On Open and Closed Sets in Fuzzy Bitopological Space

A. ARIVU CHELVAM, M. Phil, Ph. D

Associate Professor,
PG & Research Department of Mathematics,
Mannar Thirumalai Naicker college,
(Affiliated to Madurai Kamaraj University)
Madurai.

E-mail: arivuchelvam2008@gmail.com

S. MUKESH PARKAVI, M. Sc

Full-Time Research Scholar,
PG & Research Department of Mathematics,
Mannar Thirumalai Naicker college,
(Affiliated to Madurai Kamaraj University)
Madurai.

E-mail: mukeshparkavi98@gmail.com

Abstract:

The purpose of this paper is to define and study a new concept of fuzzy $(1,2)^*-\beta^*$ open and fuzzy $(1,2)^*-\beta^*$ closed sets in fuzzy bitopological space. Also, some basic concepts and properties of them are investigated. Some theorems and examples for $(1,2)^*-\beta^*$ open and $(1,2)^*-\beta^*$ closed sets are introduced.

Keyword:

 $(1,2)^*-\beta^*$ open sets, $(1,2)^*-\beta^*$ closed sets, $(1,2)^*-\beta^*$ closure, fuzzy bitopological space.

Introduction:

Zadeh [4] was introduced the fuzzy sets and Chang [1] was initiated the fuzzy topology. Khalik [3] was study on certain types of fuzzy separation axioms in fuzzy topological space on fuzzy sets. The concept of bitopological spaces was introduced by J. C. Kelly [5]. Kandil [6] introduced the fuzzy bitopological spaces as a natural generalization of Chang's fuzzy topological spaces. The concept of β^* -open set and β^* -closed set in fuzzy topological space are introduced by R. Thangappan [8].

In this paper, we introduce and study a new class of fuzzy sets in a fuzzy bitopological space (X,τ_1,τ_2) , namely $(1,2)^*-\beta^*$ open sets and closed sets and its properties are studied.

2. Preliminaries:

Throughout this paper (X, τ_1, τ_2) or simply X denote the fuzzy bitopological spaces (briefly, FBTS). For a subset A of a space X, the closure, interior and complement of A are denoted by cl(A), int (A) and A^c respectively. We recall some basic definitions that are used in the sequel.

Definition 2.1[1]:

A fuzzy topology (briefly FT) on X is a family τ of FSs in X satisfying the following axioms.

- 1. $0 \sim$, $1 \sim \in \tau$
- 2. $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- 3. \cup $G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this state the pair (X,τ) is called a fuzzy topological space (briefly FTS) and any FS in τ is known as a fuzzy open set (briefly FOS) in X. The complement of a fuzzy open set is called a fuzzy closed set (briefly FCS) in X.

Definition 2.2[6]:

Let τ_1 and τ_2 be two fuzzy topologies on a non-empty set X. The triple (X,τ_1,τ_2) is called a fuzzy bitopological spaces (briefly FBTS), every member of $\tau_{1,2}$ is called $\tau_{1,2}$ - fuzzy open sets

 $(\tau_{1,2}\text{-FOS})$ and the complement of $\tau_{1,2}\text{-FOS}$ is $\tau_{1,2}$ - fuzzy closed sets $(\tau_{1,2}\text{-FCS})$.

Definition 2.3[9]:

A Fuzzy Set A = $\langle X, \mu_A \rangle$ in an FBTS (X, τ_1, τ_2) is said to be an

- $(1,2)^*$ -fuzzy semi-open set $((1,2)^*$ -FSOS) if $A \subseteq \tau_{1,2}$ $cl(\tau_{1,2}$ int(A))
- $(1,2)^*$ -fuzzy semi-closed set $((1,2)^*$ -FSCS) if $\tau_{1,2}$ -int $(\tau_{1,2}$ $cl(A)) \subseteq A$
- $(1,2)^*$ -fuzzy α -open set $((1,2)^*$ -F α OS) if $A \subseteq \tau_{1,2}$ $int(\tau_{1,2}$ int(A))
- $(1,2)^*$ -fuzzy α -closed set $((1,2)^*$ -F α CS) if $\tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ - $cl(A)) \subseteq A$
- $(1,2)^*$ -fuzzy regular open set $((1,2)^*$ -FROS) if $A = \tau_{1,2}$ $int(\tau_{1,2}$ cl(A))
- $(1,2)^*$ -fuzzy regular closed set $((1,2)^*$ -FRCS) if $A = \tau_{1,2}$ $cl(\tau_{1,2}$ int(A))
- $(1,2)^*$ -fuzzy e-open if $A \le \tau_{1,2}$ $cl(int_{\delta}(A)) \lor \tau_{1,2}$ - $int(cl_{\delta}(A))$
- $(1,2)^*$ -fuzzy e-closed if $A \ge \tau_{1,2}$ $cl(int_{\delta}(A)) \land \tau_{1,2}$ - $int(cl_{\delta}(A))$

3. Fuzzy $(1,2)^*$ - β^* Open Sets in Fuzzy Bitopological Space

Definition 3.1:

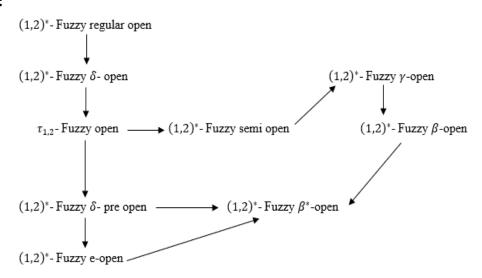
A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is said to be $(1,2)^*$ - β^* open set if $A \leq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A))) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

Example 3.2:

Let X = {x, y, z} and the fuzzy bitopology τ_1 = { 0, 1, < $x_{0.4}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ >}, τ_2 = { 0, 1, < $x_{0.2}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.6}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.6}$, $y_{0.5}$, $z_{0.7}$ >} and τ_1^c = { 0, 1, < $x_{0.6}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.2}$, $y_{0.1}$, $z_{0.1}$ >}, τ_2^c = { 0, 1, < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.4}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.4}$, $y_{0.5}$, $z_{0.3}$ >}. Let A = < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ > then $\tau_{1,2}$ -cl ($\tau_{1,2}$ -int ($\tau_{1,2}$ -cl (A))) V

 $\tau_{1,2}$ -int $(\tau_{1,2}$ - $cl_{\delta}(A)) = \langle x_{0,8}, y_{0,9}, z_{0,9} \rangle$. Hence A is $(1,2)^*$ - β^* open set.

Remark 3.3:



Result 3.4:

- (i) Fuzzy $(1,2)^*$ β^* open is fuzzy $(1,2)^*$ δ preopen if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A))) = 0.
- (ii) Fuzzy $(1,2)^*$ β^* open is $(1,2)^*$ β open if $\tau_{1,2}$ -int $(cl_{\delta}(A)) = 0$.

Proposition 3.5:

If A is fuzzy $(1,2)^*$ - δ preopen and B is fuzzy $(1,2)^*$ - β open then $A \lor B$ is fuzzy $(1,2)^*$ -

Proof. Obvious from Definition 3.1

Proposition 3.6:

Let (X, τ_1, τ_2) be a fuzzy bitopological space. Then the union of any two fuzzy $(1,2)^*$ - β^* open sets is an $(1,2)^*$ - β^* open set.

Proof:

Let A_1 , A_2 be two fuzzy $(1,2)^*$ - β^* open sets,

$$A_1 \leq \tau_{1,2}\text{-cl} \quad (\tau_{1,2}\text{-int} \quad (\tau_{1,2}\text{-cl} \quad (A_1))) \quad \forall \quad \tau_{1,2}\text{-int} \quad (\tau_{1,2}\text{-}cl_\delta \quad (A_1)).$$
 and $A_2 \leq \tau_{1,2}\text{-cl} \quad (\tau_{1,2}\text{-int} \quad (\tau_{1,2}\text{-cl} \quad (A_2))) \quad \forall \quad \tau_{1,2}\text{-int} \quad (\tau_{1,2}\text{-}cl_\delta \quad (A_2)).$ (by Definition 3.1) Then we have,

$$\begin{split} A_1 \vee A_2 &\leq \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(A_1))) \vee \tau_{1,2}\text{-int }(\tau_{1,2}\text{-}cl_{\delta}\ (A_1)) \\ \vee \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(A_2))) \vee \tau_{1,2}\text{-int }(\tau_{1,2}\text{-}cl_{\delta}\ (A_2)). \end{split}$$

$$A_1 \vee A_2 \leq \tau_{1,2}$$
-cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A_1 \vee A_2))) \vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $_{\delta} (A_1 \vee A_2)$
Since, the arbitrary union of fuzzy $(1,2)^*$ - β^* open sets is fuzzy $(1,2)^*$ - β^* open set.

Theorem 3.7:

Let (X, τ_1, τ_2) be a fuzzy bitopological space and let $\{A_\alpha\}_{\alpha \in \mathcal{F}}$ be the collection of fuzzy $(1,2)^*$ - β^* open sets in fuzzy bitopological space X, then $V_{\alpha \in \mathcal{F}}(A_\alpha)$ is fuzzy $(1,2)^*$ - β^* open set.

Proof:

Let F be the collection of fuzzy $(1,2)^*$ - β^* open sets in fuzzy bitopological space (X, τ_1, τ_2) . For each $\alpha \in \mathcal{F}$, $A_{\alpha} \leq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A_{\alpha}))$) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $_{\delta}(A_{\alpha})$). Thus, $\vee_{\alpha \in \mathcal{F}} (A_{\alpha}) \leq \vee_{\alpha \in \mathcal{F}} \tau_{1,2}$ - cl $(\tau_{1,2}$ - int $(\tau_{1,2}$ - cl $(A_{\alpha}))$) $\vee \tau_{1,2}$ - int $(\tau_{1,2}$ - cl (A_{α}))

 $V_{\alpha\in\mathcal{F}}(A_{\alpha}) \leq \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(V_{\alpha\in\mathcal{F}})(A_{\alpha}))) \vee \tau_{1,2}\text{-int }(\tau_{1,2}\text{-}cl_{\delta}(V_{\alpha\in\mathcal{F}})(A_{\alpha})).$ Since, the arbitrary union of fuzzy $(1,2)^*$ - β^* open sets is fuzzy $(1,2)^*$ - β^* open set.

Theorem 3.8:

Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be any two fuzzy bitopological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of a fuzzy $(1,2)^*$ - β^* open set A_1 of X and fuzzy $(1,2)^*$ - β^* open set A_2 of Y is fuzzy $(1,2)^*$ - β^* open set of the fuzzy product space $X \times Y$.

Proof:

Let A_1 , A_2 are two fuzzy $(1,2)^*$ - β^* open sets of X and Y respectively, From Definition 3.1, $A_1 \leq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A_1))$) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_1)) and $A_2 \leq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A_2))$) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_2)). Then we have, $A_1 \times A_2 \leq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(A_1))$) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_1)) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_2)). $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_2)). $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_2)) $\vee \tau_{1,2}$ -int $(\tau_{1,2}$ -cl (A_1) 0 is fuzzy $(1,2)^*$ - β^* open in the fuzzy product space \times \times Y.

4. Fuzzy $(1,2)^*$ - β^* Closed sets in Fuzzy Bitopological Space.

Definition 4.1:

A fuzzy subset A of a fuzzy bitopological space (X, τ_1, τ_2) is said to be $(1,2)^*$ - β^* closed set if $A \ge \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A))) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A)).

Example 4.2:

Let X = {x, y, z} and the fuzzy bitopology τ_1 = { 0, 1, < $x_{0.6}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.2}$, $y_{0.1}$, $z_{0.1}$ >}, τ_2 = { 0, 1, < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.4}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.4}$, $y_{0.5}$, $z_{0.3}$ >} and τ_1^c = { 0, 1, < $x_{0.4}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ >}, τ_2^c = { 0, 1, < $x_{0.2}$, $y_{0.1}$, $z_{0.1}$ >, < $x_{0.6}$, $y_{0.9}$, $z_{0.9}$ >, < $x_{0.6}$, $y_{0.5}$, $z_{0.7}$ >}. Let A = < $x_{0.8}$, $y_{0.9}$, $z_{0.9}$ > then $\tau_{1,2}$ -int ($\tau_{1,2}$ -cl ($\tau_{1,2}$ -int ($\tau_{1,2}$ -int) $\tau_{1,2}$ -cl ($\tau_{1,2}$ -int)

Result 4.3:

- (i) Fuzzy $(1,2)^*$ β^* closed is fuzzy $(1,2)^*$ δ semi open if $\tau_{1,2}$ -int $(\tau_{1,2}$ -int (A)) = 0.
- (ii) Fuzzy (1,2)*- β *closed is (1,2)*- α open if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $_{\delta}$ (A)) = 0.

Proposition 4.4:

If *A* is fuzzy $(1,2)^*$ - δ semi open and *B* is fuzzy $(1,2)^*$ - α open then $A \lor B$ is fuzzy $(1,2)^*$ - β *closed.

Proof. Obvious from Definition 4.1

Proposition 4.5:

Let (X, τ_1, τ_2) be a fuzzy bitopological space. Then the intersection of any two fuzzy $(1,2)^*$ - β^* closed sets is an $(1,2)^*$ - β^* closed set.

Proof:

Let A_1 , A_2 be two fuzzy $(1,2)^*$ - β^* open sets,

 $A_1 \geq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A_1))$) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $_{\delta} (A_1)$). and $A_2 \geq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_2))) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $_{\delta} (A_2)$). (by Definition 4.1) Then we have,

 $\begin{array}{l} A_{1} \wedge A_{2} \geq \tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(A_{1}))) \wedge \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-}int_{\delta}\ (A_{1})) \\ \qquad \qquad \wedge \tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(A_{2}))) \wedge \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-}int_{\delta}\ (A_{2})). \\ A_{1} \wedge A_{2} \geq \tau_{1,2}\text{-int }(\tau_{1,2}\text{-cl }(\tau_{1,2}\text{-int }(A_{1} \wedge A_{2}))) \wedge \tau_{1,2}\text{-cl }(\tau_{1,2}\text{-}int_{\delta}\ (A_{1} \wedge A_{2})) \\ \text{Therefore } A_{1} \wedge A_{2} \text{ is fuzzy } (1,2)^{*}\text{-} \beta^{*} \text{closed set.} \end{array}$

Theorem 4.6:

Let (X, τ_1, τ_2) be a fuzzy bitopological space and let $\{A_{\alpha}\}_{{\alpha} \in \mathcal{F}}$ be the collection of fuzzy $(1,2)^*$ - β^* closed sets in fuzzy bitopological space X, then $\Lambda_{{\alpha} \in F}(A_{\alpha})$ is fuzzy $(1,2)^*$ - β^* closed set.

Proof:

Let $\mathcal F$ be the collection of fuzzy $(1,2)^*$ - β^* closed sets in fuzzy bitopological space $(X,\,\tau_1,\,\tau_2)$. For each $\alpha\in\mathcal F$, $A_\alpha\geq\tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A_\alpha))$ \wedge $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_α) . Thus, $\Lambda_{\alpha\in\mathcal F}(A_\alpha)\geq$ $\Lambda_{\alpha\in\mathcal F}(\tau_{1,2}-$ int $(\tau_{1,2}-$ cl $(\tau_{1,2}-$ int $(A_\alpha))$ \wedge $\tau_{1,2}-$ cl $(\tau_{1,2}-$

 $int_{\delta}(A_{\alpha})))$

 $\Lambda_{\alpha \in F}(A_{\alpha}) \ge \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\Lambda_{\alpha \in F}(A_{\alpha})))$ $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\Lambda_{\alpha \in F}(A_{\alpha})))$. Since, the arbitrary union of fuzzy $(1,2)^*$ - β^* closed sets is fuzzy $(1,2)^*$ - β^* closed set.

Theorem 4.7:

Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be any two fuzzy bitopological spaces such that X is product related to Y. Then the product $A_1 \times A_2$ of a fuzzy $(1,2)^*$ - β^* closed set A_1 of X and fuzzy $(1,2)^*$ - β^* closed set A_2 of Y is fuzzy $(1,2)^*$ - β^* closed set of the fuzzy product space X

Proof:

Let A_1 , A_2 are two fuzzy $(1,2)^*$ - β^* closed sets of X and Y respectively, From Definition 4.1, $A_1 \geq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_1)) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_1)) and $A_2 \geq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_2))) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_2)). Then we have, $A_1 \times A_2 \geq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_1)) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_1)) $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_2)). $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_2)). $\wedge \tau_{1,2}$ -cl $(\tau_{1,2}$ -int (A_1) is fuzzy $(1,2)^*$ - β^* open in the fuzzy product space X \times Y.

References:

- [1]. Chang, C.L., Fuzzy Topological Spaces, J.Math.Anal.Appl., 24(1986), pp. 81 89.
- [2]. A. Arivu Chelvam, $(1,2)^*$ - $\beta g'''$ -Interior and $(1,2)^*$ - $\beta g'''$ -Closure in Bitopological Spaces, International Journal for Research in Engineering Application & Management, Vol.04, Issue-02, ISSN: 2454 9150, May 2018.
- [3]. Khalik, A. P. D. M. A., and Hussein, A. K. G. A. On Some Types of Fuzzy Separation Axioms

in Fuzzy Topological Space on Fuzzy Sets.

- [4]. Zadeh, L.A., Fuzzy Sets, Information and Control, 8(1965), pp. 338 353.
- [5]. J.C. Kelly, Bitopological spaces, proc. Lndon Math. Soc. (3) 13 (1963), pp.71 89.
- [6]. Kandil, A., Biproximities and Fuzzy Bitopological Spaces, Vol. 63, pp. 45 66 (1989).
- [7]. Mubarki, A. M., Al-Rshudi, M. M., and Al-Juhani, M. A, β^* -Open Sets and β^* -Continuity in

Topological Spaces. Journal of Taibah University for Science, 8(2) (2014), 142 -148.

- [8]. Thangappan, R., On β^* -Open and Closed Sets in Fuzzy Topological Space, Malaya Journal of Mathematic, Vol. 9, No. 1, 291-294, 2021.
- [9]. S. Sampath Kumar, On Decomposition of Pairwise Continuity, Bull. Cal. Math. Soc., Vol.89,

pp. 441 – 446, 1997.