

HIPPO - Hindsight in Proximal Policy Optimization

Gagan Khandate, Pratyus Pati

Columbia University, New York, USA

gk2496@columbia.edu, pp2636@columbia.edu

Abstract

Goal based environments require a goal-conditional policy. It is helpful in generalizing to

new goals and also critical for curriculum learning. Hindsight Experience Replay (HER)

generates samples by substituting the original goal with the achieved goal. HER, applicable

only to off-policy methods like DDPG, has been shown to significantly improve the sample

efficiency and importantly enables learning on sparse and binary reward environments. Recent

state of the art algorithms like PPO have attractive stability traits. In this work we propose an

approach to introduce hindsight to PPO which we call HIPPO and show that it improves

sample efficiency for learning on dense reward environments and enables learning with sparse

rewards.

1. Background

 In this section we introduce reinforcement learning formalism used in the paper as well as

RL algorithms we use in our experiments.

1.1. Reinforcement Learning

 Consider the RL problem with state space S, action space A, the reward function r, the policy

π(s|a) where s ∈ S, a ∈ A. We will use the following standard definitions (Sutton & Barto,

1998) of the expected return Rt, state value function Qπ, the value function Vπ and the advantage

function Aπ.

Rt = ∑∞
𝑘=0 γkrt+k+1

Vπ(s,a) = Eπ [Rt|st = s]

Qπ(s,a) = Eπ [Rt|st = s,at = a]

Aπ(s,a) = Qπ(s,a) - Vπ(s,a)

1.2. Off-policy vs. On-policy

 On-policy methods attempt to evaluate or improve the policy that is used to make decisions.

For example, SARSA is an on-policy learner, as it uses only the Q-value of the action taken by

the policy at the next step to estimate the current Q-value. In on-policy control methods the

policy is generally soft, meaning that π(s, a) > 0 ∀ s ∈ S, a ∈ A

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1112

mailto:gk2496@columbia.edu
mailto:pp2636@columbia.edu

 In off-policy methods the functions of evaluating a policy and control are separated. The

policy used to generate behavior, called the behavior policy, may in fact be unrelated to the

policy that is used and improved, called the estimation policy. An advantage of this separation

is that the estimation policy may be deterministic, while the behavior policy can continue to

sample all possible actions for exploration. An off-policy learner learns the value of the optimal

policy independently of the agent’s actions. For example, Q-learning is an off-policy learner,

as it needs to know the Q-values of all possible actions at the next step to estimate the Q-value

of the current state (Sutton & Barto, 1998).

1.3. Actor Critic Methods

 Actor-critic methods (Konda & Tsitsiklis, 2000) employ the use of an actor which generates

action based on a particular policy, and a critic which evaluates the actor’s policy. Learning

involves improving both the actor and the critic based on results generated by the other. The

actor learns to take better actions based on the action values provided by the critic, whereas the

critic updates its parameters based on the TD error computed after taking that action. The TD

error provides an estimation of the advantage function of taking a particular action at a given

state, and leads to better stability.

 Learning in actor-critic methods is always on-policy, as both the actor and the critic learn

from the current policy being followed by the actor (Sutton & Barto, 1998).

1.4. Proximal Policy Optimization (PPO)

 Proximal Policy Optimization (Schulman et al., 2017) is a recently proposed family of policy

gradient methods (Sutton et al., 2000) which alternate between sampling data through

interaction with the environment, and optimizing an objective function using stochastic

gradient ascent (Ruder, 2016). This is unlike the standard policy gradient methods where one

gradient update per data sample is performed. The objective function enables multiple epochs

of minibatch updates and retains some of the properties of Trust Region Policy Optimization

(Schulman et al., 2015a) in which the policy updates are constrained to lie within a trust region.

Policy gradient methods compute an estimate of the policy gradient using the gradient in

stochastic gradient ascent fashion. The most common estimator has the form

ĝ = Êt [⛛θ log πθ (at | st) Ât] (1)

 where πθ is a stochastic policy and Ât is an estimator of the advantage function at timestep t.

 It is common to make use of auto-differentiation software (Abadi et al., 2015) in

implementations, in which case the gradient estimator ĝ can be obtained by differentiating the

objective

LPG (θ) = Êt [log πθ (at | st) Ât] (2)

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1113

 Using loss LPG to perform multiple steps of optimization using the same trajectory leads to

destructively large policy updates causing the policy to diverge.

In the Trust Region Policy Optimization the goal is to maximize a ”surrogate” objective (3)

under the constraint (4).

maximize𝜃 Êt [
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡)
Â𝑡] (3)

subject to Êt [KL [πθ (⋅ , st) || πθold (⋅ , st)]] (4)

 where Θold is the policy parameters before the update and KL[p,q] is the Kullback-Liebler

divergence (Kullback & Leibler, 1951) between the distributions p and q. Hence, (4) constrains

the size of the policy update.

 Solving the constraint optimization problem in computationally complex and PPO addresses

it indirectly through a Clipped Surrogate Objective. Let rt(θ) denote the action probability ratio

between the new and old policy

 𝑟𝑡(𝜃) =
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 | 𝑠𝑡)
 (5)

 The Conservative Policy Iteration (Kakade & Langford, 2002) objective given by (3) can be

written as

LCPI = Êt [rt (𝜃) Ât] (6)

 Unconstrained maximization of LCPI results in very large policy updates. PPO uses a Clipped

Surrogate Objective which penalizes the changes to policy that move rt(θ) away from 1.

LCLIP = Êt [min (rt (𝜃) Ât , clip (rt (𝜃), ε) Ât] (7)

 where

clip (rt (θ), ε) := | 1 - ε if rt (θ) < 1 - ε

 | rt (θ) if 1 - ε ≤ rt (θ) ≤ 1 + ε

 | 1 + ε if rt (θ) > 1 + ε

 For using value function approximation, (7) is appended with LVF = (Vθ(st) - Vt
targ)2. An

entropy loss is also included for exploration, S[πθ](st). The final objective function sums to

Lt (θ) = Êt [Lt
CLIP (θ) - ciLt

VF + c2S [πθ] (st)] (8)

The advantage function is estimated by Generalized Advantage Estimate (Schulman et al.,

2015b),

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1114

Ât = ∑𝑇−𝑡+1
𝑘=0 (γλ)k(rt + γV(st+1) - V(st)) (9)

Algorithm 1 PPO, Actor-Critic Style, (Schulman et al.,2017)

for iteration = 1, 2, … do

 for actor = 1, 2, …, N do

 Run policy πθold in environment for T timesteps

 for t = 1, …, T do

 pt := π𝜃old(at|st)

vt := V𝜃old(st)

t := r(st,at)

Save (st,at,rt,pt,vt)

 end

Compute advantage estimates (Â1, Â2, …, ÂT)actor

 end

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch size M ≤ NT

Update parameters, 𝜃old ← 𝜃

end

PPO has been shown to perform well for continuous control problems with dense rewards, such

as those involving a humanoid robot tasked with running, steering or other forms of

locomotion.

It outperforms other algorithms such as A2C, A3C and TRPO for such continuous control tasks.

However, its performance in these tasks is contingent on careful reward shaping. PPO hasn’t

been shown to perform well under conditions with sparse rewards.(Schulman et al., 2017)

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1115

Figure 1. Environments where PPO has been shown to perform well as compared to other

existing algorithms. Clockwise from top left: HalfCheetah-v1, Hopper-v1, Walker2d-v1,

Swimmer-v1, Reacher-v1, InvertedDoublePendulum-v1

1.5. Goal-based Environments

 Goal-based environments are characterized by the presence of a desirable state or

configuration associated with higher reward as compared to all other states. The objective of

a reinforcement learning agent in such environments, is then to reach the specified goal states

in the fewest number of steps to maximize the rewards gained from the episode. Hence, the

agent must be aware of the goal to take actions accordingly. Goal-conditional policies are

therefore used, wherein, the probabilities of actions depend not just on the current state, but on

the desired goal as well.

 Multi-goal environments include multiple goals that the agent can achieve. In such

environments, a predicate fg : S → {0, 1} determines whether a particular state corresponds to

a particular goal state g. Additionally, a mapping function m : S → G can be defined, which

maps each state to a goal, such that fm(s)(s) = 1. This is not always possible, but holds true for

most practical environments.

1.6. Universal Value Function Approximators

 Universal Value Function Approximators (Andrychowicz et al., 2017) are an extension of

value function approximators for multi-goal environments. In single-goal environments, the

agent’s policy is trained to reach that specific goal, and the reward function r : S × A → R

depends only on the action and the state. In multi-goal environments however, there is a

separate reward function rg : S × A → R for each goal g ∈ G. As a result, the policy is modified

to consider the desired goal while taking actions, such that π : S × G → A. The action-value

function is modified accordingly from Qπ(st,at) to Qπ(st,at,g). The value function is modified

accordingly from Vπ(st) to Vπ(st, g).

1.7. Hindsight Experience Replay (HER)

 Hindsight Experience Replay refers to the re-interpretation of episodes generated from a

policy unsuccessfully trying to achieve a desired goal, as episodes where the policy was

successfully able to achieve an actual goal. More formally, if the policy generated a trajectory

s1, s2, ...sT while trying to reach goal g, and m(sT) = g, we can re-interpret this as the policy

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1116

successfully reaching the desired state when g = m(sT), and use that as an as an additional

sample for training the policy. In this example, g is called the desired goal, and m(sT) is the

achieved goal. Algorithm 2 shows how HER is used with an on-policy algorithm such as DDPG

(Lillicrap et al., 2015) in the original paper (Andrychowicz et al., 2017). Since HER reinterprets

existing episodes to generate new virtual samples, it effectively increases the sample efficiency

of the learning task.

 HER+DDPG is shown to work well for multi-goal environments with sparse, binary rewards

such as MuJoCo-based FetchPush, FetchSlide and FetchPickAndPlace. In comparison, DDPG

without HER wasn’t able to complete these tasks at all. (Andrychowicz et al., 2017)

Algorithm 2 Hindsight Experience Replay

Initialize off-policy algorithm 𝔸

Initialize Replay Buffer R

for episode = 1, 2, … M do

 Sample goal g and initial state s0

for t = 1, 2, …, T - 1 do

 at ∼ 𝜋b(st||g)

Execute at and observe st+1

 end

for t = 1, 2, …, T - 1 do

 rt := r(st, at, g)

Store (st||g, at, rt, st+1||g′) in R

Sample additional goals g from current episode

for g′ ∈ G do

 r′ := r(st, at, g′)

Store (st||g′, at, st+1||g′) in R

 end

 end

for t = 1, 2, …, N do

 Sample mini-batch B from R

Optimize 𝔸 using B

 end

end

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1117

2. Hindsight in Proximal Policy Optimization

 As discussed in the Sec (1.7), HER is crucial to learning from sparse rewards and improving

sample efficiency, but this has been applied only to off-policy methods such as DQN, DDPG

and others. Furthermore an optimization based on-policy method such as PPO has only been

shown to work with dense - shaped rewards. We introduce hindsight to PPO through a

technique we call hindsight experience justification.

 Hindsight experience justification relies on the insight that the trajectory obtained by

following a stochastic policy for the original goal is still a valid trajectory under the hindsight

goal. The difference is in the probabilities of actions taken and rewards obtained. We use this

to create a vicarious trajectory that is used as additional information in policy optimization.

 Consider a trajectory defined given by tuples (st, at, rt) ∀ t = 1, . . . , T which are

obtained by following a goal conditional policy π(a|s, g) where g is the original goal. A

vicarious trajectory is obtained by reliving the actions but with the hindsight goal, g′. The

probability of action at under this new trajectory would change, π(at|st, g) → π(at|st, g′). This

re-computation of action probabilities which is a form of importance sampling (Rauber et al.,

2017) is the primary difference between our approach and HER for off-policy methods. For

actor-critic methods on goal-based environments the value is obtained from a universal value

function approximator that is conditioned on the goal. The state values in the new trajectory

change, V (st, g) → V (st, g′). This approach is strictly for soft policies which are common for

on-policy methods. A soft-policy requires that π(s, a) > 0 ∀ s ∈ S, a ∈ A.

 Algorithm 3 introduces a new approach called HIPPO, that uses hindsight experience

justification to generate a new vicarious trajectory that is used alongside the original trajectory

to optimize the policy by iterating over this batch of data over a number of epochs. HIPPO

enables learning from sparse rewards and also improves sample efficiency in case of dense

rewards. The results of this approach on FetchReach-v1 are presented in the results section.

 The hindsight goal can be obtained in multiple ways. The naive approach would be to use the

goal mapped to by the terminal state of the trajectory, g′ := sT . This fails when the trajectory

given is suboptimal. Hence, the hindsight goal has to be in the near future (Andrychowicz et

al., 2017), which can be achieved by frequently updating the hindsight goal. HIPPO introduces

a hindsight timestep horizon parameter, h that essentially controls how frequently the hindsight

goal is updated within the trajectory.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1118

Algorithm 3 HIPPO

for iteration = 1, 2, … do

 for actor = 1, 2, … N do

 Run policy π𝜃old in environment for T timesteps

for t = 1, …, T do

 pt := π𝜃old (at|st, g)

vt := V𝜃old (st, g)

rt := r(st, at, g)

Ractor(t) := (st, at, rt, pt, vt)

 end

Compute advantage estimates (Â1, Â2, …, ÂT)actor

Generate hindsight from R

for t = T, T-1, …, 1 do

 h ≤ T, hindsight timestep horizon

if t = kh, k ∈ ℤ+ or t = T then

 Update hindsight goal, g′ := m(st)

 end

pt := π𝜃old (at|st, g′)

vt := V𝜃old (st, g′)

rt := r(st, at, g′)

H(t) := (st, at, rt, pt, vt)

 end

Compute advantage estimates

(Â1
h, …, ÂT

h)actor from H

 end

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch of R||H of size M

≤ 2𝑁𝑇

Update parameters, 𝜃old ← 𝜃

end

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1119

 HIPPO can be extended to generate new trajectories from trajectories obtained by

following older policies. This is shown in Algorithm 4. A new parameter that determines how

many trajectories from the immediate past are to be used for generating new trajectories

through hindsight experience justification. This parameter is denoted by n is called hindsight

iterations horizon. This parameter also affects the number of samples available at the

optimization step. Also, trajectories from only the immediate past are considered as the far

older trajectories may not be valuable as the current policy may have gone far from the

trajectory responsible for generating the old trajectory. This can result in near 0 values for π(a|s)

which may in-turn cause numerical issues.

Algorithm 4 HIPPO, Extended Replay

Initialize buffer R

for iteration = 1, 2, … do

 for actor = 1, 2, … N do

 Run policy π𝜃old in environment for T timesteps

for t = 1, …, T do

 pt := π𝜃old (at|st, g)

vt := V𝜃old (st, g)

rt := r(st, at, g)

Ractor
iteration(t) := (st, at, rt, pt, vt)

 end

Compute advantage estimates (Â1
0, Â2

0, …, ÂT
0)actor

 end

Let n be hindsight iterations horizon

for i = max (iteration - n, 1), …, iteration do

 for actor = 1, 2, …, N do

 Generate hindsight from Ractor
iteration

Initialize buffer H

for t = T, T-1, …, 1 do

 Let h ≤ T be hindsight timesteps horizon

if t = kh, k ∈ ℤ+ or t = T then

 Update hindsight goal, g′ := m(st)

 end

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1120

pt := π𝜃old (at|st, g′)

vt := V𝜃old (st, g′)

rt := r(st, at, g′)

Hi(t) := (st, at, rt, pt, vt)

 end

Compute advantage estimates

(Â1
h, …, ÂT

h)actor from Hi

 end

 end

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch of R||H of size M ≤ (𝑛 +

1)𝑁𝑇

Update parameters, 𝜃old ← 𝜃

end

Figure 2. Illustration of generating hindsight goals by reinterpreting episodes. Trajectory τ1 is

suboptimal and using g′ as shown on the left is the naive approach which is fine for close to

optimal trajectory like τ2. To improve the performance the hindsight goal is frequently

updated as shown on the right. A shorter trajectory has a higher likelihood of being optimal.

The hindsight goal is updated every h timesteps.

2.1. Environment

 We are using OpenAI Gym’s MuJoCo-based Robotics environments (Brockman et al., 2016),

(Todorov et al., 2012) for testing. Specifically, we use the FetchReach-v1 environment. The

goal of this environment is to learn a policy that drives the end-effector of the Fetch arm to

goal position in 3D. When the reward type is set to dense, the rewards obtained are simply the

negative of the distance of the end-effector from the goal position. When the reward type is

sparse, the agent receives a reward of 0 if the goal position is reached within a tolerance and -

1 otherwise.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1121

3. Results & Discussion

 We evaluated HIPPO on the FetchReach-v1 as described in the previous section. The

approach we followed was to first arrive at the optimal parameters for PPO and then evaluate

HIPPO at the same parameters so that there is fair comparison. The results shown are averaged

over multiple seeds for about 6 runs each. The episode length of the FetchReach-v1

environment is 50 steps. The parameters we used for PPO are as follows.

- number of time steps, T : 2048

- discount factor, γ : 0.99

- GAE parameter, λ : 0.95

- clip range, ϵ : 0.2

- entropy coefficient, c : 0.0

- minibatch size m : 32

- number of epochs, K : 10

- learning rate, α : 3.0 × 10-4

- number of actors, N : 1

 The learning curves for PPO and HIPPO for both dense and sparse rewards are shown in

Figure (4). The plots show the mean episode reward against the number of time steps of

interaction with the environment. In case of dense rewards, it can be clearly seen that the

HIPPO learns faster and also achieves better rewards. HIPPO achieves the same performance

as PPO approximately 3 to 4 times faster and exceeds the performance thereon. Also, the

learning curve exhibits lesser variance with HIPPO as compared to PPO.

Figure 3. Comparison of mean episode rewards using the FetchReach-v1 environment.

Data was aggregated from multiple runs of the experiment for each algorithm and reward-

type pair. The shaded colors indicate the range of variance observed. The minimum possible

reward from an episode is -50 as there are 50 steps in an episode, with -1 being the least

possible reward obtainable from each step.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1122

The learning curves for sparse rewards cases are much more interesting. Clearly, from the flat

curve, PPO is unable to learn whereas HIPPO is consistently able to learn from sparse rewards.

Although the learning is slow compared to the dense case, it is acceptable given that the sparse

rewards are much more challenging and learning to achieve the goal is an accomplishment in

itself.

Apart from the FetchReach-v1 we also tried learning a policy through PPO or HIPPO for

another environment in OpenAI Robotics environments called HandReach-v0. In this task, the

goal is to make the high dof fingered hand to reach a goal configuration. Both PPO and HIPPO

failed to learn in this environment in both dense and sparse rewards even, for a large number

of iterations (5M). We believe that a simple feed forward policy is not sufficient for such tasks

and also that due to the complexity, HIPPO with Extended Replay might be more appropriate

for this task. The results for this are not available as the implementation for HIPPO with

Extended Replay is yet to be completed.

Figure 4. Frames from testing a trained robotic arm in the FetchReach-v1 environment.

Sparse rewards are rewarded when the robotic end-effector is within a certain proximity of the

red ball. Dense rewards are defined as the distance between the end-effector and the red ball.

4. Conclusion

 In this work we take ideas from Hindsight Experience Replay and apply it to a on-policy

method - PPO. We use a technique we call hindsight experience justification to generate new

vicarious trajectories and use them alongside the actual trajectories for obtaining the optimal

policy. HIPPO is a first cut implementation of this approach and it performs significantly better

than PPO in case of dense rewards and more importantly enables learning from sparse rewards

just as in case of off-policy HER.

 We also propose a full-fledged version - HIPPO, Extended Replay that we hope will be able

to learn in more complex environments.

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1123

5. Acknowledgement

 We would like to thank Prof. Chong Li1 for providing us with strong foundations in

reinforcement learning and Prof. Lei Zhang2 for bringing us up to speed on advanced topics in

deep reinforcement learning. We would also like to thank OpenAI implementations of all

baseline algorithms in DeepRL (Dhariwal et al., 2017) and numerous environments on which

to learn on. Also, thanks to the creators of stable baselines (Hill et al., 2018) repository for easy

to understand re implementation of OpenAI baselines. We would also like to thank Prof. Matei

Ciocarlie3 for providing the opportunity to be part of his research group which indirectly

helped us in coming up with this project topic.

References

[1] Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng,

Citro, Craig, Corrado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu,

Ghemawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael,

Jia, Yangqing, Jozefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg,

Josh, Mané, Dandelion, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah, Chris,

Schuster, Mike, Shlens, Jonathon,Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal,

Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda, Vinyals,

Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng,

Xiaoqiang. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. URL https://www.tensorflow.org/ Software available from tensorflow.org

[2] Andrychowicz, Marcin, Wolski, Filip, Ray, Alex, Schneider, Jonas, Fong, Rachel,

Welinder, Peter, McGrew, Bob, Tobin, Josh, Abbeel, Pieter, and Zaremba, Wojciech.

Hindsight experience replay. CoRR, abs/1707.01495, 2017. URL

http://arxiv.org/abs/1707.01495

[3] Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas,

Schulman, John, Tang, Jie, and Zaremba, Wojciech. Openai gym. CoRR,

abs/1606.01540, 2016. URL http://arxiv.org/abs/1606.01540

[4] Dhariwal, Prafulla, Hesse, Christopher, Klimov, Oleg, Nichol, Alex, Plappert,

Matthias, Radford, Alec, Schulman, John, Sidor, Szymon, Wu, Yuhuai, and Zhokhov,

Peter. Openai baselines. https://github.com/openai/baselines 2017.

[5] Hill, Ashley, Raffin, Antonin, Ernestus, Maximilian, Traore, Rene, Dhariwal,

Prafulla, Hesse, Christopher, Klimov, Oleg, Nichol, Alex, Plappert, Matthias,

Radford, Alec, Schulman, John, Sidor, Szymon, and Wu, Yuhuai. Stable baselines.

https://github.com/hill-a/stable-baseline , 2018

[6] Kakade, Sham and Langford, John. Approximately optimal approximate

reinforcement learning. In Proceedings of the Nineteenth International Conference on

Machine Learning, ICML ’02, pp. 267-274, San Francisco, CA, USA, 2002. Morgan

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1124

https://www.tensorflow.org/
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1606.01540
https://github.com/openai/baselines
https://github.com/hill-a/stable-baseline

Kaufmann Publishers Inc. ISBN 1-55860-873-7. URL

http://dl.acm.org/citation.cfm?id=645531.656005

[7] Konda, Vijay R. and Tsitsiklis, John N. Actor-critic algorithms. In Solla, S. A.,

Leen, T. K., and Müller, K. (eds.), Advances in Neural Information Processing

Systems 12, pp. 1008-1014. MIT Press, 2000. URL

http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf

[8] Kullback, S. and Leibler, R. A. On information and sufficiency. Ann. Math. Statist.,

22(1):79-86, 1951. Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander, Heess,

Nicolas, Erez, Tom, Tassa, Yuval, Silver, David, and Wierstra, Daan. Continuous

control with deep reinforcement learning. CoRR, abs/1509.02971, 2015. URL

http://arxiv.org/abs/1509.02971

[9] Rauber, Paulo, Mutz, Filipe, and Schmidhuber, Jürgen. Hindsight policy gradients.

CoRR, abs/1711.06006, 2017. URL http://arxiv.org/abs/1711.06006

[10] Ruder, Sebastian. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747

[11] Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael I., and Abbeel,

Pieter. Trust region policy optimization. CoRR, abs/1502.05477, 2015a. URL

http://arxiv.org/abs/1502.05477

[12] Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan, Michael I., and Abbeel,

Pieter. High-dimensional continuous control using generalized advantage estimation.

CoRR, abs/1506.02438, 2015b. URL http://arxiv.org/abs/1506.02438

[13] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg.

Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL

http://arxiv.org/abs/1707.06347

[14] Sutton, Richard S. and Barto, Andrew G. Reinforcement learning - an introduction.

Adaptive computation and machine learning. MIT Press, 1998. ISBN 0262193981.

URL http://www.worldcat.org/oclc/37293240

[15] Sutton, Richard S, McAllester, David A., Singh, Satinder P., and Mansour, Yishay.

Policy gradient methods for reinforcement learning with function approximation.

In Solla, S. A., Leen, T. K., and Müller, K. (eds.), Advances in Neural Information

Processing Systems 12, pp. 1057-1063. MIT Press, 2000. URL

http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-

learning.pdf

[16] Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco: A physics engine for

model-based control. InIROS, pp. 5026-5033. IEEE, 2012. ISBN 978-1-4673-1737-

5. URL http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1125

http://dl.acm.org/citation.cfm?id=645531.656005
http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1711.06006
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://www.worldcat.org/oclc/37293240
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning.pdf
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1126

