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Abstract 

The research focuses on developing an expert system to predict the mechanical properties of 

specimens manufactured using Fused Deposition Modeling (FDM), utilizing advanced 

artificial intelligence approaches. A comparative analysis was conducted between experimental 

data and predictions made by two different models: a Fuzzy Logic System and an Artificial 

Neural Network (ANN). The study involved 30 samples, with experimental measurements of 

tensile and flexural strengths serving as the benchmark. The Fuzzy Logic model provided 

estimates with a tendency to slightly underestimate the tensile and flexural strengths, 

particularly in lower-strength samples. In contrast, the ANN demonstrated a closer alignment 

with the experimental values, particularly in higher strength ranges. The findings suggest that 

both models can be useful in predicting the mechanical properties of FDM-manufactured 

specimens, with ANN showing greater accuracy. The results indicate that the Fuzzy Logic 

System generally underestimated tensile and flexural strengths compared to experimental 

values, with a notable discrepancy observed for lower strength samples. For instance, the 

experimental tensile and flexural strengths were 21.34 MPa and 25.56 MPa, respectively 

measured for respective samples, while the Fuzzy Logic System predicted 20.46 MPa and 

24.99 MPa. In contrast, the ANN model demonstrated a higher accuracy in predicting these 

properties, as evidenced by its closer approximations to the experimental data. For the same 

sample, the ANN predicted tensile and flexural strengths of 20.58 MPa and 25.03 MPa, 

respectively, highlighting the superior predictive capabilities of the ANN model.  
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This research underscores the potential for AI-driven models to streamline material testing 

processes, providing a computationally efficient means of estimating material properties and 

highlighting areas for model refinement to enhance predictive accuracy across a broader 

spectrum of material strengths. The study's implications extend to the design and analysis of 

composite materials, where precise property prediction is critical for performance assessment 

and reliability. 
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1. Introduction 

Additive Manufacturing (AM), commonly known as 3D printing, is a transformative 

technology that constructs objects layer by layer, directly from digital models. This approach 

contrasts sharply with traditional subtractive manufacturing techniques, which involve cutting 

away material to shape a final product. AM encompasses a variety of processes that offer 

unique benefits, such as material efficiency, design flexibility, and the ability to produce 

complex geometries [1-3]. The technology has found applications across numerous industries, 

including aerospace, automotive, healthcare, and consumer goods, where it has become a 

pivotal tool for rapid prototyping and manufacturing [4-6]. One of the most prevalent AM 

techniques is Fused Deposition Modeling (FDM). As shown in Fig. 1, FDM works by extruding 

thermoplastic materials through a heated nozzle, depositing the material layer by layer to form 

the desired object. This method is popular due to its relative simplicity, affordability, and the 

wide range of compatible materials, including ABS, PLA, and composites [7-9]. The versatility 

of FDM has made popular choice for prototyping, tooling, and even the production of 

functional end-use parts, enabling designers and engineers to create intricate and customized 

components efficiently [10-12]. 

 

 

 
Fig. 1 Schematic diagram of Fused Deposition Modeling (FDM) Process 
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Fused Deposition Modeling (FDM) is one of the most widely used additive manufacturing 

techniques due to its versatility and cost-effectiveness. It involves the extrusion of 

thermoplastic materials to build parts layer by layer, offering significant advantages in 

prototyping and small-scale production. The mechanical properties of FDM-fabricated parts 

are influenced by a variety of process parameters, such as layer height, print speed, extrusion 

temperature, and infill density. Understanding the impact of these parameters is crucial for 

optimizing the mechanical performance and dimensional accuracy of FDM parts. Research on 

the influence of process parameters on FDM parts has been extensive. For instance, studies 

have shown that layer height significantly affects the surface roughness and mechanical 

strength of parts [12]. Smaller layer heights generally lead to improved surface finish and 

strength but at the cost of longer print times. Additionally, print speed and extrusion 

temperature are critical in determining the bond strength between layers, which directly 

impacts the overall mechanical integrity of the printed objects [13-15]. Infill density and pattern 

also play a vital role; higher infill densities usually result in stronger parts, though they require 

more material and longer printing durations [16-18]. Recent advancements in FDM technology 

have expanded the range of materials that can be used, including composites and high-

performance polymers. This has led to further investigations into how varying process 

parameters affect the mechanical properties of these advanced materials. Studies have 

demonstrated that optimizing parameters such as nozzle temperature and cooling rate can 

significantly enhance the mechanical properties of parts made from materials like carbon fiber-

reinforced polymers [19-22]. Moreover, the orientation of parts during printing has been found 

to influence the anisotropy in mechanical properties, highlighting the need for careful 

consideration of part orientation during the design phase [23-25]. In the context of composite 

materials, the dispersion and alignment of reinforcing fibers are additional factors that are 

influenced by process parameters. The nozzle temperature, print speed, and layer height can all 

affect the distribution of fibers within the matrix, which in turn impacts the mechanical 

properties of the final part [26-29]. Furthermore, post-processing treatments, such as annealing, 

have been explored to improve the mechanical properties of FDM parts, although these 

treatments introduce additional complexities and costs [30-32]. Despite these advancements, 

there remain challenges in fully understanding and optimizing the effects of process parameters 

on FDM parts. Variability in material properties, machine calibration, and environmental 

conditions can lead to inconsistencies in part quality. Therefore, ongoing research is focused 

on developing more robust models and control systems to predict and manage these variations 

[33-35]. The development of Additive Manufacturing (AM), particularly Fused Deposition 

Modeling (FDM), has revolutionized the production of complex and customized parts. FDM's 

layer-by-layer deposition process allows for the creation of intricate geometries and rapid 

prototyping, making it a preferred method in various industries, including aerospace, 

automotive, and biomedical engineering. The quality and mechanical properties of parts 

manufactured by FDM are significantly influenced by various process parameters, such as layer 

thickness, print speed, infill density, and nozzle temperature [36]. Understanding the 

relationship between these parameters and the resulting part properties is crucial for optimizing 

the FDM process. In recent years, machine learning (ML) methods have gained prominence in 

studying and predicting the effects of FDM process parameters. ML techniques such as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees have 
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been employed to model the complex relationships between process parameters and part 

properties. These methods enable the analysis of large datasets and the identification of patterns 

that may not be evident through traditional statistical methods [37]. For instance, ANNs have 

been used to predict tensile strength and surface roughness of FDM-manufactured parts, 

demonstrating their potential to enhance process control and quality assurance [38]. The 

integration of ML techniques into the study of FDM processes offers several advantages, 

including improved accuracy in predictions and the ability to handle non-linear relationships 

between variables. Studies have shown that ML models can outperform traditional empirical 

models in predicting mechanical properties such as tensile strength, flexural strength, and 

impact resistance [39-40]. Additionally, the use of machine learning in FDM can facilitate the 

optimization of process parameters, leading to reduced material waste, shorter production 

times, and improved part quality [41-42]. Despite the advancements in this field, challenges 

remain in the widespread adoption of ML techniques in FDM research. These include the need 

for large, high-quality datasets and the complexity of model selection and training [43]. 

Furthermore, the generalizability of ML models across different materials and printer types is 

a critical area of ongoing research [44]. As the field continues to evolve, there is a growing 

interest in exploring hybrid approaches that combine machine learning with traditional 

simulation methods, such as finite element analysis (FEA), to achieve more comprehensive 

and accurate predictions [45]. To bridge the same, present work aims to developed an expert 

system using three artificial intelligence approaches i.e. fuzzy logic, artificial neural network 

and adaptive neuro fuzzy interface system.  

 

2. Materials and Methodologies 

 

2.1 Specimen fabrication using Design of Experiment (DoE) approach 

 

To investigate the impact of FDM process parameters on the mechanical properties of the 

manufactured parts, a series of experiments were conducted. For Fabrication of specimens 

Tevo Tarantula 3D Printer is used with Bagasse natural filament. The parameters considered 

in this study included nozzle temperature, layer thickness, part orientation, and raster 

orientation. Each parameter was tested at three distinct levels to comprehensively understand 

their influence on the final properties of the parts. The details about the selected process 

parameters are as: 

 Nozzle Temperature (°C): The nozzle temperature was varied at three levels: 230°C, 240°C, 

and 250°C. This range was chosen to study the influence of different temperatures on the 

material's melting and flow properties, which can significantly affect the bonding between 

layers and overall mechanical strength. 

 Layer Thickness (mm): The layer thickness was set at 0.12 mm, 0.21 mm, and 0.30 mm. This 

parameter influences the surface finish and dimensional accuracy of the parts, as well as the 

mechanical properties, by altering the amount of material deposited in each layer. 

 Part Orientation (°): The orientation of the parts during printing was varied between 0°, 45°, 

and 90°. Part orientation affects the distribution of stresses and the overall mechanical behavior 

of the printed parts, as the layer bonding strength varies with orientation. 
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 Raster Orientation (°): The raster orientation, or the angle at which the material is laid down, 

was set at 0°, 45°, and 90°. This parameter plays a crucial role in determining the internal 

structure and mechanical properties of the printed parts, particularly in relation to tensile and 

flexural strengths. 

Each experimental run involved printing test specimens with a unique combination of the 

specified parameters, adhering to the levels mentioned in Table 1. The specimens were then 

subjected to mechanical testing to evaluate the effects of the different settings on tensile 

strength, flexural strength, and other relevant properties. The results from these tests provided 

valuable insights into the optimal settings for achieving desired mechanical properties in FDM-

manufactured parts and also helps to develop an expert system. 

 

 

In this study, a Face-Centered Central Composite Design (FCCCD) was employed to 

systematically investigate the effects of FDM process parameters on the mechanical properties 

of the manufactured parts. Using the settings outlined in Table 1, the FCCCD method allowed 

for a comprehensive analysis by incorporating the three levels of each parameter i.e. low, 

middle, and high. This approach facilitated the exploration of the interactions between nozzle 

temperature, layer thickness, part orientation, and raster orientation, providing a robust 

framework for optimizing the FDM process. The design enabled the assessment of both linear 

and nonlinear effects, offering a detailed understanding of how variations in these parameters 

impact the overall quality and performance of the printed parts. Table 2 mentioned the FCCCD 

schema for the present work to study effect of FDM process parameters on mechanical 

properties. 

 

Table 2 FCCCD schema for mechanical properties measurement 

Run 
Nozzle 

Temperature (C) 

Layer 

Thickness 

(mm) 

Part 

Orientation () 

Raster 

Orientation () 

1 250 0.3 90 90 

2 230 0.12 90 45 

3 230 0.3 90 0 

4 240 0.21 90 0 

5 240 0.21 45 0 

6 250 0.3 0 90 

7 250 0.12 0 90 

Table 1 FDM process parameters with their settings and levels  

FDM Process parameters Units Levels  

-1 0 +1 

Nozzle Temperature C 230 240 250 

Layer Thickness mm 0.12 0.21 0.30 

Part Orientation  0 45 90 

Raster Orientation  0 45 90 
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8 240 0.21 45 0 

9 250 0.21 45 0 

10 230 0.12 0 45 

11 250 0.12 0 45 

12 240 0.21 45 45 

13 230 0.12 0 45 

14 230 0.12 90 0 

15 230 0.21 45 90 

16 240 0.21 45 0 

17 240 0.21 45 90 

18 240 0.12 45 90 

19 250 0.3 90 45 

20 230 0.3 0 45 

21 240 0.3 45 45 

22 250 0.12 90 0 

23 230 0.3 90 45 

24 250 0.12 90 90 

25 230 0.3 0 90 

26 240 0.21 45 45 

27 240 0.21 0 45 

28 250 0.3 0 0 

29 240 0.21 45 45 

30 240 0.21 0 90 

 

2.2 Mechanical properties testing 

In the present work, two types of mechanical testing are carried out during the present work 

i.e., tensile strength (as per ASTMD638) and flexural strength (as per ASTMD790). 

2.2.1 Tensile Strength Testing 

Tensile strength testing is a crucial method for evaluating the mechanical properties of 

materials, particularly plastics and composites. In the present work. This test measures the 

material's ability to withstand tension and provides important data regarding its strength and 

ductility. The ASTM D638 standard specifies the method for tensile testing of plastic materials, 

focusing on the Type I specimen, which is widely used for its representative characteristics. 

This methodology outlines the procedures and considerations for conducting tensile strength 

testing according to ASTM D638 Type I. Fig.2 illustrates into detail drawing mentioned as per 

ASTM D638.  

 
Fig. 2 Detail Drawing of Tensile Test Specimen as per ASTM D638 type-I 
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2.2.2 Flexural Strength Testing 

In the present work, flexural strength specimens are fabricated as mentioned in Figure 9.  

Flexural Strength is a crucial mechanical property for materials used in structural applications. 

ASTM D790 is a standard test method for determining the flexural properties of unreinforced 

and reinforced plastics, including high-modulus composites. Fig.3 illustrates into detail 

drawing mentioned as per ASTM D790. 

 

 
Fig. 3 Detail Drawing of Flexural Test Specimen as per ASTM D790 

 

2.3 Designing an expert system using artificial intelligence approaches 

In the present work. To predict the mechanical properties expert system is designed using 

machine learning approaches i.e. Fuzzy Logic System, Artificial Neural Network and Adaptive 

Neuro Fuzzy Interface System (ANFIS). 

2.3.1 Fuzzy Logic base expert system 

In this study, a fuzzy logic system was utilized to explore and examine the surface roughness 

of components produced through fused filament fabrication (FFF). Fuzzy logic serves as a 

computational framework that facilitates the representation and manipulation of imprecise or 

uncertain information. It provides a more adaptable and nuanced approach to decision-making 

and reasoning by incorporating degrees of membership and linguistic variables. The fuzzy logic 

system applied in this research comprised linguistic rules and membership functions. Linguistic 

rules delineate the relationships between the input variables (nozzle temperature, raster 

orientation, part orientation, and layer thickness) and the output variable (tensile strength and 

flexural strength). These rules were formulated based on expert knowledge and insights 

specific to the domain. Membership functions were employed to quantify the degree of 

membership of an input variable to a particular linguistic term (e.g., low, medium, high). These 

functions empowered the fuzzy logic system to manage imprecise or ambiguous information 

and make decisions grounded in fuzzy sets and fuzzy logic operations, such as fuzzy inference 

and fuzzy reasoning. By integrating the fuzzy logic system into the analysis of FFF surface 

roughness, the objective of this research was to capture the intricacies and uncertainties 

associated with the manufacturing process. The fuzzy logic system provided a robust 

framework to model and predict the surface roughness based on the input parameters, allowing 

for more accurate and comprehensive understanding of the relationship between process 

parameters and surface quality.  

The utilization of a fuzzy logic system in this research paper enhances the predictive 

capabilities and decision-making process in relation to surface roughness optimization for FFF 

parts. It offers a valuable tool for process control and quality assurance, enabling manufacturers 

to improve product outcomes and customer satisfaction by effectively managing surface 

roughness in FFF manufacturing. 
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The configuration of a three-input-one-output fuzzy logic unit is depicted in Fig.4. As 

illustrated in the figure, a fuzzy logic unit comprises a fuzzifier, knowledge base (consisting of 

membership functions and a fuzzy rule base), fuzzy inference system, and a defuzzifier. Each 

of these components is elaborated below: 

i. Fuzzifier: The actual input to the fuzzy system is fed into the fuzzifier. In fuzzy literature, this 

input is termed as crisp input, as it provides precise information about a specific parameter. 

The fuzzifier transforms this precise quantity into an imprecise form, such as 'small,' 'medium,' 

'large,' etc., along with a degree of membership, typically ranging from 0 to 1. 

ii. Knowledge Base: The pivotal part of the fuzzy system is the knowledge base, encompassing 

both the rule base and the database. The database outlines the membership functions of the 

fuzzy sets used in the fuzzy rules, while the rule base contains several fuzzy if-then rules. 

iii. Fuzzy Inference System: The fuzzy inference system, also known as the inference system or 

decision-making unit, executes inference operations on the rules. It governs how the rules are 

amalgamated. 

iv. Defuzzifier: The output produced by the inference block is inherently fuzzy. A real-world 

system necessitates converting the fuzzy output into a crisp one. The role of the defuzzifier is 

to receive the fuzzy input and yield a real output. In operation, it functions in the opposite 

manner to the input block. 

In this study, a Mamdani fuzzy system was utilized to evaluate a multi-response performance 

index by assessing multiple performance characteristics. The system, depicted in the 

accompanying figure, operates as a multi-input, single-output model to estimate complex 

performance indices even if some input conditions were not explicitly covered during model 

development. The model development involved several key steps: 

i. Selection of Input and Output Variables: Inputs such as Layer Thickness, Nozzle Temperature, 

Raster Orientation, and Part Orientation were selected, with output variables being Tensile 

Strength and Flexural Strength. These variables were represented linguistically with categories 

like {small, medium, large} for inputs and outputs, allowing for fuzzy logic application. 

 

Fig. 4 Fuzzy interface system in MATLAB 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 08 (August) - 2024

http://ymerdigital.com

Page No:927



ii. Selection of Membership Functions: Triangular membership functions were chosen due to their 

computational efficiency. These functions transform linguistic values into a normalized range 

between 0 and 1, facilitating simple and effective calculations. 

iii. Formation of Linguistic Rule Base: A comprehensive rule base was developed to establish 

relationships between input variables and the desired output. This base, incorporating expert 

knowledge, used if-then rules to correlate input variables (each with three triangular 

membership functions) with the output variable. The system generated 15 rules using the max-

min inference method. 

iv. Defuzzification: The final step involved converting fuzzy outputs into a crisp result using the 

center of gravity method. This process computed the multi-response performance index 

(MRPI) by averaging the weighted outputs, providing a precise, actionable result from the 

fuzzy system. 

 

2.3.2 Artificial Neural Network base expert system 

An Artificial Neural Network (ANN) is a computational model inspired by the way biological 

neural networks in the human brain process information. ANNs consist of interconnected 

groups of artificial neurons that work together to solve specific problems. In the present work, 

Artificial Neural Networks (ANNs) implemented through MATLAB's specialized tools offer 

a powerful approach for creating expert systems aimed at predicting material properties. In this 

context, we delve into the methodology involved in utilizing MATLAB's ANN tools to 

construct a Backpropagation Neural Network (BPNN) based expert system tailored to predict 

Tensile Strength and Flexural Strength of materials, with input variables including Layer 

Thickness, Nozzle Temperature, Raster Orientation, and Part Orientation. The first crucial step 

in utilizing MATLAB's ANN tools for developing the BPNN-based expert system is data pre-

processing. This involves acquiring a comprehensive dataset that includes a diverse range of 

values for each input variable along with corresponding Tensile Strength and Flexural Strength 

measurements. MATLAB provides various functions and toolboxes for efficient data pre-

processing, including functions for data normalization or standardization to ensure that input 

variables are appropriately scaled. Proper pre-processing is essential for enhancing the 

convergence of the BPNN during training and improving the accuracy of material property 

predictions. Once the data pre-processing is completed, the next step is to design and 

implement the BPNN architecture using MATLAB's ANN tools. MATLAB offers a user-

friendly environment with built-in functions and toolboxes specifically designed for creating, 

training, and evaluating neural networks. The BPNN architecture typically consists of an input 

layer, one or more hidden layers, and an output layer. MATLAB's ANN tools provide functions 

for defining the network structure, selecting activation functions, and initializing network 

parameters. Additionally, MATLAB's graphical user interface (GUI) facilitates the 

visualization of the network architecture, allowing for easy customization and optimization 

based on specific requirements. After designing the BPNN architecture, the next step is to train 

the network using the prepared dataset. MATLAB's ANN tools offer a variety of training 

algorithms, including backpropagation with different optimization techniques such as gradient 

descent or Levenberg-Marquardt. The dataset is typically partitioned into training, validation, 

and testing subsets to evaluate the network's performance and prevent overfitting. MATLAB's 

ANN tools provide functions for partitioning datasets and monitoring training progress through 
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graphical representations such as training curves and performance metrics. Once the BPNN is 

trained and validated, it can be integrated into the expert system to predict Tensile Strength and 

Flexural Strength based on input variables, thereby providing valuable insights into material 

behavior and aiding in process optimization and product design. 

The present research work investigates the potential of Artificial Neural Networks (ANNs) to 

enhance expert system design. To analyze the surface roughness pattern, an Artificial Neural 

Network (ANN) was implemented using MATLAB© 2021. The ANN utilized a supervised 

learning approach with three input variables: layer thickness, nozzle temperature, and part 

orientation, and one output variable representing the surface roughness as shown in Figure 5. 

Present work approach focuses on leveraging the strengths of both techniques to create a robust 

and adaptable intelligent system. Following steps are considered to design to design an expert 

system using ANN approach: 

Step 1: Knowledge Acquisition and Pre-processing: 

 Domain experts will be consulted to identify the key problem domain and the factors 

influencing the decision-making process. 

 This knowledge will be translated into a structured format suitable for training the ANN. This 

may involve data collection from past cases, feature engineering to extract relevant 

information, and data cleaning to ensure quality. 

Step 2: Neural Network Architecture and Training: 

 Based on the problem domain and the characteristics of the data, a suitable ANN architecture 

will be selected. This could involve choosing the appropriate network type (e.g., Multi-Layer 

Perceptron, Convolutional Neural Network), determining the number of hidden layers and 

neurons, and selecting activation functions. 

 A training dataset will be prepared, consisting of past cases with well-defined inputs (features) 

and corresponding desired outputs (expert decisions). The system will be trained using a 

suitable learning algorithm (e.g., Backpropagation) to identify complex patterns within the 

data. 

 

Step 3: Integration and Evaluation: 

 The trained ANN will be integrated into the expert system framework. This may involve 

developing a mechanism for the expert system to interact with the ANN, providing context and 

receiving its recommendations. 

 The performance of the hybrid system will be evaluated using various metrics relevant to the 

specific application. This could include accuracy, precision, recall, and F1 score for 

classification tasks, or mean squared error for regression tasks. Additionally, expert feedback 

will be solicited to assess the system's reasoning capabilities and the alignment with domain 

knowledge. 

Step 4: Iterative Refinement: 

 Following evaluation, the system will undergo an iterative refinement process. Based on the 

results, the ANN architecture and training parameters might be adjusted. Additionally, the 

expert system's knowledge base could be enhanced with insights gained from the ANN's 

performance. This cyclical process aims to continuously improve the system's accuracy, 

robustness, and generalizability. 
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In the present work, three input nodes i.e. layer thickness, nozzle temperature and part 

orientation and one input node i.e. surface roughness are considered. ANN emphasizes the 

collaborative nature of the approach. By combining human expertise with the learning power 

of ANNs, we aim to create an intelligent system that leverages the strengths of both paradigms. 

2.3.3 Adaptive Neuro Fuzzy Interface base expert system 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that 

combines the learning capabilities of neural networks with the fuzzy logic reasoning of fuzzy 

inference systems. This integration leverages the strengths of both paradigms, allowing ANFIS 

to handle imprecise information and adaptively learn from data.  Utilizing MATLAB's 

Adaptive Neuro-Fuzzy Inference System (ANFIS) tools presents a robust approach for 

constructing expert systems aimed at predicting material properties. In this context, we 

explore the methodology involved in leveraging MATLAB's ANFIS tools to develop an 

ANFIS-based expert system tailored to predict Tensile Strength and Flexural Strength of 

materials, with input variables including Layer Thickness, Nozzle Temperature, Raster 

Orientation, and Part Orientation. The initial step in employing MATLAB's ANFIS tools 

for building the expert system involves data pre-processing. This entails gathering a 

comprehensive dataset containing a diverse range of values for each input variable, 

alongside corresponding Tensile Strength and Flexural Strength measurements. 

MATLAB offers a suite of functions and toolboxes for efficient data pre-processing, 

facilitating tasks such as data normalization or standardization to ensure that input 

variables are appropriately scaled. Effective pre-processing enhances the convergence of 

the ANFIS during training and enhances the accuracy of material property predictions. 

Once data pre-processing is completed, the subsequent step is designing and 

implementing the ANFIS architecture using MATLAB's ANFIS tools. MATLAB 

provides a user-friendly environment equipped with built-in functions and toolboxes 

 

Fig. 5 ANN Architecture with 3 input nodes and 1 output nodes 
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specifically tailored for creating, training, and evaluating ANFIS models.  The ANFIS 

architecture typically comprises fuzzy inference systems combined with adaptive 

techniques, allowing for the modeling of complex relationships between inputs and 

outputs. MATLAB's ANFIS tools enable users to define the structure of the fuzzy 

inference system, select appropriate membership functions, and adjust parameters to 

optimize model performance. Additionally, MATLAB's graphical user interface 

simplifies the visualization of the ANFIS architecture, facilitating customization and 

optimization based on specific requirements. Following the design of the ANFIS 

architecture, the subsequent step is training the model using the prepared dataset. 

MATLAB's ANFIS tools offer various training algorithms, including hybrid optimization 

techniques that combine gradient-based methods with evolutionary algorithms. The 

dataset is partitioned into training, validation, and testing subsets to assess the model's 

performance and prevent overfitting. MATLAB's ANFIS tools provide functions for 

partitioning datasets and monitoring training progress through graphical representations 

such as learning curves and performance metrics. Once the ANFIS model is trained and 

validated, it can be integrated into the expert system to predict Tensile Strength and 

Flexural Strength based on input variables, thereby offering valuable insights into 

material behaviour and supporting process optimization and product design. 

 

3. Results and Discussions 

3.1 Discussions on fuzzy logic expert system results 

The data in Table 17 compares experimental and Fuzzy Logic predictions of tensile and flexural 

strength for 30 composite material samples. The experimental values provide critical insights 

into material behavior under load, while the Fuzzy Logic predictions estimate these properties 

based on various inputs. For instance, Sample 1's experimental tensile strength is 21.34 MPa, 

with the Fuzzy Logic model predicting 20.4604 MPa. Similar trends are observed with flexural 

strength, where the model slightly underestimates the experimental results. As samples 

progress, the model's predictions show a closer alignment with experimental data for higher 

strength materials, such as in Sample 6, which has an experimental tensile strength of 26.89 

MPa and a predicted strength of 26.0104 MPa. However, lower strength samples, like Sample 

3, show more significant discrepancies, indicating the model's limitations in accurately 

predicting lower strength metrics. Overall, the Fuzzy Logic model tends to underestimate 

tensile strength in lower strength samples while providing closer approximations for higher 

strength samples, suggesting a need for refinement or additional parameters to better capture 

material behavior across a range of strengths. 

Table 3 Comparison between experimental and Fuzzy Logic system values 

Sample  

No. 

Experimental 

Tensile Strength 

(MPa) 

Experimental 

Flexural 

Strength (MPa) 

Fuzzy Logic 

based Tensile 

Strength (MPa) 

Fuzzy Logic 

based Flexural 

Strength (MPa) 

1 21.34 25.56 20.4604 24.9859 

2 25.67 28.07 24.7904 27.4959 

3 16.9 15.56 16.0204 14.9859 

4 21.45 23.34 20.5704 22.7659 
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5 24.56 26.78 23.6804 26.2059 

6 26.89 33.79 26.0104 33.2159 

7 22.21 26.67 21.3304 26.0959 

8 23.98 25.88 23.1004 25.3059 

9 35.56 36.46 34.6804 35.8859 

10 29.78 27.13 28.9004 26.5559 

11 23.44 24.34 22.5604 23.7659 

12 30.98 34.88 30.1004 34.3059 

13 23.34 22.24 22.4604 21.6659 

14 20.89 21.77 20.0104 21.1959 

15 28.87 34.77 27.9904 34.1959 

16 24.33 25.23 23.4504 24.6559 

17 30.78 34.68 29.9004 34.1059 

18 32.98 33.88 32.1004 33.3059 

19 27.78 29.98 26.9004 29.4059 

20 30.98 27.18 30.1004 26.6059 

21 31.34 33.54 30.4604 32.9659 

22 30.34 32.09 29.4604 31.5159 

23 17.9 19.1 17.0204 18.5259 

24 32.23 33.98 31.3504 33.4059 

25 28.89 29.35 28.0104 28.7759 

26 30.78 34.98 29.9004 34.4059 

27 28.88 30.08 28.0004 29.5059 

28 43.44 35.09 42.5604 34.5159 

29 29.35 34.01 28.4704 33.4359 

30 26.67 31.13 25.7904 30.5559 

 

 

  

(a)                               (B) 

Fig. 6 Comparison between Fuzzy System and Experimental obtained (a) Tensile 

strength (b) Flexural Strength 
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Fig.6 shows a graph comparing tensile strength (in MPa) across different sample numbers using 

two different methods: a Fuzzy System and Experimental measurements. The x-axis of the 

graph represents the sample number, ranging from 0 to 30, while the y-axis represents tensile 

strength, measured in MPa, ranging from 15 to 45 MPa. This setup provides a clear view of 

how tensile strength varies with different samples. There are two sets of data points plotted on 

the graph. The Fuzzy System's results are represented by black squares (■), and the 

Experimental measurements are shown with red circles (●). This differentiation helps in 

distinguishing between the two methods at a glance. Both sets of data, from the Fuzzy System 

and the Experimental method, exhibit a similar trend and closely follow each other. The tensile 

strength values fluctuate across the samples for both methods. Despite these fluctuations, the 

data points generally increase and decrease together, indicating a high level of correlation 

between the Fuzzy System predictions and the Experimental measurements. The legend in the 

top right corner indicates the symbols used for each method, with a black square (■) 

representing the Fuzzy System and a red circle (●) for Experimental measurements. This legend 

helps in easily identifying which data points belong to which method. Overall, the graph 

demonstrates that the Fuzzy System's predictions closely match the Experimental tensile 

strength measurements across the range of samples. 

 

 

3.2 Discussions on artificial neural network base expert system results 

 

The table 18 provided compares the experimental values of tensile and flexural strengths of 

various composite samples with those predicted by an Artificial Neural Network (ANN) model. 

This comparison helps in assessing the accuracy and reliability of the ANN model in predicting 

the mechanical properties of composite materials. For Sample 1, the experimental tensile 

strength is 21.34 MPa, while the ANN predicted value is slightly lower at 20.5821 MPa. 

Similarly, the experimental flexural strength is 25.56 MPa, with the ANN prediction at 25.0264 

MPa. The ANN model demonstrates effective prediction capabilities for both tensile and 

flexural strengths across various samples. For instance, Sample 2 shows experimental values 

of 25.67 MPa (tensile) and 28.07 MPa (flexural), with ANN predictions of 25.7027 MPa and 

29.0739 MPa, respectively, indicating a close match. Sample 3 reveals a slight discrepancy in 

flexural strength, with experimental and predicted values of 15.56 MPa and 20.1326 MPa, 

respectively. Notably, Sample 9 exhibits the highest tensile strength of 35.56 MPa, closely 

matched by the ANN prediction of 35.5571 MPa. However, some samples, like Sample 13, 

show significant variations in predictions, suggesting areas for model refinement. Overall, the 

ANN model provides reasonably accurate predictions, evidenced by high R-values (0.99998 

for tensile strength and 0.98847 for flexural strength), indicating strong linear relationships 

between predicted and actual values. This demonstrates the model's robustness and its potential 

as a valuable tool for predicting the mechanical properties of composite materials. 
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Table 4 Comparison between experimental and ANN values 

Sample No. Experimental 

Tensile Strength 

(MPa) 

Experimental 

Flexural 

Strength (MPa) 

ANN based 

Tensile Strength 

(MPa) 

ANN based 

Flexural 

Strength (MPa) 

1 21.34 25.56 20.5821 25.0264 

2 25.67 28.07 25.7027 29.0739 

3 16.9 15.56 16.9014 20.1326 

4 21.45 23.34 21.454 24.9898 

5 24.56 26.78 24.0274 25.7619 

6 26.89 33.79 26.8855 33.9508 

7 22.21 26.67 23.0651 26.879 

8 23.98 25.88 24.0274 25.7619 

9 35.56 36.46 35.5571 35.249 

10 29.78 27.13 29.7625 25.575 

11 23.44 24.34 23.4347 24.9908 

12 30.98 34.88 27.1603 34.1208 

13 23.34 22.24 29.7625 25.575 

14 20.89 21.77 21.64 29.041 

15 28.87 34.77 28.8408 34.0543 

16 24.33 25.23 24.0274 25.7619 

17 30.78 34.68 29.8308 35.4393 

18 32.98 33.88 32.9583 35.4633 

19 27.78 29.98 27.8508 30.8156 

20 30.98 27.18 30.9566 24.7188 

21 31.34 33.54 31.3422 33.0129 

22 30.34 32.09 30.27 31.7927 

23 17.9 19.1 17.897 22.3519 

24 32.23 33.98 32.2142 33.6758 

25 28.89 29.35 28.8801 29.3917 

26 30.78 34.98 30.12 35.21 

27 28.88 30.08 28.54 30.01 

28 43.44 35.09 43.21 34.99 

29 29.35 34.01 29.54 34.51 

30 26.67 31.13 26.21 31.35 

 

Table 5 outlines the ANN training parameters for predicting tensile strength. The showWindow 

parameter is set to true, enabling a graphical display of training progress. The 

showCommandLine parameter is false, so details are not shown in the command line. The show 

parameter updates the training status every 25 epochs, aiding in performance tracking. The 

training runs for up to 1000 epochs (epochs), with no time limit (time set to Inf). The goal 

parameter is 0, indicating no specific error target. Training stops if the performance gradient 

falls below 1e-07 (min_grad), or if there are 100 consecutive validation failures (max_fail).  
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The Levenberg-Marquardt optimization uses mu parameters: mu starts at 0.001, decreases by 

0.1 (mu_dec) when performance improves, increases by 10 (mu_inc) when performance 

worsens, and can reach a maximum of 10^10 (mu_max). These settings balance gradient 

descent and Gauss-Newton methods, optimizing training stability and efficiency. 

 

Table 6 outlines the training parameters for predicting flexural strength using an Artificial 

Neural Network (ANN). The showWindow parameter is set to true, enabling a graphical 

interface to display training progress. The showCommandLine is false, limiting detailed 

outputs and focusing on essential updates. The show parameter, set at 25, controls the 

frequency of progress updates, occurring every 25 epochs. Training is capped at 1000 epochs 

(epochs), ensuring the process does not run indefinitely. 

 

Table 5 Training Parameters settings for tensile strength prediction in ANN 

showWindow true min_grad 1e-07 

showCommandLine false max_fail 100 

show 25 mu 0.001 

epochs 1000 mu_dec 0.1 

time Inf mu_inc 10 

goal 0 mu_max 10000000000 

 

Table 6 Training Parameters settings for flexural strength prediction in ANN 

showWindow true min_grad 1e-07 

showCommandLine false max_fail 100 

show 25 mu 0.001 

epochs 1000 mu_dec 0.1 

time Inf mu_inc 10 

goal 0 mu_max 10000000000 

The time parameter is set to Inf, allowing training to continue until other criteria, such as the 

goal of zero training error, are met. The min_grad is set at 1e-07, stopping training if the 

gradient falls below this, indicating a learning plateau. The max_fail parameter is 100, halting 

training if validation does not improve after 100 epochs, preventing overfitting. The mu 

parameter, starting at 0.001, controls the learning rate, with mu_dec at 0.1 decreasing it after 

successful error reductions, and mu_inc at 10 increasing it after unsuccessful steps. The 

mu_max is capped at 10 billion to prevent destabilization from excessively large learning rates. 

Fig.8 demonstrates the statistical stability of the proposed ANN model, designed to enhance 

the accuracy of tensile test predictions. The model utilizes a 4:10:2 architecture, consisting of 

an input layer with four neurons, a hidden layer with ten neurons, and an output layer with two 

neurons. This configuration balances complexity and computational efficiency, enabling the 

network to capture intricate data relationships without becoming overly complex. The model's 

robustness and predictive power were evaluated using the R-value (correlation coefficient), a 

statistical measure indicating how well the ANN's predicted values align with the experimental 

data. The R-value quantifies the strength and direction of the linear relationship between 

predicted and actual values, showcasing the ANN model's effectiveness. 
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(a)                                                                                                  (b) 

Fig. 7 Statistical stability and relationship in proposed ANN for (a) Tensile Strength (b) 

Flexural Strength 

 

 

 

  
                                (a)                                  (b) 

Fig. 8 Statistical stability and relationship in proposed ANN for 

(a) Tensile Strength (b) Flexural Strength 

 

 

3.3 Discussions on adaptive neuro fuzzy interface base expert system results 

The comparison between experimental and ANFIS (Adaptive Neuro-Fuzzy Inference System) 

values for tensile and flexural strengths across various samples provides insights into the 

accuracy and reliability of the ANFIS model in predicting mechanical properties. Table 7 

illustrates the ANFIS outputs. In general, the ANFIS model closely approximates the 

experimental tensile and flexural strengths, with slight deviations observed in certain instances. 

For tensile strength, the ANFIS predictions are generally in good agreement with the 

experimental results as shown in Fig.9. Most samples show minor differences between the 
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experimental tensile strengths and those predicted by the ANFIS model. For instance, samples 

such as 1, 2, 4, and 5 exhibit close alignment between the experimental and ANFIS-based 

tensile strengths, indicating that the model can effectively predict tensile properties within a 

reasonable range. However, some samples, like 3 and 13, show more considerable variations, 

suggesting areas where the model's predictive capability could be improved. In terms of 

flexural strength, the ANFIS model also demonstrates a high degree of accuracy in predicting 

values. Similar to tensile strength, the majority of samples show ANFIS predictions that are 

very close to the experimental measurements. Samples such as 2, 6, 9, and 18 exhibit minimal 

differences between the experimental and predicted flexural strengths, underscoring the 

model's reliability. Nevertheless, a few samples, including 3 and 14, show more significant 

deviations, indicating potential areas for refinement in the model. Overall, the comparison 

highlights that while the ANFIS model generally provides accurate predictions for both tensile 

and flexural strengths, there are specific instances where the model's predictions deviate from 

the experimental values. 

Table 7 Comparison between experimental and ANFIS values 

Sample No. Experimental 

Tensile Strength 

(MPa) 

Experimental 

Flexural 

Strength (MPa) 

ANFIS based 

Tensile Strength 

(MPa) 

ANFIS based 

Flexural 

Strength (MPa) 

1 21.34 25.56 20.5621 25.005 

2 25.67 28.07 25.6827 29.0525 

3 16.9 15.56 16.8814 20.1112 

4 21.45 23.34 21.434 24.9684 

5 24.56 26.78 24.0074 25.7405 

6 26.89 33.79 26.8655 33.9294 

7 22.21 26.67 23.0451 26.8576 

8 23.98 25.88 24.0074 25.7405 

9 35.56 36.46 35.5371 35.2276 

10 29.78 27.13 29.7425 25.5536 

11 23.44 24.34 23.4147 24.9694 

12 30.98 34.88 27.1403 34.0994 

13 23.34 22.24 29.7425 25.5536 

14 20.89 21.77 21.62 29.0196 

15 28.87 34.77 28.8208 34.0329 

16 24.33 25.23 24.0074 25.7405 

17 30.78 34.68 29.8108 35.4179 

18 32.98 33.88 32.9383 35.4419 

19 27.78 29.98 27.8308 30.7942 

20 30.98 27.18 30.9366 24.6974 

21 31.34 33.54 31.3222 32.9915 

22 30.34 32.09 30.25 31.7713 

23 17.9 19.1 17.877 22.3305 

24 32.23 33.98 32.1942 33.6544 

25 28.89 29.35 28.8601 29.3703 
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26 30.78 34.98 30.1 35.1886 

27 28.88 30.08 28.52 29.9886 

28 43.44 35.09 43.19 34.9686 

29 29.35 34.01 29.52 34.4886 

30 26.67 31.13 26.19 31.3286 

 

  

                                 (a)                                       (b) 

Fig. 9 Statistical stability and relationship in proposed ANFIS for (a) Tensile Strength (b) 

Flexural Strength 

 

 

4. Conclusion 

The application of artificial intelligence, particularly neural networks and fuzzy systems, has 

proven to be an effective approach in optimizing FDM (Fused Deposition Modeling) process 

parameters. This study utilized the Adaptive Neuro-Fuzzy Inference System (ANFIS) to 

predict tensile and flexural strengths of materials with high accuracy. The results indicate that 

neural networks and fuzzy systems can model complex relationships between process 

parameters and mechanical properties, offering reliable predictions and optimization strategies. 

The ANFIS model, in particular, demonstrated strong predictive capabilities, closely aligning 

with experimental values. Continuous refinement and incorporation of additional data can 

enhance the model's accuracy and reliability. Furthermore, the study successfully developed an 

expert system designed to predict the tensile strength of composite FDM parts. This expert 

system integrates knowledge from experimental data and AI models, providing accurate 

predictions based on input parameters such as fiber orientation, weight, and FDM process 

settings. The practical application of this expert system is significant, as it can be utilized by 

manufacturers and researchers to optimize FDM processes, enhance composite material 

properties, and reduce experimental costs by minimizing the need for extensive physical 

testing. This approach not only improves efficiency but also contributes to the advancement of 

FDM technology. 
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