In addition to NBC
the DarbouX variates is used to fix the infimum and supremum in the data sequence. Hence the
imputation problem is becoming a problem of classified data sequence. Finally, the NBC along
with the DarbouX variates is used to estimate and replace the missing data in imputation
attribute.

EXPERIMENTAL RESULTS

Experimental datasets were obtained from the University dataset of the UCI Repository. Table 1
describes the dataset, which features multivariate data characteristics with categorical integer
attributes, containing 265 instances and 13 attributes. The primary objective of the experiments
conducted in this work is to analyse the classification performance of machine learning
algorithms. Datasets without missing values were used, and a few values were randomly
removed at rates ranging from 5% to 25%. In these experiments, missing values were artificially
introduced at varying rates across different attributes.

Data Set Characteristics:  Multivariate Number of Instances: 265

Attribute Characteristics: Categorical,
Integer

Number of Attributes: 13

Associated Tasks: Classification Missing Values? Yes

Table 1 Dataset Used for Analysis

The following diagram represents the classification of missing value Imputation of original
dataset using supervised machine learning techniques like Naïve Bayesan, Booster Algorithm,
NBC-DarbouX variate and unsupervised machine learning techniques like Mean, Median and
STD.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 08 (August) - 2024

http://ymerdigital.com

Page No:1556



Fig.2. Missing Values imputation in Original Dataset

The figure below represents the percentage rates of missing values using both supervised and
unsupervised techniques at rates of 5%, 10%, 15%, 20%, and 25%. It also compares the
supervised techniques—NBC, Boosting Algorithm, NBC-DarbouX variate—with the
unsupervised techniques—Mean, Median, and Standard Deviation—across different rates of
missing values for all attributes.

Fig 3. Percentage Rates of Missing Values
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Conclusion

Nonignorable nonresponse models typically require strong assumptions for both the selection
model approach and the pattern-mixture model approach. In this paper, we propose a multiple
imputation method that specifies the respondents’ outcome model and the response model with a
nonresponse instrument variable. The proposed data augmentation algorithm combines fractional
imputation and multiple imputation. Since the imputation step of the data augmentation
algorithm is essentially equivalent to the expectation step of Kim (2011)’s parametric fractional
imputation, we can easily impute missing values using probability sampling proportional to the
fractional weights.

For a normal respondents’ outcome model and a logistic response model, the main advantage of
the proposed multiple imputation method is that the respondents’ outcome model can be
evaluated using a goodness-of-fit test or non-parametrically estimated. If the specified response
model does not significantly deviate from the true response mechanism, the proposed multiple
imputation estimators are relatively robust in terms of bias and coverage.

According to previous discussions, the DarbouX variate Naive Bayesian imputation classifier
consists of two processes. Process 1 involves stating the imputation of elements and the
imputation sequence. Process 2 involves applying the DarbouX variate – NBC to assign missing
values. The Naive Bayesian classifier assigns the missing value in the first imputation element of
the sequence and then updates the database for subsequent imputations. The DarbouX variate
helps construct the classification model with infimum and supremum bounds; however, it cannot
be systematically improved and does not automatically select suitable features like a boosted
tree. The performance of the DarbouX variate depends on the correctness of the element
selection in the database.

The main drawbacks of the Bayes classifier are its strong feature independence assumption and
the issue of zero probability estimates when there are no occurrences of a class label and a
certain element value together. According to the conditional independence assumption,
multiplying all probabilities will yield zero, affecting the posterior probability estimate. This
drawback is addressed by applying DarbouX variates in NBC to fix the infimum and supremum
of the data sequence.

Considering the model specification of the respondents’ outcome model and the response model,
the proposed semi-parametric multiple imputation estimator is preferable in real data analysis.
Additionally, the proposed method works well even for ignorable missing data, with only a
minor cost in efficiency.
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