
Beyond Signatures: An ML Based Two-Stage Engine for Early
Ransomware Detection on Windows Systems

Ouedraogo Martial1 [0009-0009-8592-8601], Nikiema Benito2 [0009-0008-2031-285X], Tamiano
Banda3 [0009-0006-7674-7647] and Subrata Sahana4

1,2,3,4Department of Computer Science and Engineering
School of Engineering and Technology

Sharda University, Greater Noida, UP, 201306, India

12020000338.martial@ug.sharda.ac.in,
22020819715.nikiema@ug.sharda.ac.in,
32020000117.tamiano@ug.sharda.ac.in,

4subrata.sahana@sharda.ac.in

Abstract

Ransomware remains one of the most prevalent threats in the Information
Technology landscape. It is a type of malware that blocks access to the target resource for
a ransom payment. The damage occurred can be critical for affected organization as there
is no guarantee even if the ransom payment is paid. Hence there is need for early detection.
To address this situation, we propose an early detection approach based on two stage
detection. The first stage is a static detection engine that identifies ransomware based on
the PE header. The second stage is a dynamic detection engine that will analyze the
predicted negatives from the first stage to detect polymorphic and zero-day ransomware.
This detection engine is based on the early Application Programming Interface (API) calls.
The ransomware detected at both stages will have their signature stored in a database for
future detection. The first engine is optimized for low false positive while the second engine
is optimized for low false negative. We evaluate the two-stage detection with many machine
learning algorithms. Based on the results, the static engine achieves an accuracy of 98.11%
with Gradient Boost and the dynamic analysis achieve an accuracy of 98,32% with Random
Forest after 10-fold cross validation. The combination of both engine in a two-stage
detection obtained an accuracy of 97.83% with 0% false negative rate and 4.76% false
negative rate when evaluated against unknown ransomware from different families. This
result is achieved when Gradient Boost is selected for the static detection engine and
Random Forest is selected for the dynamic detection engine.

 Keywords: Ransomware Detection, Static Analysis, Dynamic Analysis, Portable
Executable Header, Application Programming Interface, Machine Learning

I. Introduction

 Ransomware have emerged in the recent years as one of the most active threats to
the digital security of companies across the world. The Wannacry outbreak in 2017 that cost
around $4 billion symbolizes this recent surge of ransomware [1]. This unprecedented
attack demonstrated the devastating potential of ransomware. It kept

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:302

growing ever since with a multiplication of ransomware outbreak each year. This situation
can be attributed to the COVID-19 pandemic that forced many companies to adopt a remote
working approach ,increasing the attack surface for hackers [1].Besides, this situation is
correlated to the development of RaaS (Ransomware as a Service) because it made it easy
and simple for non-technical people to craft sophisticated ransomware attacks [2]. As a
result, an increase of 51% in 2020, 37% in 2021 ,66% in 2022 and 2023 [3].

Ransomware can be defined as any code that is unconsented, run on a digital system
to block the legitimate user access to resource for a ransom [4]. Like other types of malware,
it uses similar evasion techniques to propagate and infect more systems. Ransomware is
generally categorized into Crypto-ransomware and Locker-ransomware. They respectively
encrypt the victim files and block the access to the files of the target computer. It also as a
wide range of attacks as Windows, Linux, Mobile and Internet of Things (IoT) ecosystem
are regularly the target of attacks. Naturally, many detection solutions have been developed
to tackle the ransomware threat. The detection approach can be categorized in static analysis
and dynamic analysis.

Static analysis is based on the structural information of the code of the ransomware.
It is fast but can be easily bypassed by obfuscation, packing and recompiling [5]. It
examines the binary file of the ransomware without execution, and can reveal important
information about the malicious file like the control infrastructure, targets, behavior and
persistence mechanism. Static analysis provides features like PE header, hashes, strings
opcodes, byte sequence that can provide us insight of the malicious code behavior [6].One
of the most important benefits of static analysis is the speed because it gives faster results
compared to other type of analysis. On the other side it is obsolete against current variant
of ransomware the uses obfuscation techniques [7].We will focus on the PE header for this
research.
 The PE header, or Portable Executable header, is a crucial component of executable
files (.exe), object code (.obj), and Dynamic Link Libraries (DLLs) used in Windows
operating systems and some other environments. It acts like a roadmap, providing essential
information for the operating system to load and execute the program correctly. The
structure of the PE header is shown in figure 1. The PE header mainly consist of the MS-
DOS stub, the PE signature, the CODD file header and the optional header. The PE header
is followed by the section header and the different sections. Here is a brief description of
each part:

 MS-DOS stub is a legacy mark form the MS-DOS era. It was first intended to allow
basic execution of PE files. It became obsolete to modern loader. It consists of a
64-byte header followed by some code displaying “This program cannot be run in
DOS mode”.

 PE signature is a fixed 4-byte value generally displayed as PE\0\0 that indicates the
file format as Portable Executable

 COFF stands for Common Object File Format. It is a mandatory header that gives
critical information about the file’s object code structure valid for both executable
and object files.

 Optional Header provides more details relative to PE files. It is mandatory for
executables but not object files.

 Section table describe logical division of the PE file, each section with specific
code or data.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:303

Figure 1. PE header structure [8]

Dynamic analysis investigates the behavior of the ransomware generally in an
isolated environment. It is more robust but can be slow as the ransomware is run on an
isolated environment. It requires a sample of a malicious software to be run in a restricted
and monitored environment different from the host system. This enables to observe the
behavior of that specific malware without infection risk. For that purpose, virtual machines
and sandboxes like cuckoo sandbox are used to monitor the malicious activity of the
ransomware. The report includes the API calls pattern or frequency, the files and process
created, the network traffic and other relevant information. Dynamic analysis is
considerably slower than the static analysis. Nevertheless, it is more robust against
polymorphic ransomware and zero-day ransomware [6].We will focus on API call
frequency in this research.

API (Application Programming Interface) calls are requests made by a software
program to interact with the operating system or other software components. They make it
possible for programs to access different system functions without having to comprehend
the complex workings of how those functions are implemented. Common API calls
associated with ransomware include file system operations (creating, reading, writing, and
deleting files), registry access, encryption and decryption functions, and network-related
functions (e.g., socket creation, data transmission) [8].By analyzing API call, we can detect
malicious behavior such as file encryption, or attempts to disable security software.

Both approaches have their strength and weaknesses making the timely and correct
classification of ransomware a difficult task. Detecting ransomware as early as possible is
crucial to prevent any critical damage.

Therefore, this paper proposes a two-stage solution. The first stage of detection is
based on the PE header analysis. The predicted negatives from the first stage will undergo
a second detection based on early 45 seconds API calls frequency analysis. The SHA256
signature of the ransomware detected at any stage is stored in a signature database for future
quick detection. We evaluated both detection engine separately with different machine
learning classifiers The static detection engine is optimized for low false positive and the
dynamic detection engine is optimized for low false negative. The overall approach favors
early detection of the ransomware with minimal false negative rate and tolerant false
positive rate.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:304

 The major contribution of our research is outlined as follows:

 To prepare an open-source dataset of the frequency of the early API calls of
ransomware and benign softwares.

 To evaluate how well ransomware can be distinguished from benign software based
on the frequency of the API calls captured in the first 45 seconds of execution

 A novel two stage solution based on PE header and API calls frequency for early
detection of ransomware in windows platform with minimal false negative rate.

The rest of the paper is organized as follows. Section II delves into related work
about ransomware detection. Our proposed novel solution is explained in section III. The
evaluation and results of the research is described in section IV. Finally, the section V
consists of the conclusion and future work.

II. Related work

 The ransomware detection landscape has gone a long way with the researcher
developing new security mechanism to tackle ransomware threat. This section delves into
the various advances achieved in the field. The major focus of the research has been shifted
towards machine learning based approaches as they offer robust detection against zero-day
ransomware [6].

Wani et al. [9] implemented a solution for IoT environment that extracts CoAP
headers as well as TCP/IP headers and uses machine learnings algorithms. In that study an
accuracy of 98% was achieved using NB algorithm and PCA.

Hwang et al. [10] proposed Markov model, random forests technique in a two-stage
detection approach. They have collected 3048 samples in all, 1909 of which are
ransomware and 1139 of which are typical. The API sequences were obtained by means of
the Cuckoo Sandbox. Markov chain model is used in the first phase, then in the second
phase, the residual data is classified using the RF method. This model has an overall
accuracy score of 97.28%,

Azween et al. [11] pre-encryption detection technique. The goal is to detect the
ransomwre before the encryption process terminates. This technique, known as the Pre-
Encryption Detection Algorithm (PEDA), works at two different detection levels. The
system first looks for matches with known ransomware signatures. Then, it uses RF
technique to identify unknown ransomware. The overall accuracy obtained is 99%.

A detection method based on the random forest algorithm was elaborated by
Khammas et al. [12]. The dataset they used accounted 1680 binary samples, with the first
half made of ransomware, and the second half of benign files. Their approach mainly
consisted of four steps which include data gathering, preprocessing, feature selection and
classification. Khammas et al stated an accuracy of 97,74%.

Almomani et al. [13] presented an evolutionary machine learning based detection
method for the Android environment. It optimizes training and testing by extracting API
calls from an unbalanced dataset. This approach is meant to tackle the practical aspect of
ransomware detection with limited data in android devices. A detection accuracy of 97.5
was reached using SVM algorithm.

Sharma et al. [14] developed a detection method based on the app permission, text,
image and java methods (Lock, Encrypt, Encode). They used a dataset of 2076 APK

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:305

ransomware coupled with 2000 APK non ransomware. The accuracy obtained is 98.08%.
Usharani et al. [15] created a solution based on dynamic features, such as CPU,

network data, and privilege evaluation using methods including Adaboost, Random Forest,
Gradient Tree Boost, Support Vector Machine, Linear Regression, and Naïve Bayes. The
outcomes demonstrated that the SVM algorithm yields the highest level of accuracy with
98.45%.

Talabani et al. [16] utilized Bitcoin transaction data and Rule-Based algorithms to
categorize Bitcoin ransomware attacks. Ten descriptive and decision characteristics and
61,004 addresses were included in the Bitcoin dataset. categorization using partial decision
trees (PART) fared better 96.01% accuracy in classification using decision tables.

Ahmed et al. [17] offered a novel approach to system behavior-based ransomware
threat detection. Peeler combines machine learning models with rule-based detection
methods, such as identifying malicious commands and I/O pattern matching, to increase
detection accuracy and decrease detection times. The machine learning models are
employed to precisely identify ransomware that evades the pattern matcher, such as Crypto-
ransomware and Screen Locker malware. The I/O pattern matcher is used by the system to
detect the majority of Crypto ransomware. The accuracy yielded is 99.52%.

The access levels of the process memory were used in Singh et al. [18] solution. It
helps to identify the ransomware key features with an accuracy of 96.28%.

A technique for differentiating between ransomware and safe file sharing traffic
via SMBv2, SMBv3, and NFS protocol was put into place by Berruata et al. [19]. Three
aspects are extracted by the method: write bytes, read bytes, and control commands. This
extraction is done in a constrained amount of time. Neural networks, tree ensembles, and
decision trees have all been used; the neural network produced the best outcomes at 97.7%.

Albanaa et al. [20] developed a hybrid detection method for ransomware detection.
It employs both dynamic and static analysis to extract API calls and file headers. Research
environments are safe when Cuckoo Sandbox and VirtualBox are used. The study evaluates
various models by analyzing 324 ransomware, 320 other malware, and 315 goodware
samples from VirusShare. Of these, Random Forest achieves the greatest accuracy of 96%
and the lowest false positive rate of 0.018.

Herrera et al. [21] proposed a detection technique based on static analysis. The
gathered samples are processed in a sandbox setting so that the dynamic characteristics can
be taken out. The machine learning algorithm uses those attributes as input. An accuracy of
99.63% was achieved.

Deng et al. [22] proposed a static analysis framework based on portable executable
(PE) header to provide early ransomware detection with the use of Deep Reinforcement
Learning. The accuracy obtained from the work is 97.9%.

M. Farnoush et al. [23] proposed a static approach for ransomware detection using
specific sections of the PE Header of Windows portable executable files. both malign and
benign binary headers were compares using Needleman Winsch algorithm and calculation
of alignment scores. Also 10-fold cross validation was applied on all results. The method
made use of a total of 3 datasets, and the accuracy stated was 95%.

The different existing methods are compared in the table 1.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:306

Table 1. Comparison of Existing Works in Ransomware Detection

Ref. Features Accuracy Merits Limitations

Wani et al.
[9] 2020

Resource ID, Resource
Type, URI,
Multipurpose Internet
Mail Extensions
(MIME) type,
Application & message
keys, IoT device's IP
address

98%
Network focused,
IoT environments oriented

Limited
research about
locker
ransomware

Hwang et al.
[10] 2020

API calls 97.%
Strong detection due to a two-
model architecture,
Low false negative rate

High false
positive rate

Azween et
al. [11] 2020

API calls 99%
Early detection capabilities,
High accuracy,
Highly practical

Little study
over static
features

Khammas et
al. [12]
2020

Raw bytes 97.74%
High focus on windows
platform

Limited
research on
dynamic
features

Almomani et
al. [13] 2021

API call permission 97.5%
High focus on android
platform

Vulnerable to
ransomware
with
camouflage
abilities

Sharma et al.
[14] 2021

Apps permissions,
intents, text, images,
java methods (Lock,
Encrypt, Encode)

98.08%
Good efficiency regardless of
imbalanced data

Does not work
well against
obfuscated
samples

Usharani et
al. [15] 2021

IP address, File
metadata, URL
features, HTTP
connections, ports,
MIME, Evaluated
privilege, Extensions,
CPU usage, Process ID,
Services, Payload
features

98.45%
Architecture independent,

Little focus on
static features

Ahmed et al.
[17] 2021

Process starts, Process
ends, DLL image loads,
DLL image unload,
File reads, File writes,
Thread starts, Thread
ends

99.52%
Cross platform,
Architecture independent,
High accuracy

May fail in
detection of
evolving and
polymorphic
ransomware
which can
evade i/o
pattern
matching

Talabani et
al. [16] 2022

N/A 96.01%
Detection process involves
bitcoin transaction
information

Does not make
use of
traditional
features

Singh et al.
[18]
2022

Access privileges:
Read, Write, Execute,
Copy

96.28%
Cross platform,
Architecture independent

Insufficiency
of the access
levels and size
of the training
set

Berruata et
al. [19] 2022

Written bytes, Read
bytes, Control
commands

99.7%
network environment
oriented,
High accuracy

Locker
ransomware is
not tested

Albanaa et
al. [20]
2023

PE header,
API calls

96%
Low false positive rate,
Other malware categories are
included in the research

 Not enough
work on the
false negative
for a more
balance

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:307

detection

 Herrera et
al. [21] 2023

System calls, Processes
and process trees,
Modified system
registries, Files and
directories created,
modified, or deleted,
Network connection
established, Network
protocols used

99.63%
High accuracy,
High focus on behavioral
features

Vulnerable to
ransomware
with data
exfiltration,
little discussion
of dynamic
behavior

Deng et al.
[22] 2023

PE header 97.9%
Provide early and efficient
detection

Vulnerable to
ransomware
using
obfuscation
techniques

Manavi et al.
[23] 2023

PE header 95%
Use of a large dataset of
samples

Limited study
over dynamic
behavior

III. Proposed two-stage ransomware detection

 This section delves into the two-stage detection and the machine learning
workflow.

1. Architecture

 Our method is based in two model: The first one uses PE header features while the
second one uses early API calls frequency. The flow of the detection is as presented in figure
3. Whenever a new file is downloaded or transferred to the system, the SHA-256 hash of
the file is created and is compared against a database of ransomware file signature. This is
a fast and trivial process as the goal there is to remove generic and already detected
ransomware file. But it is obsolete against sophisticated ransomware [1].

Then, the PE header features of the file will be extracted. Those features will be
passed down to the static model for the prediction. Based upon the result, we have two
options. Either the file is a ransomware and its signature will be stored and alert generated;
or it is flagged as benign and it will undergo the second detection process. Because some
ransomware can easily bypass the static analysis with code obfuscation [5] [7], this
detection can be incomplete. Nevertheless, it does reduce considerably the number of files
allowed for the next step.

Finally, the files that made it to this level will undergo detection through the
dynamic model. This model is based on the frequency of the early API calls. A time limit
of 45 seconds of execution is set. The number of API is also limited to 550000 API calls
because some processes produced enormous amounts of calls. The goal here is to capture
and analyze API calls before any important damage can be done [35]. This enables to reduce
the extraction time. After the final prediction of the dynamic model, the files flagged as
ransomware will have their signature stored in the database and their execution blocked
while the ones flagged benign will execute normally. The signatures of benign files are not
stored because they can be compromised by some ransomware to bypass security measures
[11]. Figure 2 and figure 3 illustrate the approach as pseudocode and flowchart of the two-
stage detection respectively:

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:308

Figure 2. Pseudocode of two-stage detection

Figure 3. Working of the Proposed Detection Framework

#Initial Signature-based Filtering:
 Select the file to analyse
 Calculate the SHA256 hash of the file.
 Check if the hash exists in the Ransomware Signature Database.
 If yes, the file is known ransomware, so generate an alert and stop
 If not, proceed to the next step.

#Static Model Prediction:
 Extract features from the Portable Executable (PE) header of the file.
 Use a static model to predict if the file is ransomware based on these features.
 If the prediction is ransomware:
 Generate an alert for ransomware detection
 Add the file's hash to the Ransomware Signature Database and stop
 If the prediction is benign, proceed to dynamic detection

#Dynamic Model Detection:
 Analyze early 45 seconds API calls' frequency in the file
 Use a dynamic model to predict if the file is ransomware based on these API call
frequencies.
 If the prediction is ransomware:
 Block the file and generate alert
 Add the file's hash to the Ransomware Signature Database.
 If the prediction is benign:
 Allow the file's execution.
 Return "Benign file, execution allowed"and stop

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:309

2. Signature database

 The signature database's objective is to prevent the verification of known
ransomware. The burden on the other primary detection engines can then be decreased.
Only the ransomware files' SHA-256 signatures will be kept in this database. The benign
files are deleted because there is a chance that malicious activities could be carried out by
compromised legitimate software. That why we store only the signature of ransomware.
This process is illustrated by figure 4.

Figure 4. Working of the Signature Database

3. Static detection engine

 The static detection engine is the first line of defense. It is mainly based on the PE
header information extracted from exe files as shown in figure 5.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:310

Figure 5. Static Engine Implementation

3.1. Dataset description

 For the static engine implementation, we use the PE header of 1484 executables, as
shown in table 1. In this dataset we have 729 benign files taken from their respective official
trusted websites and the 760 ransomware samples from 71 families taken from Vx
Underground [24]. Those ransomwares are presented in table 2.

Table 2. Dataset repartition for the static detection engine

 Benign Ransomware Total

Number of static samples 729 760 1484

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:311

Table 3. Ransomware Samples Repartition for the static detection

Family Number of exe Family Number of exe

AESRTR 1 Koxic 1

AXLocker 4 LockBit 78

Adhubllka 18 LockerGoga 19

Agenda 2 LokiLocker 48

Akira 4 Lorenz 15

AvosLocker 4 Maze 105

Azov 2 MedusaLocker 9

Babuk 11 Meow 1

BandarChor 7 Midas 1

BianLian 11 Moisha 1

BlackBasta 6 MortisLocker 4

BlackByte 6 NightSky 2

BlackCat 15 Nokoyawa 10

BlackSnake 1 Onyx 1

BlueSky 1 PLAY 4

Cactus 1 Pandora 2

Cerber 3 Paradise 1

Chaos 14 Phobos 9

Cl0p 3 REvil 97

Clownic 1 Rhysida 9

Cryptolocker 57 Roadsweep 1

Cryptowall 2 Rook 4

Crysis 1 Royal 2

Crytox 3 Ryuk 5

Cuba 4 SFile 11

Curator 1 Samsam 3

DarkBit 1 ScareCrow 3

Darkside 17 Sugar 12

DearCry 1 SunnyDay 1

Decaf 2 SynAck 1

Diavol 3 Trigona 1

EvilNominatus 4 Venus 1

GandCrab 78 Vohuk 3

Goodwill 1 WannaCry 1

Haron 1 Yanluowang 2

Jaff 1 Total: 760

3.2. PE header feature extraction

 For the PE header features, a dedicated python library called PE file was used [25].
It is a python module that allows us to extract information from portable executable files.
It can retrieve the PE header and section information [8].For the creation of the dataset for
the static model the features form the PE Optional header and section table information are
extracted.

A total of 69 features are extracted for each sample. Among them there are 6
features from the PE file header, 21 from the optional header, 32 from the data directories
and 10 from the section table. These features help to characterize ransomware samples

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:312

without the need of executing them.

3.3. Feature selection

 To choose the best features for increased performance, some features engineering
is needed.

Dropping irrelevant columns

 Some features in the PE header are not indicative of the malicious characteristic of
PE file because they hold the same values for every file and are not impacting in the
prediction of the model. So we dropped the following feature: SizeOfOptionalHeader,
Magic, SizeOfStackReserve, SizeOfHeapReserve, ExceptionTableSize,
CertificateTableRVA, ArchitectureSize, BoundImportSize, IATRVA, ReservedSize.

Combining features by concatenation

 Features like the MajorOperatingSystemVersion and
MinorOperatingSystemVersion do not have a full meaning on their own. They need to be
combined into one single feature. We do it by concatenating them as shown in equation (1):

∀𝑥 ∈ 𝑋 , ∀𝑦 ∈ 𝑌 → 𝑥𝑦 ∈ 𝑍 (1)

Where: X= major feature, Y=minor feature and Z= combined feature

The table 3 describe the new features obtained and the features dropped

Table 4. Feature Concatenation

Major feature Minor feature combined feature

MajorLinkerVersion MinorLinkerVersion LinkerVersion

MajorOperatingSystemVersion OperatingSystemVersion OperatingSystemVersion

MajorImageVersion MinorImageVersion ImageVersion

MajorSubsystemVersion MinorSubsystemVersion SubsystemVersion

Combining features by subtraction

 The features from the section table depicts the virtual size and the raw size in
memory of the different section of the exe file. Generally, the raw size is greater or equal
to the virtual size. Hence, cases where the virtual size is greater than the raw size are
suspicious although not in every case [26].So we create new features based on computation
of the difference between the SizeOfRaw and VirtualSize, as shown in equation (2):

∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌 → (𝑥 − 𝑦) ∈ 𝑍 (2)

The table 4 describes the new features obtained and the features dropped

Table 5. Feature Subtraction

SizeOfRawData VirtualSize Obtained Feature

.text_SizeOfRawData .text_Misc_VirtualSize .text

.rdata_SizeOfRawData .rdatat_Misc_VirtualSize .rdata

.datat_SizeOfRawData .data_Misc_VirtualSize .data

.rsrc_SizeOfRawData .rsrc_Misc_VirtualSize .rsrc

.reloc_SizeOfRawData .reloc_Misc_VirtualSize .reloc

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:313

After the feature selection process, 50 features remain and will be used for the
training of the static detection engine. Those features are described in table 5

Table 6. Final Features

Features

Machine ImportTableRVA BoundImportRVA
NumberOfSections ImportTableSize IATSize
TimeDateStamp ResourceTableRVA DelayImportDescriptorRVA
PointerToSymbolTable ResourceTableSize DelayImportDescriptorSize
Characteristics ExceptionTableRVA CLRHeaderRVA
SizeOfCode CertificateTableSize CLRHeaderSize
SizeOfInitializedData BaseRelocationTableRVA ReservedRVA
SizeOfUninitializedData BaseRelocationTableSize .text
AddressOfEntryPoint DebugRVA .data
BaseOfCode DebugSize .rdata
ImageBase ArchitectureRVA .rsrc
SizeOfImage GlobalPtrRVA .reloc
CheckSum GlobalPtrSize LinkerVersion
Subsystem TLSTableRVA OperatingSystemVersion
DllCharacteristics TLSTableSize ImageVersion
ExportTableRVA LoadConfigTableRVA SubsystemVersion
ExportTableSize LoadConfigTableSize Total: 50

4. Dynamic detection engine

 The dynamic detection engine is the second and last defense. It takes the relay to
analyze the samples labelled benign by the static detection and gives the final verdict. This
engine analyzes the API calls frequency from the processes of each sample. Figure 6 explain
the process of elaboration of the dynamic detection engine.

Figure 6. Dynamic Engine Implementation

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:314

4.1. Dataset description

 The dataset is a composed of 345 samples consisting 195 benign software and 150
ransomwares. However, this dataset, is based on the API calls extracted from each sample.
The dataset is very diverse to capture real world diversity of the ransomware and benign
samples. Table 6 shows dataset repartition, while table 7 shows ransomware repartition
specifically.

Table 7. Dataset repartition for the dynamic detection engine

 Benign Ransomware Total

Number of dynamic samples 195 134 329

Number of processes 261 274 535

Table 8. Ransomware analyzed for the dynamic detection

Family Number of exe Family Number of exe

AESRTR 1 Curator 1

Agenda 2 DarkBit 1

Akira 4 Darkside 14

AvosLocker 4 DearCry 1

AXLocker 4 Decaf 1

Azov 2 Diavol 2

BandarChor 7 EvilNominatus 1

BlackBasta 5 Haron 1

BlackSnake 1 LockBit 10

BlueSky 1 LokiLocker 10

Cerber 1 Lorenz 10

Chaos 8 Maze 20

Cryptolocker 10 MedusaLocker 5

Crysis 1 Phobos 5

Cuba 1 Total: 134

4.2. API calls feature extraction

 To capture the early API calls, API monitor is used. It is a software that allows the
capture of API calls and related information for both x32 and x64 on windows computer. A
time of 45 seconds is set to keep only the early calls. In addition, a maximum number of
550000 is set to limit the capture calls as some processes produces enormous number of
calls. Without a limit the number of API captured can take a lot time to process. As our
research is based on early detection, a number limit is necessary. As a result of this limit,
some processes have their monitoring stopped before the first 45 seconds. Only the API
relevant to ransomware encryption and related suspicious behavior are monitored.

A total of 3600 unique API is captured across the different processes of the whole
dataset. Then the frequency of each unique API is determined by cumulating the number of
times a process calls this particular API. The final dataset obtained consist of 535 rows and
3600 columns. This dataset is available in this GitHub repository
(https://github.com/Benivio/two-stage-detection).

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:315

4.3. Feature selection

 For an improved performance and less use of resources, there is a need to reduce
the dimensionality of the dataset. For that, the features are reduced through relative
frequency and Random Forest feature importance. Figure 7 illustrates the selection process

Figure 7. Feature Selection for the Dynamic Model

Feature selection by relative frequency

 To have the most important features, we proposed a feature selection based on two
types of frequencies. We have the value frequency of the API calls and the binary frequency
of the API calls.

 Value frequency: The value frequency is based on the average of values of each

column. We separate the dataset in two categories that are the API calls having more
value for the benign and the ones having more values for ransomware. This approach
characterizes the important API calls but can lead to error if there is an outlier with a
huge number of calls. After this phase we get 864 API for the ransomware and 2700
for the benign softwares. The pseudo-code for the relative frequency approach is shown
in figure 8.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:316

Figure 8. Pseudocode of Value Frequency Approach

 Binary frequency: The binary frequency is based on whether there is a non-zero value
in each column. If a value is superior to zero, we consider it as 1 and if it is equal to
zero then it is considered as 0. The relative average is computed for the calls more
present in ransomware and the one more present in benign software. This approach is
robust against outliers but does not characterize high frequency API calls. The pseudo-
code for the binary frequency approach is shown in figure 9.

Figure 9. Pseudocode of Binary Frequency Approach

After this phase we get 835 API. Because the benign software is very diverse,
we only took the first 1088 most frequent API.

 Selection: After computing the relative frequencies, we compute the intersection of the
value frequency and binary frequency for the ransomware to get the final ransomware
API. Then we do the same for the benign. The result is 699 for the ransomware and 925
for the benign.

Finally, we perform the union of those results to get the final set of columns
which is 1624 columns. These columns represent the API which the higher value
frequency and higher binary frequency for each ransomware and benign software.

Split data into ransomware and benign files
ransomware_calls = Filter rows with 'Label' as 1
benign_calls = Filter rows with 'Label' as 0

Count total API calls for each class
total_ransomware_calls = Sum values in each column of ransomware_calls
total_benign_calls = Sum values in each column of benign_calls

Calculate relative frequency of API calls for each class
relative_frequency_ransomware = Divide total_ransomware_calls by number of rows in
ransomware_calls
relative_frequency_benign = Divide total_benign_calls by number of rows in benign_calls

Identify API calls more frequent in ransomware and benign files respectively
api_calls_ransomware_higher = Select API calls where relative frequency in ransomware is greater
api_calls_benign_higher = Select API calls where relative frequency in benign is greater

Split data into ransomware and benign files
ransomware_calls = Filter rows with 'Label' as 1
benign_calls = Filter rows with 'Label' as 0

Count total API calls for each class
total_ransomware_calls = Count the number of non-zero values in each column of ransomware_calls
total_benign_calls = Count the number of non-zero values in each column of benign_calls

Calculate relative frequency of API calls for each class
relative_frequency_ransomware = Divide total_ransomware_calls by number of rows in
ransomware_calls
relative_frequency_benign = Divide total_benign_calls by number of rows in benign_calls

Identify API calls more frequent in ransomware and benign files respectively
api_calls_ransomware_higher = Select API calls where relative frequency in ransomware is greater
api_calls_benign_higher = Select API calls where relative frequency in benign is greater

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:317

Random forest feature importance

 When dealing with ransomware detection features, we need feature selection that
considers the relationship between features. That is the case with the Random Forest feature
importance. It gives us insight on the features that contributed in the ability of the model to
distinguish between ransomware and benign files.

First, we select an impurity measure in this case, the Gini impurity. Gini impurity
measures the probability of misclassifying a randomly selected element in the dataset if that
element were randomly labeled according to the distribution of labels in the node.
For a node 𝑡 with 𝑁௧ samples and K classes, the Gini impurity 𝐺(𝑡) is calculated as shown
by equation (3):

𝐺(𝑡) = 1 − ∑ 𝑝(𝑖|𝑡)ଶ௄
௜ୀଵ (3)

Where: 𝑝(𝑖|𝑡) is the proportion of samples of the class 𝑖 in node 𝑡.

The feature importance 𝐹𝐼 for a single feature 𝑋 is computed based on the decrease
in impurity (∆𝐼) that happens when making use of feature 𝑋 for dividing nodes in the trees
of the Random Forest. The decrease of impurity is calculated for every node where feature
𝑋 is used for splitting and is determined by the number of samples in each node. Then, the
feature importance of feature 𝑋 is calculated by taking the average of the decrease in
impurity across all the nodes in all tress where this feature is applied for splitting, weighted
by the number of samples in each node. The decrease in impurity for feature 𝑋 is calculated
as shown in equation (4):

∆𝐼 = 𝑁௧ ∗ 𝐼௣௔௥௘௡௧ − 𝑁௟௘௙௧ ∗ 𝐼௟௘௙௧ − 𝑁௥௜௚௛௧ ∗ 𝐼௥௜௚௛௧ (4)

Where:

 𝑁𝑡 is the number of samples in the current node

 𝐼௣௔௥௘௡௧ is the impurity of the parent node before the split

 𝑁௟௘௙௧ and 𝑁௥௜௚௛௧ are the number of samples in the left and right child nodes

after the split

 𝐼௟௘௙௧ and 𝐼௥௜௚௛ are the impurities of the left and right child nodes after the split

After that, normalization is applied so that the importance rate adds up to 1 for ease
of interpretation. The higher the rate, the higher the influence on the model decision.

For our dataset, we selected the features having a rate superior to 0. 00088.That
gives us the best 248 features out of the 1624 initial features. The final dataset before
training consists of the 248 columns representing the most important API calls frequency.

IV. Evaluation and results

1. Evaluation metrics

 The following metrics, represented as equations (5), (6), (7), (8), (9) and (10) are

considered for the evaluation of the two-stage detection:

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:318

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(்௉ା்ே)

(்௉ା்ேାி௉ାி)
 (5)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(்௉)

(்௉ା)
 (6)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
(்௉)

(்௉ାிே)
 (7)

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
(ଶ × ௣௥௘௖௜௦௜௢௡ × ௥௘௖௔௟௟)

(௣௥௘௖௜௦௜௢௡ ା ௥௘௖௔௟௟)
 (8)

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑁𝑅) =
(ிே)

(்௉ାிே)
 (9)

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =
(ி௉)

(ி௉ା்ே)
 (10)

2. Evaluation of the static detection engine

 For the evaluation of the static detection engine, 7 ML classifiers are used. They
are Random Forest, Support Vector Machine-Nearest Neighbors, Decision Tree, Logistic
Regression, Gradient Boost, AdaBoost. We applied 10-fold cross validation and calculate
the mean form the results of each fold to get more reliable estimate of the performance of
the model. Table 8 and figure 10 show the results

Table 9. 10-Fold Cross Validation Performances of the ML
Algorithms Used for the Static Detection Engine

ML classifier Precision Recall F1 Score Accuracy FNR FPR

Random
Forest

98.09 97.97 98.02 98.05 2.03 1.88

Adaboost 97.09 97.40 97.23 97.24 2.60 3.00

Decision Tree 97.23 96.87 97.03 97.04 3.13 2.92
Gradient
Boost

98.41 97.78 98.07 98.11 2.22 1.65

SVM 96.53 92.96 94.66 94.75 7.04 3.42

K-NN 94.39 96.15 95.22 95.08 3.85 5.86

LR 90.90 92.44 91.61 91.44 7.56 9.58

Figure 10. 10-Cross Validation Results for the Static Detection
Engine

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:319

After the 10-cross validation, the results are mostly similar to the ones of the train-
test split with some slight difference. The best model is Gradient Boost with an accuracy of
98.11% with a low FPR of 1.65%.

3. Evaluation of the dynamic detection engine

 The testing is done using the train-test split and the 10 cross fold validation. As the
last line of defense, the goal of the dynamic engine is to have a low FPR and but more
importantly a low FNR. This detection engine is evaluating the processes of the exe files.
Hence if one process belonging to a program is flagged malicious, all the other processes
of the program are considered the same. But it will not apply in the case where a process is
flagged benign. This approach reduces the FNR rate. The goal is to reduce the FNR as much
as possible while having a reasonable low FPR.

For the implementation of the dynamic model, we use 8 ML classifiers that are are
Random Forest, Support Vector Machine-Nearest Neighbors, Naïve Bayes, Decision Tree,
Logistic Regression, Gradient Boost, AdaBoost. After performing 10-fold cross validation,
we calculate the mean from every fold the following results are obtained as described in the
table 9 and figure 11 below.

Table 10. 10-Fold Cross Validation Results of the ML Algorithms
Used for the Dynamic Detection Engine

ML classifier Precision Recall F1 Score Accuracy FNR FPR

Random Forest 98.09 98.66 98.32 98.32 1.34 1.82

SVM 93.42 95.30 94.22 94.01 4.70 7.56

LR 95.79 96.42 96.06 95.87 3.58 4.86

Decision Tree 95.58 96.48 95.90 95.88 3.52 4.50

Adaboost 97.85 97.73 97.74 97.95 2.27 1.63

Naives Bayes 81.96 98.27 89.24 88.19 1.73 22.92

KNN 91.66 92.70 91.97 91.95 7.30 9.44

Gradient Boost 97.38 99.35 98.31 98.31 0.65 2.58

Figure 11. 10-Fold Cross Validation Results of the Dynamic
Detection Engine

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:320

After the cross validation, we obtained more reliable estimate of the performance
of the different models. The best is Random Forest with an accuracy of 98.32%, but with a
FNR of 1.34% and a FPR of 1.82%. The second-best model is Gradient Boost with an
accuracy of 98.31%, a FNR of 0.65% and a FPR of 2.58%. Even though Gradient Boost
has a low FNR, the FPR is higher compare to Random Forest which is more balance with
both low FNR and FPR.

4. Evaluation of the two-stage detection with unseen ransomware and benign
samples

 After testing each engine separately, we perform a combined testing to determine
how the combination of the static and dynamic engine perform against unseen data. For that
reason, we test them against 46 samples consisting of 26 benign and 20 ransomwares. The
ransomwares are from families different than the one used in the training above and are
listed in table 10.

Table 11. Ransomwares from Unseen Families

Ransomware Families Number of exes

Djvu 1

Karma 1

RagnarLock 1

RTMLocker 1

Hive 16

Total: 20

First, we extract the PE header features of the 46 executables, including both bening
and ransomware. We test them with the Gradien Boost model trained before. It has been
chosen as it obtained the best performance. We get the results in table 11 below

Table 12. Results of the First-Stage Static Detection Engine

ML Classifiers Test exes Predicted Negatives FP Samples FN Samples Accuracy
GB 46 27 1 1 95.65

From the table above, out of 47 exe samples, there are 1 FP and 1 FN. We also
count 27 predicted negatives which are the samples flagged as benign. As described in our
two-stage detection architecture, the samples flagged as benign by the static engine will
undergo a second test based on the early API calls of their processes. The processes of the
test executables are extracted and tested against the classifiers of the dynamic engine trained
prior. Random Forest is chosen for the dynamic detection as it showed the best performance
in the training phase. The results are displayed in table 12 below.

Table 13. Results of the Second-Stage Dynamic Detection Engine

ML Classifiers Test exes Processes FP
Processes

FN
Processes

Accuracy

RF 27 38 0 0 100

The RF model has correctly classified all the samples. It successfully detected the
ransomware sample that bypassed the static detection. To get the overview of the
performance of the two-stage detection we combine the results by considering the final
classification of the initial exes. The results are described in the table 13 below.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:321

Table 14. Combined Results of the Two-Stage Detection Engine

ML Classifiers for
Two Stage Detection

 Test exes Combined FNR Combined FPR Combined Final
Accuracy

GB + RF 46 0 4.76 97.83

From the table we notice that the best results of our two-stage detection are obtained
when Gradient Boost classifier is chosen for the static detection engine and Random Forest
is chosen for the dynamic detection engine. It has an accuracy of 97.83 %. The FNR is 0%
which is crucial as ransomware outbreak are so devastating. Only one FP exe has been
observed causing a FPR rate of 4.76%.

The results were obtained based of ransomware from different families that the
ones used in the training. This shows that this approach is robust against zero-day
ransomware.

5. Discussion

 The two-stage detection achieved the following points. The first stage of detection
based on PE header is a relatively fast process that takes in average 0.5 seconds and the API
calls extraction is limited to 45 seconds. In addition, the static detection reduces the number
of executables that undergo the second detection, reducing the detection time.

We achieved an accuracy of 98.11% with Gradient Boost for the static detection
and an accuracy of 98.32% with Random Forest for the dynamic detection after 10-fold
cross validation. To confirm that the two-stage detection, perform well against unseen data,
we tested it against ransomware from 5 families, different from the one used in training. We
achieve an accuracy of 97.83% with 0 FNR. This is crucial to protect critical infrastructure
from ransomware.

In table 14 we compare the two-stage detection against existing work

Table 15. Comparison Against Existing Methods

Authors Early Detection Tested Against Ransomware from
Different Families

Accuracy

Manavi et al. [23]   95.20%

Talabani et al. [16]   96.01%

Singh et al. [18]   96.28%

Hwang et al. [10]   97%

Khammas et al. [12]   97.74%

Two-stage detection   97.83%

As we can see, the two-stage detection provides early ransomware detection,
with a high accuracy of 97.83% against unseen ransomware.

V. Conclusion and future work

 This paper proposed a two-stage static and dynamic approach for early ransomware
detection in Windows environment. The method mainly consists of a static detection engine
that classify the files based on their PE header features. The files flagged benign will
undergo the final stage of detection based on the API calls frequency. If a file is flagged as
ransomware a SHA 256 signature is created and stored for future quick detection. The
uniqueness of the approach is that optimize the detection an early detection and low FNR
while keeping a reasonable FPR. The two-detection engine are optimized separately to
maximize their strength. We achieved an accuracy of 98.11 % with Gradient Boost for the

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:322

static detection engine and an accuracy of 98.32% for Gradient Boost and Random Forest
after 10-fold cross validation.

To confirm that the two-stage detection, generalizes well against unseen
ransomware, we tested both detection engine against ransomware from different families
than the ones used for training. We selected Gradient Boost for the static detection engine
and Random Forest for the dynamic detection engine. The accuracy obtained is 97.83%
with a FNR of 0%.

Our dynamic detection is based on the API calls capture in the first 45 seconds.
However, in this lapse of time a big amount of damage can occur on the host computer.
Some ransomware takes less than 45 seconds to encrypt files and this can be problematic
for this specific framework. That is why a combination with a decoy technique is an
interesting alternative to recover potential encrypted files. One other alternative is to
explore how early we can distinguish between benign files and ransomware by reducing
the capture time of API calls. Third party application like API monitor was used to capture
the API. Including all the necessary module for the detection in a standalone application
can also reduce the detection time. All these points are to be explored in our future work.

References

[1] A. A. Duong, A. Bello and A. Maurushat, "Working from home users at risk of
COVID-19 ransomware aƩacks," Cybersecurity and CogniƟve Science, pp. 51--87,
2022.

[2] N. Kshetri and J. Voas, "Ransomware as a Business (RaaB)," IT Professional, pp. 83-
87, 2022.

[3] Sophos, "The State of Ransonware 2023," Sophos, 2023.

[4] T. McIntosh, A. Kayes, Y.-P. P. Chen, A. Ng and P. WaƩers, "Ransomware miƟgaƟon in
the modern era: A comprehensive review, research challenges, and future
direcƟons," ACM CompuƟng Surveys (CSUR), vol. 54, no. 9, pp. 1--36, 2021.

[5] R. Sihwail, K. Omar and K. A. Zainol Ariffin, "A Survey on Malware Analysis
Techniques: StaƟc, Dynamic, Hybrid and Memory Analysis," vol. 8, p. 1662, 2018.

[6] S. a. F. C. a. M. C. Razaulla, A. Gawanmeh, W. Mansoor, B. C. Fung and C. Assi, "The
Age of Ransomware: A Survey on the EvoluƟon, Taxonomy, and Research
DirecƟons," IEEE Access, 2023.

[7] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak and M. K. Khan, "Ransomware:
Recent advances, analysis, challenges and future research direcƟons," Computers
\& security, vol. 111, p. 102490, 2021.

[8] MicrosoŌ, "learn.microsoŌ.com," [Online]. Available:
hƩps://learn.microsoŌ.com/en-us/windows/win32/debug/pe-format. [Accessed
06 03 2024].

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:323

[9] A. Wani and S. Revathi, "Ransomware protecƟon in loT using soŌware defined
networking," Int. J. Electr. Comput. Eng, pp. 3166--3175, 2020.

[10] J. Hwang, J. Kim, S. Lee and K. Kim, "Two-stage ransomware detecƟon using
dynamic analysis and machine learning techniques," Wireless Personal
CommunicaƟons, vol. 112, no. 4, pp. 2597--2609, 2020.

[11] S. Kok, A. Azween and N. Jhanjhi, "EvaluaƟon metric for crypto-ransomware
detecƟon using machine learning," Journal of InformaƟon Security and
ApplicaƟons, vol. 55, p. 102646, 2020.

[12] B. M. Khammas, "Ransomware detecƟon using random forest technique," ICT
Express, vol. 6, pp. 325--331, 2020.

[13] I. Almomani, R. Qaddoura, M. Habib, S. Alsoghyer, A. Al Khayer, I. Aljarah and H.
Faris, "Android ransomware detecƟon based on a hybrid evoluƟonary approach in
the context of highly imbalanced data," IEEE Access, pp. 57674--57691, 2021.

[14] S. Sharma, C. R. Krishna and R. Kumar, "RansomDroid: Forensic analysis and
detecƟon of Android Ransomware using unsupervised machine learning
technique," Forensic Science InternaƟonal: Digital InvesƟgaƟon, vol. 37, p. 301168,
2021.

[15] S. Usharani, P. M. Bala and M. M. J. Mary, "Dynamic analysis on crypto-ransomware
by using machine learning: Gandcrab ransomware," Journal of Physics: Conference
Series, vol. 1717, p. 012024, 2021.

[16] H. S. Talabani and H. M. T. Abdulhadi, "Bitcoin ransomware detecƟon employing
rule-based algorithms," Science Journal of University of Zakho, vol. 10, no. 1, pp. 5--
10, 2022.

[17] M. E. Ahmed, H. Kim, S. Camtepe and S. Nepal, "Peeler: Profiling kernel-level events
to detect ransomware," Computer Security--ESORICS 2021: 26th European
Symposium on Research in Computer Security, Darmstadt, Germany, October 4--8,
2021, Proceedings, Part I 26, pp. 240--260, 2021.

[18] A. Singh, R. A. Ikuesan and H. Venter, "Ransomware detecƟon using process
memory," arXiv preprint arXiv:2203.16871, 2022.

[19] E. Berrueta, D. Morato, E. Magaña and M. Izal, "Crypto-ransomware detecƟon using
machine learning models in file-sharing network scenarios with encrypted traffic,"
Expert Systems with ApplicaƟons, p. 118299, 2022.

[20] A. Albanaa, S. Sahana and J. Ali, "Development of a StochasƟc Model for the
DetecƟon of Ransomware Malware Using Hybrid Analysis and Machine Learning
Techniques".

[21] J. A. Herrera-Silva and M. Hernández-Álvarez, "Dynamic feature dataset for
ransomware detecƟon using machine learning algorithms," Sensors, p. 1053, 2023.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:324

[22] X. Deng, M. Cen, M. Jiang and M. Lu, "Ransomware early detecƟon using deep
reinforcement learning on portable executable header," Cluster CompuƟng, pp. 1--
15, 2023.

[23] F. Manavi, M. E. Samie and A. Hamzeh, "DetecƟng Ransomware Using Alignment of
the Different SecƟons of the PE Header," 2023.

[24] "vx-underground," [Online]. Available: hƩps://vx-underground.org/samples.html.
[Accessed 2023].

[25] "PE file (github)," [Online]. Available: hƩps://github.com/erocarrera/pefile.
[Accessed 2023].

[26] M. sikorski and A. Honig, PracƟcal Malware Analyisis, San Francico: William Pollock,
2012.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 05 (May) - 2024

http://ymerdigital.com

Page No:325

