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Abstract 

Microbial fuel cells, often known as MFCs, are an intriguing device that are capable of 

producing energy by utilizing the metabolic processes of microbes instead of traditional fuel 

cells. Because of their capacity to generate energy and effectively eradicate pollutants by 

converting organic matter that is present in wastewater, MFCs have the potential to be 

utilized in wastewater treatment plants by virtue of their ability to generate electricity. An 

oxidation process is carried out by the microorganisms that are present in the anode electrode. 

This process results in the breakdown of a variety of contaminants. As a consequence of this 

procedure, electrons are generated and then transported to the cathode compartment by means 

of an electrical circuit. Additionally, as a byproduct of this process, filtered water is produced, 

which can either be recycled or returned to the natural environment. By leveraging the power 

of organic materials in wastewater to generate energy, microfluidic cells (MFCs) provide 

wastewater treatment plants an option that is more efficient at producing electricity.  Multi-

fuel combustion engines (MFCs) installed in wastewater treatment plants have the potential 

to improve energy efficiency, reduce operational expenses, and reduce greenhouse gas 

emissions, all of which are important factors in achieving sustainability in wastewater 

treatment operations. The purpose of this study is to provide a brief review of MFCs, 

including their structure, kinds, construction materials, membrane, working mechanism, and 

the major aspects that effect their performance in a variety of scenarios. This review 

investigates the use of this technology in environmentally responsible wastewater treatment 

and the difficulties that are associated with its widespread implementation. 
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Introduction 

Alternative energy sources are in high demand, which is a fact that is well understood. As a 

result of the pollution that they generate and the limited amount that is available, the existing 

reliance on fossil fuels cannot be maintained permanently (1). It is highly improbable that any 

one solution will be able to replace fossil fuels, even though substantial research is being 

conducted on a variety of energy options (2). Because of this, it is highly likely that a number 

of different options will be required in order to generate energy for a specific task in a manner 

that is distinct from one another depending on the setting (3). An enormous amount of interest 

has been generated as a result of the discovery that microorganisms possess the capacity to 

generate power from waste and renewable biomass (4).  

A surge of interest and a considerable increase in the number of publications in the field of 

MFC research have been triggered as a result of the discovering that microbial metabolism 

can create energy through an electrical current (5). However, in order for these systems to be 

practicable for widespread usage, major advancements are required. These systems have a big 

potential to provide us with sustainable energy. Batteries, fuel cells, and supercapacitors are 

examples of electrochemical systems that are already highly intricate; nevertheless, the 

addition of living creatures that are responsible for driving electrochemical processes makes 

these systems far more difficult than they currently are (6). The following are the primary 

distinctions between MFCs and conventional low-temperature fuel cells: the use of biotic 

electrocatalysts at the anode; a wider temperature range of 15 degrees Celsius to 45 degrees 

Celsius with optimal conditions close to ambient levels; neutral pH working conditions; the 

use of complex biomass as anodic fuel (often waste or effluent); and a promising moderate 

environmental impact as evaluated through life cycle analysis (7). Over time, researchers and 

developers have explored and developed a multitude of concepts and advancements in 

practical application. It is understood the mechanics of electron transfer, constructed 

successful bio-electrocatalytic interfaces, and developed new electrode materials that are both 

inexpensive and long-lasting (8). A significant amount of work has been accomplished in 

these areas. However, further work is necessary to fully utilize MFCs in the industrial sector, 

as there is still gap for improvement. 

According to (9), microbial fuel cells (MFCs) have garnered recognition as a promising and 

creative technology for the conservation of energy and the treatment of wastewater, hence 

addressing concerns related to the environment. Biosensors, biohydrogen production, and in-

situ power sources are utilized for bioremediation and wastewater treatment in distant places 

(10). These innovations are especially relevant in these regions since they are used for 

bioremediation and wastewater treatment. 

Wastewater is increasingly gaining recognition as a valuable resource for water reuse and 

energy savings. On the other hand, traditional treatment methods, such as conventional 

aerobic activated sludge (CAAS), require a considerable amount of energy and result in the 

production of residuals (11). According to (12), they are also incapable of capturing and 

making use of the potential resources that are present in wastewater treatment plants. 

Anaerobic digester (AD) technology has gained widespread recognition as an essential 

treatment technique due to its remarkable effectiveness in converting organic chemicals into 

methane (CH4) gas (13). This is due to its ability to conserve energy and convert organic 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 07 (July) - 2024

http://ymerdigital.com

Page No:99



 
 

chemicals into methane. Two methods to convert this into electrical sources are CH4-driven 

engines or chemical fuel cells. Nevertheless, some data suggests that treated wastewater may 

not always fulfill stringent legal standards. This highlights the necessity for more 

technological developments in the post-treatment process. The technique of water reuse has 

gained a substantial amount of traction, particularly in areas that have a limited supply of 

water resources (14). Despite this, it repeatedly necessitates greater energy for treatment, 

particularly due to the increased water quality criteria for reuse (15). 

This review article on microbial fuel cells aims to provide a detailed analysis of the numerous 

applications that can be made use of the technology that is behind microbial fuel cells. The 

publication's mission is to provide this analysis. This organization's efforts will primarily 

focus on developing the capability to treat wastewater, generate electric power, remove heavy 

metals, and maybe manufacture hydrogen energy from organic materials. These capabilities 

will be the primary focus of the company's activities. The review focuses on the significance 

of microbial fuel cells in the context of addressing environmental challenges, such as the 

treatment of wastewater and the production of renewable energy. This is done in order to 

highlight the importance of these fuel cells. The purpose of this research is to investigate 

various ways that can be utilized to improve their performance and overcome the limitations 

that are now present in a number of applications. Additionally, the objective of this review is 

to serve as a valuable resource that can be utilized to influence future research and 

technological achievements in the field of microbial fuel cells.  

 

Microbial fuel cell 

There are two main types of MFCs used to generate electricity: single-chamber and double-

chamber (16). A single-chamber MFC combines all required components, including waste 

and electrodes (cathodes and anodes), in a single chamber. A double-chamber MFC consists 

of an anodic and cathodic chamber that are kept separate. One compartment holds 

wastewater, while the other holds water. The first chamber is sealed to produce an oxygen-

free environment and avoid any interaction with it, whilst the second chamber is left open to 

maximize exposure to air. A salt bridge links the chambers, while a multimeter monitors the 

current. 

 

Single chamber microbial fuel cell mechanism 

The cathode and the anode are not broken up into their own distinct compartments in this 

configuration. It is possible that proton exchange membranes are not present in the anode 

compartment, as shown in Figure 1 (17). Additionally, the cathode compartment is unknown. 

It is possible to absorb oxygen from the air around the cathode chamber by placing a 

permeable cathode on one side of the wall of the cathode chamber. This also makes it easier 

for protons to be transferred. In their study, (18) revealed that single compartment MFCs 

offer a more straightforward and cost-effective alternative. 

The design and construction of MFCs have undergone several customizations in addition to 

these two popular designs. For a variety of construction approaches, there are a great number 

of single-chambered MFC designs available. Typical single-chamber MFCs is depicted in 

Figure 1. It is not the makeup of the bacterial community that is the most important 

component in generating high power densities in MFCs; rather, it is the architecture of the 
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system that contributes to this (19). Both in terms of power density and the efficiency with 

which contaminants are removed, it has been widely recognized that MFCs that utilize mixed 

inoculation tend to perform better than those that use pure culture inoculation (20). It is 

necessary to carefully design MFCs, scale them effectively, manage costs, achieve excellent 

performance, and integrate them seamlessly with existing wastewater treatment facilities to 

successfully bring them into the commercial market (21). However, there have been some 

ingenious designs developed to include MFCs into various wastewater treatment processes. 

At the moment, MFCs are in the first stages of analysis and evaluation. 

 
Figure 1: Single chamber microbial fuel cell mechanism (17). 

Dual chamber microbial fuel cell mechanism 

In recent years, there has been an increase in interest in microbial fuel cell (MFC) technology 

within the bioenergy sector. The MFC system functions by turning chemical energy into 

electrical energy. Specific microbes' metabolic activity enables this process, as depicted in 

Figure 2. Similar to many other bioelectrochemical systems, the MFC constructs a proton 

exchange membrane (PEM) between the anode and cathode regions. Biological oxidation and 

oxygen reduction occur at the anode and cathode regions of MFCs, respectively. These 

processes ultimately generate power in MFCs. Microbes operate as biocatalysts in the anode 

region, generating electrons and protons via cellular respiration (22). They are responsible for 

the breakdown of substrates. When electrons move through the external circuit and protons 

move through the plate electrode material (PEM), a reduction reaction with oxygen occurs in 

the cathode region, creating water (23). This type of renewable energy generation has 

numerous advantages, including optimal production conditions, simple procedures, and a 

wide range of biocatalyst sources (24; 25). 
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Figure 2: Dual chamber microbial fuel cell mechanism and chemical reaction (26). 

 

Microbial fuel cell: Bioelectricity production 

Microbial fuel cells (MFCs) can also use biowaste to generate power. These MFCs are 

essentially bioreactors in which bacteria turn chemical energy into electrical energy in the 

absence of oxygen by utilizing carbon from organic waste (27). A salt bridge or membrane 

separates the two electrodes that comprise a microbial fuel cell (MFC), a cathode and an 

anode (Figure 3) (28). Microorganisms degrade organic materials to facilitate their 

development and reproduction. This process consists of a succession of oxidation and 

reduction processes that yield electrons and protons (29; 30). Microorganisms can transport 

electrons to a substance in the absence of oxygen, facilitating electron transfer to electrodes 

during oxidation (31). Once delivered to an electrode, an electron travels through an external 

circuit, while protons spread through the solution and into the cathodic chamber. This 

chamber combines with oxygen, producing water (32). As the substrate oxidizes, the potential 

in the anodic chamber diminishes, leaving a potential difference between the two electrodes 

(33). 

 
Figure 3: Microbial fuel cell: Bioelectricity production (28). 
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The type of substrate and microorganisms utilized in the MFC have an effect on current 

output (34; 35; 36). The electron transport mechanism is an important feature in MFCs. 

Reports have identified two basic mechanisms: direct electron transfer (DET) and mediated 

electron transfer (MET) (37; 38). DET can be performed using nanowires or transmembrane-

associated proteins, whereas MET can be performed using an electron-transfer mediator (39). 

Researchers have identified numerous species of bacteria capable of producing power in a 

microbial fuel cell (40-44). Researchers discovered that many electron mediators, such as 

natural red and potassium ferricyanide, improve the efficiency of MFCs (45). Using an 

external mediator can improve the efficiency of an MFC, but it has downsides. These 

mediators can be toxic, reducing microbial growth and increasing costs. To address this issue, 

(46) investigated a combination of Lipomyces starkeyi and Klebsiella pneumonia. They used 

palm oil mill effluent as a starting material and co-cultured the two microorganisms in an 

anodic chamber. The electron shuttle mediator produced by K. pneumonia was called 2,6-di-

tert-butyl benzoquinone. It boosted the performance of L. starkeyi sixfold over a pure culture. 

It is now not possible to generate considerable current using an MFC for bioelectricity 

production. Furthermore, because mesophilic bacteria promote most processes, this technique 

can work at lower temperatures. 

Waste valorization 

Wastewater treatment commonly employs microbial fuel cells (47). It offers a practical 

solution to address the challenges of water pollution and energy scarcity. The release and 

buildup of organic substances in wastewater can lead to significant water pollution. Currently, 

the commonly used aerobic digestion treatment is highly effective at breaking down organic 

pollutants in wastewater into carbon dioxide with the help of microorganisms (48). However, 

similar to other traditional methods of treating wastewater, this treatment still leads to a 

missed opportunity for harnessing the chemical energy found in organic pollutants. Many 

strains have recognized the availability of these organic substances in wastewater as 

substrates (48). Microbes can utilize organic pollutants to fuel their metabolic activities and 

generate electrons. This allows the MFC system to effectively degrade organic pollutants 

while simultaneously producing electricity (49; 50). Furthermore, the MFC-based anaerobic 

digestion technology offers the advantage of lower energy consumption compared to 

traditional aerobic wastewater treatment methods (49; 51). 

 
Figure 4: Microbial fuel cell waste valorization system (26). 
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Currently, people use microbial fuel cells to simultaneously generate electricity and produce 

valuable products. This is possible because of the wide range of strains and metabolic 

pathways involved (24; 52). Microbes can generate a range of biofuels, volatile fatty acids, 

biopolymers, and other platform compounds through the fermentation process during the 

electricity generation of MFCs (53-56). In addition, MFCs can utilize a variety of substrates, 

ranging from pure chemicals and organic wastewater to lignocellulosic biomass (LCB), 

thanks to the wide range of available strains (57). With its impressive annual production 

reaching about 200 billion tons, LCB stands out as one of the most abundant renewable 

resources. LCB resources primarily consist of agricultural and forestry wastes. Disposing of 

and burning such resources can lead to significant resource waste and environmental 

pollution. Nevertheless, the sugars produced by LCB hydrolysis are excellent carbon sources 

for microorganism growth and metabolism. Like with organic wastewater, using LCB 

hydrolysates as a substrate in MFCs can efficiently recycle biomass energy and treat 

agricultural and forestry wastes (26). Thus, the MFC system shows great potential as a 

sustainable technology that can generate energy and utilize waste effectively (Figure 4). 

 
Figure 5: Application of LCB substrates in Microbial fuel cell system (26). 

 

Waste from agricultural and forestry practices typically contains LCB, making it an abundant 

and renewable carbon source in the environment. If we perform the appropriate pretreatment, 

we can utilize LCB as a substrate in the MFC system, either as a hydrolysate or as a direct 

substrate (Figure 5). An efficient hydrolysis process can convert the cellulose and 

hemicellulose in LCB into monosaccharides. As substrates for cell growth and metabolism, 

these LCB hydrolysates, which comprise a variety of hexoses and pentoses, have 

demonstrated considerable potential. Catal et al., 2019 conducted a study using pinewood 

flour's sulfuric acid hydrolysate (58). They were able to successfully generate a voltage of 

0.43 V in a single-chamber MFC using a 1000 Ω external resistance. Jablonska et al., 2016 
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achieved a power density of 54 milliwatts per square meter by using hydrolysates from 

rapeseed straw in their research (59). The researchers utilized a combination of hydrothermal 

pretreatment and enzymatic hydrolysis to manufacture these hydrolysates. Gurav et al., 2020 

conducted a study to investigate the effectiveness of a Shewanella marisflavi BBL25 strain-

based microbial fuel cell (MFC) in terms of energy generation (60). They tested the MFC by 

administering hydrolysates generated from barley straw, miscanthus, and pine. The barley 

straw hydrolysate demonstrated a remarkable efficiency by achieving a maximum current 

output density of 6.850 mA/cm2 and a maximum power density of 52.80 mW/cm2. In 

addition, the authors observed that the consumption of barley straw hydrolysates leads to the 

formation of strain cells that are more elongated. Larger amounts of lactate and formate 

contribute to this phenomenon. At the same time, there is research that investigates the 

possibility of using LCB materials as substrates for energy generation. The efforts of 

numerous strains working together may be necessary for LCB degradation and power 

generation. Flimban et al., 2020 conducted research using potato peels and rice straw as 

direct substrates, focusing on energy generation through a dual-chamber MFC unit (61). 

Potato peels and rice straw have particularly impressive power densities, with values of 

152.55 mW/m2 and 119.35 mW/m2, respectively. With the help of banana peel, corn bran, and 

POME, Makhtar & Tajarudin, 2020 conducted an investigation into the generation of 

electricity in a membrane-less MFC system (62). Using the banana peel as the most efficient 

substrate, they were able to generate a voltage of 237.1 millivolts and obtain a power density 

of 23.75 milliwatts per square cm. During their research, Yoshimura et al., 2018 developed a 

hydrodynamic cavitation system to prepare rice bran for subsequent processing (63). They 

discovered that using pretreated rice bran resulted in a significant increase of 26% in the total 

amount of electricity generated. This was due to the efficient utilization of substrates. Jenol et 

al., 2019 also investigated the power generation by a strain of Clostridium beijerinckii SR1 in 

a microbial fuel cell (64). The researchers examined the distinctions and parallels between 

using a direct substrate and a hydrolysate substrate derived from sago hampas. Individually, 

these two different types of sago hampas can produce a power density of 73.8 mW/cm2 and 

56.5 mW/cm2. LCB offers a significant amount of potential for MFC-based biomass 

valorization; nevertheless, the difficulties associated with collecting and transporting it do not 

allow for its broad application on a large scale. 

Performance and efficiency of different types of Microbial Fuel Cells  

Table 1 summarizes the various MFC setups, including operational parameters, power 

outputs, and pollutant removal effectiveness. These configurations include a variety of 

microbial fuel cells, including sediment microbial fuel cells (SMFCs), wetland MFCs (CW-

MFCs), upward continuous flow CW-MFCs, membrane-less biocathode MFCs integrated 

with sequencing batch reactors (SBR-MFCs), and batch mode membrane bioreactor MFCs. 

The upward continuous flow CW-MFCs utilized to treat synthetic wastewater with azo dye 

had a power output of 0.852 W/m3 and a hydraulic retention time (HRT) of three days. This 

layout was more advanced than the last one. Fang et al., 2015 observed that at a concentration 

of 135 ± 10 mg/L, it achieved an impressive COD elimination effectiveness of 85.66% (65). 

Malaeb et al., 2013 found that batch mode MBR-MFCs may achieve an excellent power 

density of 14.5 W/m3 while running with home wastewater (66). Furthermore, they achieved 

removal efficiencies of over 97% for soluble COD and NH3-N. 
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Mohan et al., 2011 found that sediment microbial fuel cells (SMFCs) with residential sewage 

and fermented distillery effluent as substrates had a high-power density ranging from 211.14 

to 224.93 mA/m2 (67). Furthermore, these SMFCs demonstrated high removal efficiencies of 

86.67% for COD and 72.32% for VFA.  

 

According to the findings of a study conducted by Zhao et al., 2013, wetland-MFCs (CW-

MFC) using swine wastewater as a substrate had a power output of 9.4 mW/m2 when running 

in continuous mode (68). Furthermore, these MFCs demonstrated a significant COD removal 

efficiency of 76.50%, which is an impressive finding. Nonetheless, membrane-less 

biocathode MFCs paired with sequencing batch reactors (SBR-MFC) demonstrated a lower 

power output of 2.34 W/m3 and a low COD removal efficiency of 18.7%, showing that there 

are some operational efficiency challenges (69). This means that some efficiency concerns 

must be addressed. This material demonstrates the wide range of possibilities and limitations 

associated with various MFC designs. It also emphasizes the influence of substrate type, 

system setup, and operating circumstances on performance results. 

 

Table 1: Performance and efficiency of different types of Microbial Fuel Cells 

 

MFC Type 
COD and VFA 

Removal Efficiency 

Power 

Output 

Substrates and 

Inoculum 
Source 

CW-MFC in Upward 

Continuous Flow 

85.66% at 135 ± 10 mg 

COD/L with 30% dye 

0.852 W/m³ 

for anode 

volume, HRT 

3 days, 135 ± 

10 mg 

COD/L (30% 

dye) 

Synthetic wastewater 

with azo dye 
(65) 

Batch Mode MBR-

MFCs 

>97% removal for both 

soluble COD and NH₃-

N 

14.5 W/m³ Domestic wastewater (66) 

Sediment Microbial 

Fuel Cells (SMFCs) 

86.67% COD and 

72.32% VFA 

211.14-

224.93 

mA/m² 

Domestic sewage and 

fermented-distillery 

wastewater 

(67) 

Wetland-MFCs (CW-

MFC) 

76.50% in continuous 

mode 

9.4 mW/m² 

anode area in 

continuous 

mode 

Swine wastewater (68) 

Membrane-less 

Biocathode MFCs in 

SBR (SBR-MFC) 

18.70% 2.34 W/m³ Synthetic wastewater (69) 
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Table 2: Challenges of Microbial fuel cell 

 

Challenges Details References 

High Capital Costs 

MFCs are 30 times more expensive 

than traditional systems due to costly 

electrode materials. 

(70) 

Low Power Output 

Power generated is often insufficient 

for continuous operation of 

sensors/transmitters without 

additional management. 

(33) 

Operational Temperature 

Limitations 

Inefficient at low temperatures due 

to slow microbial reactions. 
(71) 

Material Costs and Stability 

High cost and instability of electrode 

materials hinder practical 

application. 

(72) 

Biofilm and Structural 

Challenges 

Large surface areas and durable 

structures are needed to support 

biofilms. 

(73) 

Membrane Fouling 
Biofouling of membranes disrupts 

performance and increases costs. 
(74) 

Scalability Issues 

Power densities in larger MFCs are 

much lower than chemical fuel cells, 

limiting practical use. 

(75) 

Innovative Integration Needs 

Integration with other processes 

(e.g., anaerobic digestion, membrane 

bioreactors) can improve 

performance. 

(70) 
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Discussion 

A direct influence on the amount of power that can be generated by MFC systems is the 

efficiency of the cathode-based oxygen reduction process (76). Cathode catalysts that are 

effective increase power output by facilitating the transfer of electrons and boosting the 

reduction of oxygen during the process (77). In spite of the fact that platinum-based catalysts 

have demonstrated encouraging results in terms of improving oxygen reduction activity, the 

fact that they are both expensive and unstable makes it difficult to have widespread 

application (78). Furthermore, in order to enhance the electrochemical activity of MFCs, 

research has been concentrated on the development of cathode catalysts that are based on 

nanocomposite materials. 

The remarkable peak power density of 16.12 W/m2 was achieved by (79), who were able to 

successfully improve the performance of an activated carbon cathode by combining Cu2O 

and Cu. In order to contribute to the improved performance of the cathode, the authors 

highlighted the catalytic activity of Cu2O in oxygen reduction as well as the high electrical 

conductivity of copper. A remarkable power density of 180 mW/m2 was reported in a study 

that was carried out by (80). Carbon fabric cathode, which has been reinforced with α-MnO₂ 

nanowires and carbon Vulcan, was utilized in order to accomplish this goal. It was also 

discovered by Chiodoni et al., 2019 that the utilization of cathode catalysts that were based 

on manganese oxide led to improvements in the performance of modular fuel cells (81). 

An investigation into the combination of several materials was carried out by Rout et al., 

2018, which led to the development of a nanocomposite that resulted in a considerable 

increase in the volumetric power density by 2.7 points (82). A four-electron oxygen reduction 

route was shown to be facilitated by this nanocomposite, which also improved electron 

transfer; this was reported. In their study, Mecheri et al., 2018 demonstrated that the 

utilization of a cathode catalyst that is composed of FePc and GO has the potential to improve 

the electrochemical performance of MFCs (83). 

When it comes to lowering oxygen, it has been discovered that a three-dimensional 

composite made of carbon nanotubes and molybdenum disulfide is extremely effective. An 

excellent maximum power density of 1177.31 mW/m2 and a current density of 6.73 A/m2 

were both achieved by Li et al., 2019 in their research (84). This was accomplished by the 

researchers. Using a bacterial cellulose cathode that had been doped with phosphorus and 

copper led to an increase in the number of active sites for oxygen reduction, which was the 

reason for this extraordinary performance. PANI and an iron-based metal-organic framework 

were combined in a study that was carried out by Kaur et al., 2021, which resulted in the 

composition of a potent composite catalyst (85). The catalyst that was produced from this 

process exhibited a remarkable power density of 680 milliwatts per square meter and a high 

limiting current density of 3500 milliamperes per square meter. It has also been established 

that metal-organic frameworks based on nickel are efficient catalysts that facilitate the 

reduction of oxygen (86). 

Improvements in specific surface area and surface characteristics are the primary focuses of 

the MFC anode improvement process. An increase in the specific surface area of the anode 

can be accomplished through the application of a number of different techniques, such as heat 

and acid treatments.  
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Furthermore, electrochemical oxidation techniques has the capability to enhance the surface 

area of the anode and augment the presence of novel functional groups on the surface of the 

anode (87). The combination of these therapies helps to improve the electrical connections 

between cells, which in turn fosters the production of biofilms that facilitate the flow of 

electrons. There has been a substantial amount of research carried out on a variety of 

materials in order to improve electrode modification. This has resulted in an improvement in 

the adhesion of the strain cell and has made it easier for electrons to transfer to the surface of 

the anode. Both metals and metal oxides are frequently utilized in the process of anode 

modification. The generation of power in dual-chamber MFCs with carbon cloth anodes that 

were increased with various materials was investigated by Xu et al., 2018, as an illustration 

(88). Under the influence of MnO2, Pd, and Fe3O4 alterations, respectively, they were able to 

accomplish maximum power densities of 824, 782, and 728 mW/m2. According to their 

findings, a number of modifications result in the enhancement of particular strains on the 

anode surface. A considerable increase in power densities was reported by Yu et al., 2019 

when changed anodes were utilized (89). Anodes changed with bentonite-Fe were able to 

obtain maximum power densities of 29.98 mW/m2, while anodes modified with Fe3O4 were 

able to achieve 18.28 mW/m2. In comparison to graphite felt anodes that were left bare, these 

alterations led to an increase in stable voltage as well as a reduction in the internal resistance. 

It has been discovered that the generation of energy from MFCs can be greatly improved by 

the use of modifications utilising cobalt oxide (90) and nitrogen-doped carbon nanorods with 

Co-modified MoO2 nanoparticles (91). The inclusion of zero-valent iron was shown to have 

a beneficial impact on the maximum power density, as was discovered by (92). By boosting 

the diversity of functioning microbial communities and arranging biofilms, it was able to 

accomplish this goal. The generation of power was, however, hampered by the presence of 

zero-valent iron at concentrations that were excessively high. Graphene oxide (GO) and 

carbon nanotubes (CNT) are two examples of carbon compounds that have been shown to be 

effective in the modification of anodes, according to study as well. 

 

 

Future directions 

The concept of microbial fuel cells began as a scientific curiosity, and in many ways, this 

remains the motivation for their existence today. The Microbial Fuel Cell (MFC) is a unique 

device that can swiftly analyze and convert microorganisms' chemical and metabolic 

processes into electrical output. This technology has an intrinsic sensing capability that may 

be used in a wide range of applications and is compatible with the desired microorganisms. It 

has been established that using ceramic materials for the chassis and ion exchange 

membranes causes the generation of catholyte, a disinfectant liquid. Disinfectants are 

exposed to the MFC's environment, therefore the biofilm on the anode electrode can destroy 

them. Two of these examples have the potential to increase cleanliness, which is a critical 

problem for developing countries and regions.  
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Conclusion 

In conclusion, microbial fuel cells, also known as MFCs, are devices that harness the natural 

metabolic processes of bacteria to generate energy and cleanse wastewater. MFCs have 

potential uses in wastewater treatment facilities, where their purpose is to produce electricity 

and remove contaminants.There are two primary types of MFCs: single-chamber and double-

chamber designs. In double-chamber MFCs, the anode and cathode chambers are kept 

separate, while single-chamber MFCs house all of their parts within a single chamber. 

Microbial fuel cells have the ability to utilize different types of substrates, such as organic 

waste and lignocellulosic biomass found in the environment, in order to generate energy and 

purify wastewater. However, MFCs come with a range of advantages and disadvantages. 

These include initial expenses, limited power generation, and temperature limitations within 

which they can operate. In order to effectively tackle these challenges and enhance the 

performance and efficiency of MFCs, further research and development are necessary. 

Microfluidic cells (MFCs) are widely recognized as a technology that prioritizes 

environmental safety and sustainability in the treatment of wastewater and power generation. 
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