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  Abstract — We have developed a system which has the 

capability to provide user feedback through a mobile 

application by receiving data from the device via Bluetooth. The 

measurement of proposed physiological parameters was 

successfully attained with the necessary precision conforming to 

clinical standards. Diabetic patients have employed glucose 

monitoring technology for over three decades to monitor their 

blood glucose levels. This article examines the primary 

methodologies for detecting blood glucose and implementing 

intelligent insulin regulation. The most prevalent and 

extensively used approach involves invasive techniques where 

users prick their fingers to obtain blood samples. However, 

recent advancements have introduced numerous innovations 

for non-invasive blood glucose monitoring, fostering rapid 

growth in this field. This paper proposes a mobile physical 

health monitoring system based on the Android smartphone 

platform. The Android device acquires parameters through 

Bluetooth communication from each health sensor module and 

simultaneously presents the monitoring data. 
Keywords— Physical health monitoring system, Bluetooth 

connectivity, Android app, health sensors, Blood Glucose level, 

IoT Technology.  

   

I. INTRODUCTION   

 

Advancements in modern technology have facilitated the 

creation of compact, wireless, and portable health monitoring 

systems capable of continuous surveillance while remaining 

power-efficient. These innovations have led to a shift in 

health monitoring, where wearable body sensors are gaining 

popularity. Such devices play a vital role in detecting 

anomalies, unforeseen situations, and even forecasting 

potential symptoms based on monitoring physiological 

parameters [1]. Parameters such as heart rate, heart rate 

variability, and movement data are commonly utilized to gain 

insights into the physical performance of both professional 

and amateur athletes [2]. Additionally, the practice of 

monitoring blood lactate concentration during step ergometer 

or treadmill tests is prevalent in sports science to gauge the 

physical capacity of athletes [3]. 

 

Diabetes mellitus impacts the body's capacity to regulate 

blood sugar levels. Individuals managing diabetes routinely 

track their blood glucose levels (preferably maintaining 

between 70 to 180 mg/dL, influenced by dietary intake) using 

medication, exercise, and a balanced diet. Levels below 70 

mg/dL suggest potential hypoglycemia, while levels above 

180 mg/dL may indicate clinically significant hyperglycemia 

[1], [3]. Regular monitoring empowers those with diabetes to 

take necessary actions in adjusting their blood glucose levels, 

thereby reducing the risks associated with both low and high 

blood sugar levels. In addition to plasma glucose 

measurement, finger-prick testing using glucose strips and 

accompanying meters remains the most dependable method 

for self-monitoring. A glucose meter consists of a testing strip  

 

 

 

coated with enzymes (such as glucose oxidase, glucose 

dehydrogenase, and hexokinase) and a detecting apparatus.  

When blood is applied to the strip, the enzymes react with the 

glucose, initiating an electrochemical reaction that produces 

a current proportional to the concentration of glucose [4]. 

There are four primary types of diabetes: Type 1, Type 2, pre-

diabetes, and gestational diabetes. Type 1 diabetes occurs due 

to the immune system's destruction of the pancreas's beta 

cells responsible for producing insulin. Inadequate insulin 

leads to elevated blood glucose levels, potentially causing 

dehydration, weight loss, diabetic ketoacidosis, and adverse 

effects on various body parts, predominantly affecting 

teenagers and adults. Type 2 diabetes, more common among 

adults, involves the loss of sugar regulation in the body, 

impacting organs like the kidneys, heart, eyes, feet, liver, etc. 

Blood glucose monitoring is crucial to observe glucose levels 

in the blood, with various causes leading to diabetes such as 

bacterial infections, toxins in food, autoimmune responses, 

unhealthy habits, aging, family history, overweight, 

pancreatic conditions, PCOS, Cushing's syndrome, 

glucagonoma, steroid-induced diabetes [5]. Monitoring 

blood glucose levels involves invasive and non-invasive 

methods. Invasive methods puncture the skin for blood, while 

non-invasive methods do not. Diabetic patients often need to 

monitor their glucose levels regularly, as levels fluctuate. 

However, the necessity of pricking the skin for blood, 

especially when insulin intake is required, poses a painful 

task that many patients avoid, leading to inadequate 

medication adherence [5]. 

 

II. METHODS   

   

A. Existing Method    

Diabetes risk assessment traditionally relies on familial 

history and certain diabetes indicators. Professionals estimate 

the likelihood of diabetes based on genetic predisposition, 

suggesting a 50 percent chance if one parent has diabetes and 

a 75 percent chance if both parents are affected. Individuals 

over 30 are recommended to undergo regular testing to 

determine the likelihood of diabetes [6]. Blood glucose levels 

are typically monitored using invasive methods, involving 

glucometers that require a small amount of blood from a 

finger prick. This method involves checking glucose levels 

regularly, which can lead to complications and other health 

issues due to repeated invasive procedures [7]. 

   

B. Subjects      

Forty individuals in good health (35 males and 5 females) 

willingly took part in this study, which formed part of a sports 

clinical assessment. To qualify for participation, athletes 

needed to be of legal age and free from pre-existing 

cardiovascular conditions. Their fitness levels ranged from 

recreational athletes (35 individuals) to professional long-

distance runners (5). The participants' ages ranged from 18 to 
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61, with an average age of 39.9 ± 12.5 years. The mean body 

height was measured at 180.3 ± 7.9 cm, and the mean body 

weight was 80.9 ± 12.7 kg. Gender was not distinguished in 

the lactate diagnostics phase. Prior to data collection, all 

participants were briefed about the study's objectives and 

procedures, and written consent was obtained from each 

individual. The study received approval from the local Ethics 

Commission at the Friedrich-Alexander University 

Erlangen-Nuremberg [8]. 

   

C .  Exercise Protocol   

Participants arrived at the testing facility well-rested and 

adequately hydrated. Before commencing the sports clinical 

assessment, essential metadata such as age, height, weight, and 

details regarding the participants' fitness levels were 

documented. They engaged in exercise using an 

electromagnetically controlled cycle ergometer, gradually 

increasing the workload until reaching their maximum 

capacity. Before starting the protocol, participants were 

equipped with a 12-channel ECG Custo Diagnostic (Custo 

Med, Ottobrunn, Germany) featuring adhesive electrodes, 

along with a respiratory gas monitoring system, Cortex 

Metasoft Studio, which included the Metalyzer 3B-2014 

(Cortex, Leipzig, Germany). Continuous measurements of 

heart rate and respiratory gases were collected during the 

exercise. Baseline data was collected while participants were 

at rest. The exercise began with participants cycling at 50 W, 

and the workload increased by 25 W every two minutes. 

Participants had the liberty to halt the exercise at any point if 

they felt they had reached their maximum capacity [9]. The 

maximum workload achieved by any participant was 375 W. 

The count of participants reaching each stage of the exercise 

protocol was recorded.   

   

III. RELATED WORK   

   

A wearable sensor serves to collect various physiological 

data, such as blood glucose levels, and transmits this 

information wirelessly to a smartphone. Subsequently, it 

transfers the data to a cloud server for storage within an 

Electronic Health Record (EHR) [10]. A reliable data 

manager oversees incoming calls from different applications, 

validating them against set criteria. To ensure the reliability 

of Medical Monitoring Applications (MMAs), Health Device 

Beta (dev β) tools have been proposed for developer use. 

Security validation involves spatial-temporal modeling 

through hybrid automata (STHA). Body Sensor Network 

(BSN) technology is pivotal in the Internet of Things (IoT) 

healthcare system, enabling patient monitoring via tiny, 

lightweight sensor nodes. This modern healthcare system 

based on BSN meets various requirements including safety, 

sustainability, and security. Security assurance for any 

control input from MMAs is attained by verifying it against 

a hybrid automata-based model. Time-Division Multiplexing 

(TDM) supported sensors ensure long-term availability with 

a sustainable design. Data collected by different applications 

are stored in a secure database accessible only to authorized 

applications. Physiology-based end-to-end security (PEES) 

establishes a secure communication channel directly between 

the sensor and the medical cloud [11]. Wireless Sensor 

Network (WSN) nodes offer diagnostic capabilities and 

networks large enough for comprehensive analysis, but they 

may incur significant deployment costs. Frameworks like 

UPHIAC (Ubiquitous Personal Health Information Access) 

and PRISM (Platform for Remote Sensing Using Mobile 

Devices) ensure health data security through Application 

Programming Interfaces (APIs) that link smartphone sensors 

with cloud data storage. The Inevitable Health Management 

System (IHMS) facilitates dynamic adjustments in user 

context due to mobility. Hierarchical Power Management 

(HPM) architecture ensures consistency by integrating ultra-

low-power processors. The goal is to streamline the interface 

between various external sensors and client Android devices. 

Smartphones can connect to external sensors via wired or 

wireless channels, simplifying device interaction, which can 

be complex when a single application needs to integrate with 

multiple sensors using different communication channels and 

data formats. A framework aims to streamline this interface 

between various external sensors and client Android devices, 

emphasizing usability, simplicity, and ease of deployment 

[12].Blood glucose measurements utilize electrical 

conductivity measurement, where the conductivity of a sweat 

sample indicates its ability to conduct electricity, correlating 

sodium content from sweat to a voltage measurement. The 

sugar level correlates with voltage ranges using an 

interpolation equation. Electrical conductivity between two 

plate electrodes separated by a fixed distance measures the 

solution's conductivity. Copper, while offering high tensile 

strength, is commonly used for electrical contacts and 

electrodes despite its inferior oxidation resistance. It is 

alloyed with graphite, tellurium, and tungsten to produce 

brass and bronze for various applications due to its strength 

and conductivity. 

 

  

Figure No. 1: Basic Architecture 

  

IV. L ITERATURE SURVEY  

 

N. Sneha and Tarun Gangil (Sneha 2019) explored the 

fundamental aspects of diabetes, focusing on prevalence rates 

among different populations. Their study discussed causes, 

impacts, and various testing methodologies including 

decision trees, Naïve Bayes, support vector machines, 

random forests, and k-nearest neighbors. To simplify diabetes 

complexity and enhance people's lives, they gathered a 

dataset from the UCI machine repository, divided it for 

training and testing, applied different algorithms, calculated 

correlation values, and plotted ROC curves. Their findings 

showed increased accuracy in various algorithms when 

correlation values were computed. Specifically, Support 

Vector Machine (SVM) achieved 77.73% accuracy, while 

Naïve Bayesian reached 73.48%. However, an improved 

SVM accuracy of 77% and a Naïve Bayesian accuracy of 

82.30% proved most effective in identifying diabetic and 

non-diabetic patients, with SVM indicating a disease 

prevalence rate of 45.7%.[19] 
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Hyunjae Lee and Changyeong Song (Hyunjae 2017) 

developed a non-invasive glucose monitoring system 

focusing on sweat collection. Their method involved a multi-

layered patch design and sensor miniaturization to enhance 

sweat collection efficiency and sensing accuracy. They 

emphasized the relationship between pH, temperature, 

humidity, and accurate sensing, utilizing a wearable patch-

based system for non-invasive sweat glucose monitoring. 

This system incorporated humidity sensors to monitor sweat 

collection via impedance change and glucose sensors for 

sweat analysis. The wearable patch remained reliable across 

different skin temperatures, absorbing sweat before 

connecting to hardware for analysis.[12] 

K. Nivetha, N. Ramya, and R. Thendral (Ramya 2018) 

proposed a non-invasive blood glucose monitoring technique 

using sweat, focusing on the dissolved particles between two 

copper electrodes. They discussed normal glucose levels for 

diabetic individuals, comparing the invasive and non-

invasive glucose monitoring methods. Their hardware setup 

included copper electrodes, an Arduino UNO, and an LCD 

display. By measuring conductivity, they estimated salt 

levels, considering low salt content's correlation to low 

glucose levels.[18] 

Wira Hidayat bin Mohd Saad and Muhd. Shah Jehan Abd 

(Shah Jehan) introduced a low-power wearable system for 

continuous blood glucose level monitoring using a GSR 

(Galvanic Skin Response) sensor. Their study emphasized 

the relationship between GSR values and blood glucose 

levels, employing a circuit with resistors, capacitors, and 

operational amplifiers. They utilized filters to manage skin 

resistance variations and noise. Their findings suggested an 

inverse relationship between GSR and blood glucose levels, 

where increased calories burned and glucose concentration 

reduced GSR values.[20] 

   

   

V.  PROPOSED METHODOLOGY   

 The block diagram of the framework consists of two main 

sections: the AI component and the continuous monitoring 

system for glucose, stress, and hydration. In the AI segment, 

a dataset serves as the input, which undergoes preprocessing 

to convert strings into integers. This dataset is divided into 

two parts: training and testing. The training segment allows 

the machine to recognize patterns in the data, cross-validating 

to enhance accuracy and efficiency of the algorithms used. 

The testing section assesses the machine's ability to predict 

new outcomes based on its training. Various AI algorithms 

and classification rules are applied, and the accuracy of each 

classification method is evaluated. The most accurate method 

is employed for prediction, constituting the primary process 

in AI. In the continuous monitoring segment, a GSR sensor 

captures sweat readings, with an Arduino Uno acting as the 

controller and receiving power supply. The GSR sensor 

monitors sweat, measuring skin conductance as its output. 

The sensor output is analog, converted into digital using an 

Analog-to-Digital Converter (ADC) for ease of processing. 

Skin conductance inversely correlates with salt content, and 

this conductance is converted into voltage readings. The GSR 

sensor's output is inversely proportional to the glucose level. 

The voltage obtained from the sensor aids in monitoring 

sugar level, stress, and hydration. Salt level directly 

corresponds to the sugar level. The voltage readings are 

converted into sugar levels using a provided formula 

(Equation 1). The collected results are stored in the cloud 

[17]. 

 

((Out-a)/(b-a)) * (c-d) + d (1) 
Out=Acquire from sensor 
a=Minimum voltage b=Maximum 
voltage c=Maximum sugar 
esteem d=Minimum sugar   

   

The glucose levels obtained from continuous monitoring are 

utilized in the AI segment for prediction. A Graphical User 

Interface (GUI) enables input of glucose levels, age, and 

family history. Following the prediction, a pop-up message 

displays the likelihood of diabetes based on the existing 

dataset. Various classification methods' accuracy rates were 

calculated, and the most accurate method was employed for 

prediction. Additionally, an ROC curve was plotted to assess 

the model's performance. Using data from the sweat sensor, 

glucose levels are estimated. Through the GUI, these values 

are inputted into the AI segment for predictions. A pop-up 

message displays the prediction outcome, which is then 

stored in the cloud [18]. 

   

Machine Learning:      

The AI component was developed using Python 

programming language. Python installation was completed, 

and subsequent to the installation, the core program was 

developed. Predictions were conducted using both a virtual 

database and real datasets. In the proposed system, a real 

database was utilized. 

   

 

                                       

 

 

 

Figure No. 2: Block diagram of proposed system 

Virtual database:     

The virtual dataset was obtained from the Pima Indians 

Diabetes Database, containing information such as age, 

number of pregnancies, glucose levels, blood pressure, skin 

thickness, insulin, BMI (Body Mass Index), family history of 

diabetes, and outcomes. This dataset comprises 768 entries 

across 9 columns. To utilize the entire dataset effectively, it 

was divided into training and testing subsets. 

   

Real Database:   

The real dataset was collected through surveys and collating 

details from numerous individuals. This database includes 

information like age, glucose levels, stress levels, sodium 

intake, weight, height, BMI, family history, and outcomes. 

The dataset consists of 50 entries spanning 10 columns. To 

optimize the use of the entire dataset, it was divided into 

training and testing subsets. 
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VI. RESULTS AND DISCUSSION   

   

The process begins by detecting and measuring blood glucose 

levels; initially, a device is responsible for this task and sends 

the value to a smartphone. The glucose monitoring system 

connects to the smartphone via Wi-Fi. Following the 

instructions displayed on the smartphone, a finger is placed 

inside an NIR sensor equipped with an IR Transmitter and IR 

Receiver. The sensor detects the pulse rate and determines the 

blood glucose level, which is then displayed on an LCD and 

transmitted to the smartphone. Normal human blood glucose 

levels are typically between 70 mg/dl to 130 mg/dl. The 

subsequent phase involves administering the required insulin 

dosage based on the displayed blood glucose value received 

from the smartphone. The non-invasive measurement 

estimates the blood glucose level based on the set value from 

the smartphone. However, it's noted that invasive methods 

generally offer higher accuracy than non-invasive 

measurements [19]. 

   

This research investigates the presence of ammonium in both 

blood and sweat during a controlled step ergometer test 

involving participants with varying fitness levels. This study 

marks the first attempt, to our knowledge, to directly measure 

blood and sweat ammonium levels while correlating them 

with heart rate and blood lactate in a controlled setting, 

aiming to assess sweat ammonia as an indicator of physical 

fatigue in wearable devices. Blood lactate concentration rises 

with physical exertion. As anticipated, professional athletes 

maintain lower lactate concentrations below the aerobic 

threshold, indicating a delay in the onset of anaerobic energy 

pathways compared to untrained individuals. The overall 

lactate values mirror the subjects' diverse fitness levels, 

explaining the narrower curves observed in the averaged 

curve due to earlier exhaustion in subjects with lower fitness 

levels. Concurrently, blood ammonium concentration also 

increases with exertion, paralleling the pattern seen in blood 

lactate. The elevation in blood ammonia during intense 

exercise is a documented phenomenon linked to the depletion 

of skeletal muscle ATP during high-intensity workouts. This 

triggers heightened activity in the Purine-Nucleotide Cycle, 

leading to increased turnover from AMP to IMP and 

subsequently higher concentrations of muscle and blood 

ammonia. Similarly, blood ammonia levels in well-trained 

subjects rise later and at higher exertion levels compared to 

untrained individuals, aligning with the patterns observed in 

lactate concentrations during exhaustive exercise. While 

lactate, ascertainable only through blood tests, cannot be non-

invasively measured in sweat, ammonia, as a weak base, 

follows the pH gradient from plasma to sweat. The 

significant loss of ammonia through sweat is a notable 

pathway. Thus, this study delved into sweat ammonia 

concentration across different exertion levels as an indicator 

of physical fatigue. 

Although sweat ammonia concentrations display wide 

variability, an overall decrease in ammonia levels with 

increased exertion is apparent among most subjects [20]. 

While the measured values exhibit diversity, the consistent 

decline in ammonia levels is noticeable. Despite the decrease 

in sweat ammonia with exertion, there's a notable increase in 

sweat rate. This increase in sweat rate might augment the 

overall loss of ammonia through sweat, even amidst 

declining concentrations. Therefore, a logical step would 

involve integrating an ammonia sensor with a sweat rate 

sensor to better understand their relationship. 

   

   

VII. CONCLUSION   

Monitoring blood glucose levels in diabetic patients employs 

innovative glucose-monitoring technology. A non-invasive 

approach utilizes NIR sensors based on blood flow rates, 

eliminating the need for blood draws. These sensors detect 

glucose levels without invasive measures and transmit the 

data to a smartphone, enabling control over crucial health 

devices like infusion pumps. This non-invasive method not 

only enhances patient compliance but also improves the 

quality of life and overall health of individuals managing 

diabetes. 

 

Diabetes, being a chronic condition, lacks a definitive method 

for prevention or cure. Healthcare professionals rely on 

family history to predict the likelihood of its occurrence, 

estimating an average probability rate. Early detection 

greatly benefits individuals, and the increasing significance 

of AI plays a pivotal role due to its advantages: reduced 

reliance on human intervention, increased precision, and 

efficiency. Our proposed system employs AI algorithms to 

predict the likelihood of diabetes based on various factors 

such as age, blood glucose levels, and family history. 

Using invasive methods for glucose prediction yields 

multiple results, prompting the use of non-invasive 

techniques for monitoring glucose levels. Furthermore, an 

individual's anxiety and hydration levels can be inferred from 

sweat. The IoT concept facilitates storing these results in the 

cloud. As AI and IoT technologies continually advance, these 

initiatives will garner more attention and support, offering 

increased value and fostering further development. 
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