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Abstract 

This survey paper addresses the crucial role of deep learning, in identifying and classifying 

diseases in cauliflower, a key crop in precision agriculture. Traditional methods based on 

skilled visual examination are being replaced by advanced image analysis techniques due to 

their limitations in efficiency and consistency. Cauliflower, being susceptible to a variety of 

diseases like black rot and downy mildew, poses significant challenges in agricultural 

production and public health. Through a comprehensive review of recent studies, we explore 

the application of various CNN architectures such as ResNet50, InceptionV2, and 

MobileNetV1, particularly focusing on their implementation in datasets and their effectiveness 

in achieving notable accuracy rates. This paper also discusses emerging approaches like 

transfer learning and domain adaptation, which address issues of dataset diversity and real-

world application. The current research gaps include dataset reliance and geographic 

limitations, and suggest integrating handcrafted with deep features for improved disease 

detection in cauliflower. This study aims to offer insights into the advancements and challenges 

in applying deep learning for plant disease detection and classification. 

 

Keywords: Cauliflower vegetable, Deep learning, Agriculture, CNN Architecture, Plant 

disease detection 

 

1 INTRODUCTION 

The utilization of image analysis for the identification of plant diseases on leaves is a crucial 

focus within the field of precision agriculture research. Plant tissues are subjected to visual 

inspection by trained specialists in order to accurately document the extent of plant diseases. 

[1]. The widespread adoption of digital cameras and advancements in information technology 

within the agricultural sector have resulted in the extensive utilization of expert systems for 

cultivation and management. This has had a substantial impact on enhancing plant output 

capacity. The extraction and description feature of expert systems for pests and diseases 

primarily depend on expert knowledge, resulting in elevated expenses and reduced efficiency.  
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According to a reliable source, cauliflower is ranked as the second most prevalent "cole" crop 

globally, following cabbage. Farmers are the primary cultivators of this particular seasonal crop 

within agricultural surroundings. The mineral content of it includes iron, magnesium, 

phosphorus, potassium, salt, as well as vitamins A and B1. Cauliflower is known for its high 

nutritional density, which can be attributed to its low-fat content and high levels of fibre, 

vitamin B9, L-ascorbic acid, and water [2]. Cauliflower plant diseases play a significant role 

in diminishing vegetable yield and negatively impacting the agro-economic sector. Cauliflower 

plants can be susceptible to various diseases, including clubroot, blackleg, black rot, bacterial 

spot rot, downy mildew, powdery mildew, black rot, sclerotinia stem rot, white rust, 

cauliflower mosaic, ringspot, and others. These diseases have the potential to cause harm to 

cauliflower plants. Furthermore, it has been observed that cauliflower and its leaves are 

susceptible to various diseases, such as downy mildew, black rot, and bacterial spot rot [3]. 

Types of diseases which affect cauliflower: 

● Brassica Alternaria Leaf Spot: 

Brassica Alternaria Leaf Spot, caused by the fungi Alternaria brassicicola or Alternaria 

brassicae, is a significant disease affecting Brassica family crops like cabbage, broccoli, and 

cauliflower. Characterized by dark, concentrically ringed spots on leaves, stems, and 

occasionally flowers, it thrives in warm, moist environments. The disease can reduce 

photosynthesis, impair plant growth, and diminish seed quality and yield. It spreads through 

wind, water, and infected seeds, and management strategies include crop rotation, using 

disease-free seeds, good sanitation practices, and fungicidal treatments. Developing resistant 

cultivars also plays a crucial role in mitigating the disease's impact, making it a vital focus for 

farmers and gardeners to ensure healthy Brassica crops. 

 
Figure 1 Brassica Alternaria Leaf Spot 

 

● Brassica Black Rot 

Brassica Black Rot, caused by the bacterium Xanthomonas campestris pv. campestris, is a 

devastating disease impacting Brassica crops like cabbage, broccoli, and cauliflower. 

Characterized by yellow, V-shaped lesions on leaves that turn black and cause wilting, it leads 

to significant yield loss and quality reduction, particularly in warm, humid climates. The 

disease spreads primarily through water, infected seeds, and plant debris, making field hygiene, 

crop rotation, and the use of disease-free planting materials crucial for management. Chemical 

treatments are largely ineffective against this bacterial infection, emphasizing the importance 

of preventive measures and the development of resistant crop varieties. Controlling this disease 

is essential for maintaining the health and productivity of Brassica crops. 
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Figure 2 Brassica Black Rot 

● Brassica Downy Mildew 

Brassica Downy Mildew, caused by the oomycete Hyaloperonospora brassicae, is a common 

disease affecting Brassica crops such as cabbage, broccoli, and cauliflower, especially in cool 

and moist environments. It manifests as yellow or pale green patches on the upper surfaces of 

leaves and fluffy, downy growth on the undersides, leading to leaf decay, stunted growth, and 

reduced crop yields. The disease spreads through water-borne spores, often exacerbated by rain 

and irrigation, and can be propagated by infected seeds and plant debris. Management strategies 

include using resistant varieties, crop rotation, good sanitation practices, proper irrigation 

management, and fungicidal applications as part of an integrated approach. Regular monitoring 

is crucial for early detection and effective control, helping to minimize the impact of Downy 

Mildew on Brassica crops. 

 
Figure 3 Brassica Downy Mildew 

● Soft rot 

Soft Rot, caused by the bacterium Pectobacterium carotovorum, is a serious disease impacting 

cabbages and other Brassica crops, particularly under warm, moist conditions. This disease is 

marked by a soft, wet decay of plant tissues, often beginning at the base of the cabbage head 

or in damaged areas, leading to a slimy degradation and foul Odor. The bacteria spread via 

water, contaminated soil, and equipment, entering the plant through wounds or natural 

openings. Cabbage Soft Rot poses a significant threat to crop yield and quality, as infected 

cabbages are typically unmarketable, resulting in substantial economic losses for farmers. The 

disease can also progress during post-harvest storage, further diminishing the crop's market 

value.  
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Effective management involves preventive measures such as crop rotation, proper field 

drainage, sanitation to avoid contamination, and careful handling to reduce plant damage and 

the risk of infection. 

The agricultural technique of manually harvesting plants individually at various intervals is 

widely used in practice. The duration of the harvesting process is prolonged because workers 

are required to physically evaluate the size of the cauliflower head within the plant, even when 

it is hidden by its canopy. In the field of digital agriculture field monitoring, satellite or 

unmanned aerial vehicle (UAV) footage is used to monitor and track the growth and 

development of plants throughout the growing season [4]. Deep learning techniques are widely 

used in the field of data analysis. This specific analysis includes the classification of crop 

maturity on a large scale, along with precise predictions regarding the ripeness of the harvest, 

the quantity to be harvested, and the expected date of harvest readiness. Economic profitability 

can be attained by farmers through the application of crop trait prediction in the context of 

harvest. Therefore, it is crucial for the model to demonstrate reliability, thereby instilling 

confidence in farmers regarding its decision-making capabilities.One of the primary limitations 

associated with cauliflower production is its vulnerability to disease infection, despite the 

numerous health benefits provided by this vegetable. The cultivation of cauliflowers presents 

the possibility for farmers to come across bacterial and fungal infections. The presence of these 

infections can result in the development of different diseases, including blackleg 

(Leptosphaeria maculans), black rot, downy mildew (Hyaloperonospora parasitica), powdery 

mildew (Erysiphe cruciferarum), ring spot (Mycosphaerella brassicicola), white rust (Albugo 

Candida), and bacterial soft rot [5]. 

In the family of Cruciferous vegetables, Cauliflower, is the largest and most widely consumed 

group of plants all over the world. They are characterized by different levels of nutrients. 

However, because of their large and frequent consumption, they may become a significant 

source of nutrients and bioactive compounds in the daily diet. The beneficial effects of 

cruciferous vegetables on human health have been somewhat linked to phytochemicals. They 

prevent oxidative stress, induce detoxification enzymes, stimulate the immune system, 

decrease the risk of cancers, inhibit malignant transformation and carcinogenic mutations, as 

well as, reduce proliferation of cancer cells. Cruciferous vegetables contain a lot of valuable 

metabolites, which are effective in chemoprevention of cancer, which has been already 

documented by numerous studies. Due to the presence of vitamins C and E, carotenoids and 

antioxidant enzymes such as catalase, superoxide dismutase (SOD) and peroxidase, these 

vegetables are considerable source of antioxidants, and due to the presence of polyphenols and 

the sulfur-organic compounds exert also antimutagenic action. Moreover, these vegetables are 

also rich in glucosinolates, which are unstable compounds and undergo degradation into 

biologically active indoles and isothiocyanates under the influence of enzymes present in plant 

tissues- myrosynase. These substances through the induction of enzymatic systems I and II 

phase of xenobiotics metabolism may affect the elimination or neutralization of carcinogenic 

and mutagenic factors, and consequently inhibit DNA methylation and cancer development. 

Despite many healthy benefits upon eating of cruciferous vegetables, it has been also seen a 

negative impact of their certain ingredients on the human body. 

Consuming cauliflower that has deteriorated or contaminated can result in significant health 

implications.  
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Allergic reactions can manifest in individuals as a range of symptoms, such as sneezing, 

itching, watery eyes, coughing, ear and skin infections, gastrointestinal disorders, and other 

related effects, following the ingestion of specific substances. The application of pesticides and 

insecticides on cauliflowers is intended to mitigate microbial contamination. However, it is 

important that these substances can have detrimental effects on human health. In addition to 

causing acute and chronic poisoning, the use of pesticides and insecticides also raises the risk 

of developing severe health conditions, including Alzheimer's disease, cancer, asthma, 

bronchitis, and other ailments. In addition, there has been a decline in both the volume and 

standard of cauliflower production within the agricultural sector [6]. 

The detection of cauliflower disease in agriculture using conventional techniques poses several 

challenges and limitations. Errors and inconsistencies frequently arise due to the dependence 

on subjective human visual inspection. The manual examination process is characterized by its 

time-consuming nature and its tendency to cause delays in disease detection, consequently 

contributing to the accelerated spread of infections. Many farmers, especially those in remote 

areas, find it financially burdensome to hire and retain agricultural experts for disease 

diagnosis. These approaches frequently overlook early or asymptomatic illnesses, pose 

scalability challenges, rely on specific environmental conditions, and lack data verification. 

The limited applicability of these methods stems from their significant dependence on 

specialized expertise. Advanced deep transfer learning systems have been developed to 

overcome these limitations. These systems provide automated, precise, efficient, and scalable 

disease detection capabilities, while also enabling continuous monitoring of crops. In order to 

optimize profitability and productivity in cauliflower production, it is imperative to promptly 

detect and identify diseases [7]. 

The efficacy of deep learning techniques in the detection of leaf diseases in cauliflower and 

other crops is on the rise. By utilizing neural networks, these techniques possess the ability to 

effectively identify diseases by analysing and learning from vast collections of images. 

Convolutional neural networks (CNNs) are widely recognized as a fundamental deep learning 

approach for the detection and classification of cauliflower leaf disease. Convolutional Neural 

Networks (CNNs) are commonly recognized as the predominant deep learning models utilized 

for image recognition applications. The automatic and adaptive learning of spatial hierarchies 

of features is achieved from the input photos. Convolutional Neural Networks (CNNs) are 

equipped with the ability to recognize and detect patterns and anomalies that exist on leaf 

surfaces. The presence of patterns and irregularities can function as reliable indicators for 

identifying potential diseases, particularly when it comes to diagnosing cauliflower disease. 

Transfer Learning: This involves using a pre-trained model (often trained on a large dataset 

like ImageNet) and fine-tuning it for the specific task of cauliflower disease detection. Transfer 

learning is beneficial when the available dataset for the specific task is relatively small, as it 

leverages learned features from a larger dataset. Image Augmentation: To increase the diversity 

of the training dataset and prevent overfitting, image augmentation techniques like rotation, 

flipping, scaling, and cropping are used. This helps the model learn to recognize diseases under 

various conditions and orientations. Recurrent Neural Networks (RNNs): Though less common 

than CNNs for image analysis, RNNs, especially Long Short-Term Memory (LSTM) networks, 

can be used for sequential data processing, which might be relevant in tracking disease 

progression over time. Semantic Segmentation:  
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This approach involves deep learning models that can classify each pixel in an image into 

various categories (e.g., healthy tissue, diseased tissue, background). This is useful for 

understanding the extent and severity of disease spread on a leaf. Generative Adversarial 

Networks (GANs): While more experimental, GANs can be used for generating synthetic 

images of diseased leaves, which can augment training datasets, particularly when certain types 

of disease images are scarce. Object Detection Models: Models like YOLO (You Only Look 

Once) or SSD (Single Shot Multibox Detector) can be adapted to not only detect the presence 

of disease but also localize it on the cauliflower leaves [8]. 

 

2 RELATED WORK 

Convolutional neural networks (CNNs), which are a type of deep learning technique, have 

become increasingly popular in various agricultural applications. The utilization of CNN-based 

techniques has gathered significant attention and demonstrated potential in various agricultural 

applications. These applications encompass the identification of plant diseases, weeds, and 

crop pests [9]. Convolutional Neural Networks (CNNs) have become the preferred architecture 

for various image and video research tasks, particularly in the field of computer vision. These 

tasks include important applications such as image recognition, object detection, and 

segmentation. 

In recent times, deep learning architectures have demonstrated potential in the areas of object 

segmentation, classification, and identification. Convolutional neural network (CNN) 

techniques have emerged as the predominant methods for addressing deep learning challenges 

[10]. In their study, in [11] focused on a collection of representative banana plant models 

sourced from various regions in Southern India and Africa. This collection included a single 

class of healthy plants and seventeen distinct classes of plants affected by different conditions. 

A 90% accuracy rate was attained through the utilization of various CNN architectures, 

including ResNet50, InceptionV2, and MobileNetV1. In [12] they have utilized images from 

the Plant Village collection to obtain samples of peach plant leaves exhibiting both healthy and 

diseased conditions for their research study. A 99% accuracy rate was achieved using the 

AlexNet concept through a process of trial and error. The utilization of images featuring three 

labels for diseased plant leaves and one label for healthy plant leaves has been observed in 

various studies. These studies have employed photos sourced from the Plant village dataset to 

identify disease classes in maize, grape, and soybean   plants. The reported accuracy rates in 

these studies ranged from 97% to 99% [13].  

The VGG CNN architecture was utilized by [14] to analyse a dataset consisting of nine distinct 

categories of tomato diseases. The study reported a 90% accuracy rate. Furthermore, in their 

experiments, [15] were able to achieve a high accuracy rate of 97%. This was accomplished by 

utilizing a dataset that consisted of six classes of ill wheat plants and one class of healthy wheat 

plants. The modified deep convolutional neural network-based technique for tea leaf sickness 

detection. Upon completion of the studies, the average accuracy achieved was 92%. In their 

study, they employed a set of sample images comprising fourteen distinct plant species, which 

collectively encompassed a total of seventy-nine unique diseases. Multiple accuracy scores 

were obtained through the utilization of the GoogLeNet architecture, all of which exceeded 

75%. In their study,  
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[16] conducted research on various plant species and utilized the VGG architecture to achieve 

an accuracy rate of 81%. It is worth noting that alternative designs were able to achieve even 

higher accuracy rates, reaching up to 99%.  

Furthermore, a dataset consisting of 38 distinct classes that encompassed 14 diverse plant 

species was employed, despite their broad focus on various plant types. The accuracy rate 

achieved was 96%. In a study conducted [17], a VGG architecture was employed along with a 

dataset comprising 25 distinct plant species. The results demonstrated an impressive accuracy 

rate of 98%, they utilized image pre-processing techniques in conjunction with their CNN 

model to achieve an accuracy rate of 97.62% when combining the current research on apple 

leaf diseases. On the other hand, certain studies have utilized conventional machine learning 

techniques, which have a collective substantial amount of knowledge regarding the 

identification of plant diseases.  

However, the procedures that they are limited to include image segmentation, feature 

extraction, and pattern recognition. The fundamental CNN architectures, such as AlexNet, 

VGGNet, GoogLeNet, DenseNet , and ResNet , have been extensively utilized for plant disease 

classification. However, these architectures suffer from certain limitations, such as a high 

parameter count and slow processing speed. Deep learning methods excel at capturing and 

representing high-level and low-level features. However, their ability to accurately identify 

local spatial attributes is limited [18]. It is recommended to integrate both the handcrafted and 

deep features to effectively capture the distinctive attributes of the plant leaf images. 

To effectively implement this strategy, it is crucial to minimize the distances between samples 

from similar classes and maximize the distances between samples from dissimilar classes. Deep 

learning approaches demonstrate significant potential; however, their effectiveness relies on 

the assumption that the training and testing data originate from identical distributions. This 

assumption may not hold in practical situations [19]. Domain adaptation and transfer learning 

techniques are commonly employed to tackle the challenges arising from distribution shifts. 

Transfer learning is a technique that aims to address the differences in distribution between the 

training and testing data.  

On the other hand, domain adaptation utilizes previously learned models to improve the 

performance in new domains. Domain adaptation is a technique that enhances the performance 

of a model on a target domain, even when the target domain exhibits different data 

distributions. This is achieved by leveraging knowledge obtained from a similar source domain. 

Domain adaptation is a technique that is employed in situations where obtaining labelled data 

in the target domain is either excessively costly or unfeasible [24], [25]. Transfer learning is 

currently being utilized with great success in various fields such as computer vision, robotics, 

natural language processing, precision agriculture, and computer vision [20]. Furthermore, it 

is garnering significant interest. Promising results have been observed when this technology is 

implemented to address real-world challenges across diverse sectors such as industrial, 

healthcare, security and surveillance, agriculture, automotive, and finance. Transfer learning is 

widely acknowledged as an essential strategy for addressing real-world challenges. Within the 

domain of transfer learning, there exist two distinct approaches: zero-shot learning and few-

shot learning.  
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Embedding-based approaches commonly utilize common embeddings to facilitate the transfer 

of knowledge across tasks [21]. The model's ability to learn a shared embedding space during 

pre-training enables it to effectively map new inputs to that space. As a result, it can achieve 

high performance on tasks that it has not encountered previously. Methods that are dependent 

on models The generative model acquired through pre-training is capable of representing the 

data distribution in zero-shot learning. The generative model can be employed to generate 

examples for untested classes. Generative adversarial networks (GANs) have the capability to 

be utilized in the context of zero-shot learning, enabling the generation of samples for classes 

that have not been encountered previously.  

 

 

The generator undergoes pre-training on seen classes and has the capability to generate samples 

for unseen classes during testing. The Deep Domain Adaptation technique was introduced by. 

This technique leverages privileged data from dual-domain pairings that are not related to the 

current task, and introduces a novel approach for zero-shot domain adaptation (ZSDA). The 

proposed approach utilizes adversarial learning to simultaneously train domain-invariant 

semantic features and task-invariant domain characteristics. The objective of this approach is 

to obtain domain characteristics that are independent of the specific task and are affected by 

domain shift. In the context of the day-night domain, [17] conducted an investigation on the 

zero shot scenario. This investigation utilized prior data obtained from a physics-based 

reflection model. 

 

 

In certain real-world situations, it is possible to come across a task that requires minimal or no 

availability of labelled data. In scenarios of this nature, the construction of a deep learning 

model presents itself as a formidable task, if not an insurmountable one. In order to mitigate 

this issue, researchers have devised transfer learning strategies. Transfer learning is a technique 

that leverages pre-trained model architectures, particularly Convolutional Neural Network 

(CNN) architectures such as ImageNet, which have been extensively trained on labelled data. 

The efficacy of this approach is heavily contingent upon selecting a suitable Convolutional 

Neural Network (CNN) model.   

 

 

[18-19] The determination of the appropriate course of action will be contingent upon the 

precise requirements of the current undertaking. In scenarios where processing power is a 

limiting factor for model evaluation, employing a CNN model with a reduced number of 

parameters, such as MobileNetV2, can offer distinct advantages. In cases where sufficient 

resources are accessible, opting for a higher parameter model like VGG19 can yield 

advantageous outcomes. 
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Table 1 survey table for plant disease identification 

 

Study Plant Type Method Used Dataset 

Used 

Achieved 

Accuracy 

Research Gap 

G.Geethara

mani et.al 

Banana CNN 

(ResNet50, 

InceptionV2, 

MobileNetV1) 

Samples 

from Africa 

& Southern 

India 

90% Limited 

geographic 

diversity in the 

dataset. 

G.Geethara

mani et.al 

Peach CNN 

(AlexNet) 

PlantVillage 

dataset 

99% Overreliance on 

a single dataset 

may reduce 

model 

robustness. 

M G 

Selvaraj 

et.al 

Maize CNN PlantVillage 

dataset 

97-99% Limited disease 

classes; 

potential lack of 

real-world 

variability. 

R.A.Priyad

harshini 

et.al 

Grape CNN PlantVillage 

dataset 

97-99% Same as above. 

M.Ji et.al Soybean CNN PlantVillage 

dataset 

97-99% Same as above. 

E.C.Too 

et.al 

Tomato CNN (VGG) Nine classes 

of tomato 

diseases 

90% Limited to a 

single crop 

type, may not 

generalize well. 

S.Singh 

et.al 

Wheat CNN Six diseased 

and one 

healthy class 

97% Narrow focus 

on a small 

number of 

disease classes. 

A.Kamilari

s et.al 

Tea Modified 

CNN 

- 92% Absence of 

detailed dataset 

description, 

unclear 

generalizability. 

G.S.Sujaw

at et.al 

Various CNN 

(GoogLeNet) 

79 diseases 

in 14 plant 

types 

>75% Inconsistent 

accuracy rates, 

need for more 

uniform results. 
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The present study employed a sample size of 100 wild accessions of Arabidopsis to investigate 

the range of diseases caused by Cauliflower mosaic virus (CaMV). CaMV is a type of cauli 

virus that belongs to the Caulimoviridae family and is characterized by its double-stranded 

DNA structure. Our investigation focused on the vegetative stage and rosette tissue of the plant 

due to the requirement of significant vernalization for the flowering process in many 

accessions. The technique introduced by [22] utilizes Multi-class Support Vector Machines to 

achieve accurate detection and classification of cucumber leaf diseases. The implementation of 

the segmentation and feature extraction processes involved the utilization of k-means clustering 

and image processing techniques.  The diagnostic approach used to identify cucumber 

infections involves the application of a Convolutional Neural Network (CNN) model.  A grand 

total of 48,311 photographs were employed, yielding an average accuracy rate of 95.5%.   

A method for the identification of fruit illness was presented by [14] in a similar manner. The 

approach employs a random forest classifier.  A total of seventy photographs were employed 

during the implementation process.    A novel technique has been proposed for the classification 

of vegetables and weeds. The support vector machine (SVM) classifier demonstrated a 

classification accuracy of 90%. In their study, Wahab et al. utilized Support Vector Machines 

(SVM) as a methodology to develop a systematic approach for the identification and 

categorization of challis leaf infections.  The classification task was executed utilizing Support 

Vector Machines (SVM), whereas the segmentation process was conducted employing k-

means clustering. The accuracy was determined to be 57.1 percent.   

 The detection and classification of diseases affecting roses [15] is facilitated by the utilization 

of the MobileNet model in a specific methodology. The study incorporated a dataset 

comprising 2000 photographs, which were categorized into four distinct classes of disorders. 

The analysis yielded an average accuracy rate of 95.63%. have developed an automated 

technique for the identification of potato diseases. The researchers utilized a segmentation 

technique in combination with a Multiclass Support Vector Machine (MSVM) to classify 

potato diseases.  The collection comprised a total of 300 photographs, which were 

systematically classified into three distinct groups according to the diseases they portrayed. 

The impact on these diseases varied across different aspects. The categorization accuracy was 

determined to be 95%.  

 The classification of potato illnesses was performed using a Convolutional Neural Network 

(CNN) with a sliding window approach. A trained model was developed by utilizing a dataset 

consisting of 400 photographs, which yielded an accuracy range spanning from 80% to 90%. 

The identification of paddy illnesses was performed utilizing a designated technique [20]. The 

disorders were classified using the KNN classifier, which yielded an accuracy of 75.61%. A 

functional prototype has been developed by [16] that employs imaging techniques for the 

diagnosis of diseases impacting rice crops. The researchers utilized two techniques, specifically 

OSTU and Threshold, in order to achieve a precision rate of 94.7%. In addition, a prototype 

approach for the classification and detection of rice diseases was presented [17].  

 The three rice plant diseases were addressed by the individuals. The disease was segmented 

using the K-means clustering algorithm and then classified using the MSVM (Multi-class 

Support Vector Machine) model. The training dataset achieved an accuracy rate of 93.33%, 

while the testing dataset achieved an accuracy rate of 73.33%.  
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 This paper introduces a methodology that employs Convolutional Neural Networks (CNNs) 

to identify different diseases that impact rice crops.  The trained model was constructed using 

a dataset comprising 500 photographs.  A level of accuracy of 95.48% was achieved.  In 

addition, researchers [22] have developed a deep learning-based algorithm specifically 

designed for the identification of plant diseases. A total of 87,848 photos were used to train the 

CNN models, which achieved an impressive accuracy rate of 99.53%. A novel technique has 

been developed for the identification of papaya disease.  The segmentation process utilized the 

K-means technique, while the illness classification process employed Support Vector 

Machines (SVM). After conducting a comprehensive series of 500 papaya photo practice 

sessions, an accuracy rate of 90% was achieved. 

 

 

A study was conducted by [23] to examine the efficacy of low UV-C or gamma radiation 

treatment on fresh-cut cauliflower samples. In addition, the samples underwent a light 

treatment using natural antibacterial formulations. The primary goal of this treatment was to 

reduce the presence of food-borne microorganisms and prolong the shelf life of the cauliflower 

samples. The objective of the process is to mitigate the adverse impact on the microbiological 

safety of vegetables by avoiding any potential interaction between the combined treatment 

methods.  [24] The optimal method for preventing the growth of harmful bacteria, yeasts, and 

molds on recently-cut cauliflower is to employ a dual strategy consisting of gamma irradiation 

at a dosage of 1 kGy and the application of antimicrobial formulations via spraying. The 

formulations should be composed of citrus extract, lactic acid, and essential oils obtained from 

either oregano or lemongrass. 

 

 

The objective of this study was to analyze the spectrum of diseases observed in 100 wild 

accessions of Arabidopsis thaliana following infection with Cauliflower mosaic virus (CaMV). 

CaMV is a member of the Caulimoviridae family, characterized by its double-stranded DNA 

structure. The Cauliflower Mosaic Virus (CaMV) exhibits the capability to infect indigenous 

populations of Arabidopsis, a plant species. However, the infection caused by this pathogen is 

restricted to plants that fall under the Brassicaceae family. This family includes a range of 

vegetables such as mustard, broccoli, and cabbage. The CaMV viral translational transactivator 

protein P6 facilitates the virus in exerting its influence on the host by generating extensive 

cytoplasmic viral replication foci and inducing a significant increase in overall translation. The 

distinctive characteristics of CaMV suggest the possible existence of a host variable network 

that could influence the development of CaMV disease. It is noteworthy to mention that 

infection by CaMV has been demonstrated to induce varying degrees of disease severity in 

wild accessions of Arabidopsis under conditions of water deficiency. The suitability of CaMV 

as a virus for conducting a genome-wide association investigation in Arabidopsis has been 

attributed to this particular characteristic [25]. 
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Table 2 survey table for plant disease classification 

Study Plant Type Classification 

Method 

Dataset 

Size 

Achieved 

Accuracy 

Research 

Gap 

M.G.Selvar

aj et.al 

Cucumber Multi-class 

SVM 

- - Limited 

information 

on dataset size 

and diversity. 

R.A.Priyad

harshini 

et.al 

Fruit Random 

Forest 

Classifier 

70 images - Small dataset 

size may not 

be 

representative. 

M.Ji et.al Rose MobileNet 2000 images 

of four 

disease 

classes 

95.63% Limited 

disease 

classes, 

potential bias 

towards 

certain 

conditions. 

G.S.Sujawa

t et.al 

Potato MSVM 300 images 

of 3 disease 

types 

95% Small dataset, 

lack of 

variation in 

disease types. 

M.Ji et.al Paddy KNN - 75.61% Lower 

accuracy, 

potential 

issues with 

model 

complexity or 

dataset. 

E.C.Too 

et.al 

Paddy Imaging 

Techniques 

(OSTU, 

Threshold) 

- 94.7% Limited 

information 

on 

methodology 

and dataset 

diversity. 

S.Singh 

et.al 

Rice MSVM - 93.33% 

training, 

73.33% 

testing 

Discrepancy 

between 

training and 

testing 

accuracy, 

indicating 

possible 

overfitting. 
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A.Kamilaris 

et.al 

Various CNN 87,848 

images 

99.53% Large dataset 

size, but 

potential lack 

of focus on 

specific 

diseases. 

 

 

2.1 Observations 

● Preference for CNNs: Convolutional Neural Networks are the most commonly employed deep 

learning architecture for both disease identification and classification in plants, indicating their 

effectiveness in image-based analysis. 

● High Accuracy: Many studies have reported high accuracy rates (often above 90%), 

demonstrating the potential of deep learning in accurate disease detection. 

● Dataset Reliance: Several studies rely heavily on the Plant Village dataset, which could limit 

the diversity and variability of the training data, potentially affecting the models' ability to 

generalize to real-world conditions. 

● Geographical Limitations: Some studies have datasets concentrated in specific geographic 

areas, which may not represent global plant disease variations adequately. 

● Transfer Learning Utilization: Transfer learning is increasingly being adopted, as it allows 

leveraging pre-trained models to improve performance, especially when dataset sizes are 

limited or specific to a certain crop. 

● Gap in Disease Classes: Some studies focus on a limited number of disease classes, which 

may not capture the full spectrum of potential plant diseases, indicating a need for more 

comprehensive disease coverage in future research. 

● Varied Architectural Choices: Different CNN architectures like ResNet, InceptionV2, 

MobileNet, and VGG are being explored, with each offering unique advantages, suggesting no 

single “one-size-fits-all” model. 

● Emergence of Advanced Techniques: Newer approaches like zero-shot learning and domain 

adaptation are being explored to address challenges in data availability and diversity, indicating 

a trend towards more adaptive and robust deep learning models in agriculture. 

 

CONCLUSION: 

The survey on deep learning applications for cauliflower leaf disease identification highlights 

a pivotal shift from traditional expert-based diagnostics to more advanced, automated methods 

using Convolutional Neural Networks (CNNs). This approach has proven effective, as 

evidenced by high accuracy rates achieved in studies utilizing datasets like PlantVillage. 

However, challenges such as reliance on specific datasets and limited geographical 

representation remain, suggesting a need for more diverse and comprehensive disease 

coverage.  
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Emerging techniques like transfer learning are being adopted to address these issues, enhancing 

model adaptability to real-world conditions. The integration of deep learning with traditional 

feature extraction methods offers a promising direction for more accurate and efficient disease 

identification in cauliflower crops. This progression in agricultural technology is crucial for 

improving disease management, crop yield, and overall food security, underscoring the 

importance of ongoing research in this domain to cater specifically to the complexities of 

cauliflower leaf disease detection. 
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