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Abstract 

Goal based environments require a goal-conditional policy. It is helpful in generalizing to 

new goals and also critical for curriculum learning.  Hindsight Experience Replay (HER) 

generates samples by substituting the original goal with the achieved goal. HER, applicable 

only to off-policy methods like DDPG, has been shown to significantly improve the sample 

efficiency and importantly enables learning on sparse and binary reward environments. Recent 

state of the art algorithms like PPO have attractive stability traits. In this work we propose an 

approach to introduce hindsight to PPO which we call HIPPO and show that it improves 

sample efficiency for learning on dense reward environments and enables learning with sparse 

rewards. 

 

 

1. Background 

   In this section we introduce reinforcement learning formalism used in the paper as well as 

RL algorithms we use in our experiments. 

 

1.1. Reinforcement Learning 

   Consider the RL problem with state space S, action space A, the reward function r, the policy 

π(s|a) where s ∈ S, a ∈ A. We will use the following standard definitions (Sutton & Barto, 

1998) of the expected return Rt, state value function Qπ, the value function Vπ and the advantage 

function Aπ. 

Rt = ∑∞
𝑘=0  γkrt+k+1 

Vπ(s,a) = Eπ [Rt|st = s] 

Qπ(s,a) = Eπ [Rt|st = s,at = a] 

Aπ(s,a) = Qπ(s,a) - Vπ(s,a) 

 

1.2. Off-policy vs. On-policy 

   On-policy methods attempt to evaluate or improve the policy that is used to make decisions. 

For example, SARSA is an on-policy learner, as it uses only the Q-value of the action taken by 

the policy at the next step to estimate the current Q-value. In on-policy control methods the 

policy is generally soft, meaning that π(s, a) > 0 ∀ s ∈ S, a ∈ A 
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  In off-policy methods the functions of evaluating a policy and control are separated. The 

policy used to generate behavior, called the behavior policy, may in fact be unrelated to the 

policy that is used and improved, called the estimation policy. An advantage of this separation 

is that the estimation policy may be deterministic, while the behavior policy can continue to 

sample all possible actions for exploration. An off-policy learner learns the value of the optimal 

policy independently of the agent’s actions. For example, Q-learning is an off-policy learner, 

as it needs to know the Q-values of all possible actions at the next step to estimate the Q-value 

of the current state (Sutton & Barto, 1998). 

 

1.3. Actor Critic Methods 

   Actor-critic methods (Konda & Tsitsiklis, 2000) employ the use of an actor which generates 

action based on a particular policy, and a critic which evaluates the actor’s policy. Learning 

involves improving both the actor and the critic based on results generated by the other. The 

actor learns to take better actions based on the action values provided by the critic, whereas the 

critic updates its parameters based on the TD error computed after taking that action. The TD 

error provides an estimation of the advantage function of taking a particular action at a given 

state, and leads to better stability. 

 

  Learning in actor-critic methods is always on-policy, as both the actor and the critic learn 

from the current policy being followed by the actor (Sutton & Barto, 1998). 

 

1.4. Proximal Policy Optimization (PPO) 

   Proximal Policy Optimization (Schulman et al., 2017) is a recently proposed family of policy 

gradient methods (Sutton et al., 2000) which alternate between sampling data through 

interaction with the environment, and optimizing an objective function using stochastic 

gradient ascent (Ruder, 2016). This is unlike the standard policy gradient methods where one 

gradient update per data sample is performed. The objective function enables multiple epochs 

of minibatch updates and retains some of the properties of Trust Region Policy Optimization 

(Schulman et al., 2015a) in which the policy updates are constrained to lie within a trust region. 

Policy gradient methods compute an estimate of the policy gradient using the gradient in 

stochastic gradient ascent fashion. The most common estimator has the form 

 

ĝ = Êt [ ⛛θ  log πθ (at | st) Ât ]     (1) 

 

  where πθ is a stochastic policy and Ât is an estimator of the advantage function at timestep t. 

 

  It is common to make use of auto-differentiation software (Abadi et al., 2015) in 

implementations, in which case the gradient estimator ĝ can be obtained by differentiating the 

objective 

 

LPG (θ) =  Êt [  log πθ (at | st) Ât ]      (2) 

 

YMER || ISSN : 0044-0477

VOLUME 23 : ISSUE 04 (April) - 2024

http://ymerdigital.com

Page No:1113



 

  Using loss LPG to perform multiple steps of optimization using the same trajectory leads to 

destructively large policy updates causing the policy to diverge. 

In the Trust Region Policy Optimization the goal is to maximize a ”surrogate” objective (3) 

under the constraint (4). 

 

maximize𝜃  Êt [
𝜋𝜃 ( 𝑎𝑡  | 𝑠𝑡  )

𝜋𝜃𝑜𝑙𝑑 ( 𝑎𝑡  | 𝑠𝑡  )
Â𝑡 ]      (3) 

subject to Êt [ KL [ πθ (⋅ , st) || πθold (⋅ , st) ]]      (4) 

 

  where Θold is the policy parameters before the update and KL[p,q] is the Kullback-Liebler 

divergence (Kullback & Leibler, 1951) between the distributions p and q. Hence, (4) constrains 

the size of the policy update. 

 

  Solving the constraint optimization problem in computationally complex and PPO addresses 

it indirectly through a Clipped Surrogate Objective. Let rt(θ) denote the action probability ratio 

between the new and old policy 

 

 𝑟𝑡(𝜃)  =
𝜋𝜃 ( 𝑎𝑡 | 𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 ( 𝑎𝑡 | 𝑠𝑡 )
           (5)                                                  

   

  The Conservative Policy Iteration (Kakade & Langford, 2002) objective given by (3) can be 

written as 

 

LCPI = Êt [ rt (𝜃) Ât ]      (6) 

 

  Unconstrained maximization of LCPI  results in very large policy updates. PPO uses a Clipped 

Surrogate Objective which penalizes the changes to policy that move rt(θ) away from 1. 

 

LCLIP =  Êt [ min ( rt (𝜃) Ât , clip (rt (𝜃), ε) Ât ]        (7) 

 

  where 

 

clip (rt (θ), ε) :=  | 1 - ε      if rt (θ) < 1 - ε 

                              | rt (θ)     if 1 - ε ≤ rt (θ) ≤ 1 + ε 

                              | 1 + ε     if rt (θ) > 1 + ε 

 

  For using value function approximation, (7) is appended with LVF = (Vθ(st) - Vt
targ)2.  An 

entropy loss is also included for exploration, S[πθ](st).  The final objective function sums to 

 

Lt (θ) =  Êt [ Lt
CLIP (θ) - ciLt

VF + c2S [πθ] (st) ]                (8) 

 

The advantage function is estimated by Generalized Advantage Estimate (Schulman et al., 

2015b), 
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Ât = ∑𝑇−𝑡+1
𝑘=0 (γλ)k(rt + γV(st+1) - V(st))                         (9) 

 

 

 

Algorithm 1 PPO, Actor-Critic Style, (Schulman et al.,2017) 

for iteration = 1, 2, … do 

 for actor = 1, 2, …, N do 

  Run policy πθold in environment for T timesteps 

  for t = 1, …, T do 

   pt := π𝜃old(at|st) 

vt := V𝜃old(st) 

t  := r(st,at) 

Save (st,at,rt,pt,vt) 

  end 

Compute advantage estimates (Â1, Â2, …, ÂT)actor 

 end 

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch size M ≤ NT 

Update parameters, 𝜃old ← 𝜃 

end 

 

   

 

PPO has been shown to perform well for continuous control problems with dense rewards, such 

as those involving a humanoid robot tasked with running, steering or other forms of 

locomotion.  

 

 

It outperforms other algorithms such as A2C, A3C and TRPO for such continuous control tasks. 

However, its performance in these tasks is contingent on careful reward shaping. PPO hasn’t 

been shown to perform well under conditions with sparse rewards.(Schulman et al., 2017) 
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Figure 1. Environments where PPO has been shown to perform well as compared to other 

existing algorithms. Clockwise from top left: HalfCheetah-v1, Hopper-v1, Walker2d-v1, 

Swimmer-v1, Reacher-v1, InvertedDoublePendulum-v1 

 

1.5. Goal-based Environments 

  Goal-based environments are characterized by the presence of a desirable state or 

configuration associated with higher reward as compared to all other states.  The objective of 

a reinforcement learning agent in such environments, is then to reach the specified goal states 

in the fewest number of steps to maximize the rewards gained from the episode. Hence, the 

agent must be aware of the goal to take actions accordingly. Goal-conditional policies are 

therefore used, wherein, the probabilities of actions depend not just on the current state, but on 

the desired goal as well. 

 

  Multi-goal environments include multiple goals that the agent can achieve.   In such 

environments, a predicate fg : S → {0, 1} determines whether a particular state corresponds to 

a particular goal state g. Additionally, a mapping function m : S → G can be defined, which 

maps each state to a goal, such that fm(s)(s) = 1. This is not always possible, but holds true for 

most practical environments. 

 

1.6. Universal Value Function Approximators 

  Universal Value Function Approximators (Andrychowicz et al., 2017) are an extension of 

value function approximators for multi-goal environments. In single-goal environments, the 

agent’s policy is trained to reach that specific goal, and the reward function r : S × A → R 

depends only on the action and the state. In multi-goal environments however, there is a 

separate reward function rg  : S × A → R for each goal g ∈ G. As a result, the policy is modified 

to consider the desired goal while taking actions, such that π : S × G → A. The action-value 

function is modified accordingly from Qπ(st,at) to Qπ(st,at,g).  The value function is modified 

accordingly from Vπ(st) to Vπ(st, g). 

 

1.7. Hindsight Experience Replay (HER) 

  Hindsight Experience Replay refers to the re-interpretation of episodes generated from a 

policy unsuccessfully trying to achieve a desired goal, as episodes where the policy was 

successfully able to achieve an actual goal. More formally, if the policy generated a trajectory 

s1, s2, ...sT  while trying to reach goal g, and m(sT ) = g, we can re-interpret this as the policy 
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successfully reaching the desired state when g = m(sT), and use that as an as an additional 

sample for training the policy. In this example, g is called the desired goal, and m(sT ) is the 

achieved goal. Algorithm 2 shows how HER is used with an on-policy algorithm such as DDPG 

(Lillicrap et al., 2015) in the original paper (Andrychowicz et al., 2017). Since HER reinterprets 

existing episodes to generate new virtual samples, it effectively increases the sample efficiency 

of the learning task. 

  HER+DDPG is shown to work well for multi-goal environments with sparse, binary rewards 

such as MuJoCo-based FetchPush, FetchSlide and FetchPickAndPlace. In comparison, DDPG 

without HER wasn’t able to complete these tasks at all. (Andrychowicz et al., 2017) 

 

Algorithm 2 Hindsight Experience Replay 

Initialize off-policy algorithm 𝔸 

Initialize Replay Buffer R 

for episode = 1, 2, … M do 

 Sample goal g and initial state s0 

for t = 1, 2, …, T - 1 do 

  at ∼ 𝜋b(st||g) 

Execute at and observe st+1 

 end 

for t = 1, 2, …, T - 1 do 

  rt := r(st, at, g) 

Store (st||g, at, rt, st+1||g′) in R 

Sample additional goals g from current episode 

for g′ ∈ G do 

   r′ := r(st, at, g′) 

Store (st||g′, at, st+1||g′) in R 

  end 

 end 

for t = 1, 2, …, N do 

  Sample mini-batch B from R 

Optimize 𝔸 using B 

 end 

end 
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2. Hindsight in Proximal Policy Optimization 

  As discussed in the Sec (1.7), HER is crucial to learning from sparse rewards and improving 

sample efficiency, but this has been applied only to off-policy methods such as DQN, DDPG 

and others. Furthermore an optimization based on-policy method such as PPO has only been 

shown to work with dense - shaped rewards. We introduce hindsight to PPO through a 

technique we call hindsight experience justification. 

 

 

  Hindsight experience justification relies on the insight that the trajectory obtained by 

following a stochastic policy for the original goal is still a valid trajectory under the hindsight 

goal. The difference is in the probabilities of actions taken and rewards obtained.  We use this 

to create a vicarious trajectory that is used as additional information in policy optimization. 

 

 

  Consider   a   trajectory   defined   given   by   tuples (st, at, rt) ∀ t = 1, . . . , T  which are 

obtained by following a goal conditional policy π(a|s, g) where g is the original goal. A 

vicarious trajectory is obtained by reliving the actions but with the hindsight goal, g′. The 

probability of action at   under this new trajectory would change, π(at|st, g) → π(at|st, g′). This 

re-computation of action probabilities which is a form of importance sampling (Rauber et al., 

2017) is the primary difference between our approach and HER for off-policy methods. For 

actor-critic methods on goal-based environments the value is obtained from a universal value 

function approximator that is conditioned on the goal. The state values in the new trajectory 

change, V (st, g) → V (st, g′).  This approach is strictly for soft policies which are common for 

on-policy methods.  A soft-policy requires that π(s, a) > 0 ∀ s ∈ S, a ∈ A. 

 

 

  Algorithm 3 introduces a new approach called HIPPO, that uses hindsight experience 

justification to generate a new vicarious trajectory that is used alongside the original trajectory 

to optimize the policy by iterating over this batch of data over a number of epochs. HIPPO 

enables learning from sparse rewards and also improves sample efficiency in case of dense 

rewards. The results of this approach on FetchReach-v1 are presented in the results section. 

 

 

  The hindsight goal can be obtained in multiple ways. The naive approach would be to use the 

goal mapped to by the terminal state of the trajectory, g′ := sT . This fails when the trajectory 

given is suboptimal. Hence, the hindsight goal has to be in the near future (Andrychowicz et 

al., 2017), which can be achieved by frequently updating the hindsight goal. HIPPO introduces 

a hindsight timestep horizon parameter, h that essentially controls how frequently the hindsight 

goal is updated within the trajectory. 
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Algorithm 3 HIPPO 

for iteration = 1, 2, … do 

 for actor = 1, 2, … N do 

  Run policy π𝜃old in environment for T timesteps 

for t = 1, …, T do 

   pt  := π𝜃old (at|st, g) 

vt := V𝜃old (st, g) 

rt := r(st, at, g) 

Ractor(t) := (st, at, rt, pt, vt) 

  end 

Compute advantage estimates (Â1, Â2, …, ÂT)actor 

Generate hindsight from R 

for t = T, T-1, …, 1 do 

   h ≤ T, hindsight timestep horizon 

if t = kh, k ∈ ℤ+ or t = T then 

    Update hindsight goal, g′ := m(st) 

   end 

pt  := π𝜃old (at|st, g′) 

vt := V𝜃old (st, g′) 

rt := r(st, at, g′) 

H(t) := (st, at, rt, pt, vt) 

  end 

Compute advantage estimates 

(Â1
h, …, ÂT

h)actor from H 

 end 

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch of R||H of size M 

≤  2𝑁𝑇 

Update parameters, 𝜃old ←  𝜃 

end 
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 HIPPO can be extended to generate new trajectories from trajectories obtained by 

following older policies.  This is shown in Algorithm 4. A new parameter that determines how 

many trajectories from the immediate past are to be used for generating new trajectories 

through hindsight experience justification. This parameter is denoted by n is called hindsight 

iterations horizon. This parameter also affects the number of samples available at the 

optimization step. Also, trajectories from only the immediate past are considered as the far 

older trajectories may not be valuable as the current policy may have gone far from the 

trajectory responsible for generating the old trajectory. This can result in near 0 values for π(a|s) 

which may in-turn cause numerical issues. 

 

Algorithm 4 HIPPO, Extended Replay 

Initialize buffer R 

for iteration = 1, 2, … do 

 for actor = 1, 2, … N do 

  Run policy π𝜃old in environment for T timesteps 

for t = 1, …, T do 

   pt  := π𝜃old (at|st, g) 

vt := V𝜃old (st, g) 

rt := r(st, at, g) 

Ractor
iteration(t) := (st, at, rt, pt, vt) 

  end 

Compute advantage estimates (Â1
0, Â2

0, …, ÂT
0)actor 

 end 

Let n be hindsight iterations horizon 

for i = max ( iteration - n, 1), …, iteration do 

  for actor = 1, 2, …, N do 

   Generate hindsight from Ractor
iteration 

Initialize buffer H 

for t = T, T-1, …, 1 do 

    Let h ≤ T be hindsight timesteps horizon 

if t = kh, k ∈ ℤ+ or t = T then 

     Update hindsight goal, g′ := m(st) 

    end 
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pt  := π𝜃old (at|st, g′) 

vt := V𝜃old (st, g′) 

rt := r(st, at, g′) 

Hi(t) := (st, at, rt, pt, vt) 

   end 

Compute advantage estimates 

(Â1
h, …, ÂT

h)actor from Hi 

  end 

 end 

Optimize surrogate L wrt 𝜃, with K epochs and a mini-batch of R||H of size M ≤  (𝑛 +

1)𝑁𝑇 

Update parameters, 𝜃old ←  𝜃 

end 

 

 

 

 
Figure 2. Illustration of generating hindsight goals by reinterpreting episodes. Trajectory τ1 is 

suboptimal and using g′ as shown on the left is the naive approach which is fine for close to 

optimal trajectory like τ2. To improve the performance the hindsight goal is frequently 

updated as shown on the right. A shorter trajectory has a higher likelihood of being optimal. 

The hindsight goal is updated every h timesteps. 

 

2.1. Environment 

  We are using OpenAI Gym’s MuJoCo-based Robotics environments (Brockman et al., 2016), 

(Todorov et al., 2012) for testing. Specifically, we use the FetchReach-v1 environment. The 

goal of this environment is to learn a policy that drives the end-effector of the Fetch arm to 

goal position in 3D. When the reward type is set to dense, the rewards obtained are simply the 

negative of the distance of the end-effector from the goal position. When the reward type is 

sparse, the agent receives a reward of 0 if the goal position is reached within a tolerance and -

1 otherwise. 
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3. Results & Discussion 

  We evaluated HIPPO on the FetchReach-v1 as described in the previous section.  The 

approach we followed was to first arrive at the optimal parameters for PPO and then evaluate 

HIPPO at the same parameters so that there is fair comparison. The results shown are averaged 

over multiple seeds for about 6 runs each.  The episode length of the FetchReach-v1 

environment is 50 steps. The parameters we used for PPO are as follows. 

- number of time steps, T : 2048 

- discount factor, γ : 0.99 

- GAE parameter, λ : 0.95 

- clip range, ϵ : 0.2 

- entropy coefficient, c : 0.0 

- minibatch size m : 32 

- number of epochs, K : 10 

- learning rate, α : 3.0 × 10-4 

- number of actors, N : 1 

 

  The learning curves for PPO and HIPPO for both dense and sparse rewards are shown in 

Figure (4). The plots show the mean episode reward against the number of time steps of 

interaction with the environment. In case of dense rewards, it can be clearly seen that the 

HIPPO learns faster and also achieves better rewards. HIPPO achieves the same performance 

as PPO approximately 3 to 4 times faster and exceeds the performance thereon. Also, the 

learning curve exhibits lesser variance with HIPPO as compared to PPO. 

 

 
Figure 3. Comparison  of  mean  episode  rewards  using  the FetchReach-v1 environment. 

Data was aggregated from multiple runs of the experiment for each algorithm and reward-

type pair. The shaded colors indicate the range of variance observed. The minimum possible 

reward from an episode is -50 as there are 50 steps in an episode, with -1 being the least 

possible reward obtainable from each step. 
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The learning curves for sparse rewards cases are much more interesting. Clearly, from the flat 

curve, PPO is unable to learn whereas HIPPO is consistently able to learn from sparse rewards. 

Although the learning is slow compared to the dense case, it is acceptable given that the sparse 

rewards are much more challenging and learning to achieve the goal is an accomplishment in 

itself. 

 

   

Apart from the FetchReach-v1 we also tried learning a policy through PPO or HIPPO for 

another environment in OpenAI Robotics environments called HandReach-v0. In this task, the 

goal is to make the high dof fingered hand to reach a goal configuration. Both PPO and HIPPO 

failed to learn in this environment in both dense and sparse rewards even, for a large number 

of iterations (5M). We believe that a simple feed forward policy is not sufficient for such tasks 

and also that due to the complexity, HIPPO with Extended Replay might be more appropriate 

for this task. The results for this are not available as the implementation for HIPPO with 

Extended Replay is yet to be completed. 

 

 
Figure 4. Frames  from  testing  a  trained  robotic  arm  in  the FetchReach-v1 environment. 

Sparse rewards are rewarded when the robotic end-effector is within a certain proximity of the 

red ball. Dense rewards are defined as the distance between the end-effector and the red ball. 

 

4. Conclusion 

  In this work we take ideas from Hindsight Experience Replay and apply it to a on-policy 

method - PPO. We use a technique we call hindsight experience justification to generate new 

vicarious trajectories and use them alongside the actual trajectories for obtaining the optimal 

policy. HIPPO is a first cut implementation of this approach and it performs significantly better 

than PPO in case of dense rewards and more importantly enables learning from sparse rewards 

just as in case of off-policy HER. 

 

  We also propose a full-fledged version - HIPPO, Extended Replay that we hope will be able 

to learn in more complex environments. 
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