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ABSTRACT 

Non-alcoholic fatty liver disease occurs when excess fat builds up in the liver of individuals 

who do not consume excessive amounts of alcohol and is often associated with metabolic 

syndrome. It affects approximately 20–30% of people worldwide, with higher rates observed 

in underdeveloped countries. Patients with NAFLD often experience symptoms of the metabolic 

syndrome, such as hypertension, dyslipidemia, insulin resistance, and abdominal obesity. 

NAFLD can manifest as a range of diseases, from simple fat accumulation (steatosis) to more 

severe stages such as steatohepatitis, fibrosis, and cirrhosis. A disruption in lipid metabolism 

caused by factors like insulin resistance and an excessive intake of fatty acids leads to the 

abnormal accumulation of fat in the liver. This fat accumulation can cause damage to liver 

cells due to lipotoxicity and cellular stress from oxidative stress and endoplasmic reticulum 

stress. Proinflammatory cytokines and chemokines generated by injured liver cells and 

activated Kupffer cells can promote inflammation and fibrosis. While significant progress has 

been made in understanding the causes of NASH, its complete mechanism is still not fully 

understood. The goal of this review is to describe the current understanding of NAFLD 

pathogenesis with a focus on the factors that contribute to steatosis, hepatocyte damage, 

inflammation, and fibrosis. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a widespread liver disease that has become a 

global pandemic in the twenty-first century. The incidence rates of NAFLD range from 23% 

to 32% depending on the location, and these figures are projected to increase worldwide. 

NAFLD occurs when more than 5% of hepatocytes accumulate fat, as identified by radiological 

or histopathological examination, and there is no underlying chronic liver disease or secondary 

source of steatosis, such as drugs, excessive alcohol intake, or acquired or inherited metabolic 

conditions [1]. Non-alcoholic steatohepatitis (NASH) is a disease characterized by liver 

steatosis associated with inflammation and hepatocyte ballooning that can eventually progress 

to advanced fibrosis, cirrhosis, and hepatocellular carcinoma. NASH ranges from a simple 

accumulation of fat in hepatocytes without any inflammation to both [2]. The pathogenesis of 

fatty liver disease is not entirely understood, but according to the two-hit theory, insulin 

resistance and an excess of fatty acids cause simple steatosis, which is the first "hit" that makes 

the liver more sensitive to a second "hit." [3] Inflammation, hepatocyte damage, and fibrosis 

result from the second "hit," advancing the disease from steatosis to NASH. The second "hit" 

is believed to be caused by reactive stress, lipid peroxidation, and mitochondrial dysfunction. 

Increased fatty acid inflow to the liver and insulin insensitivity are the main causes of steatosis. 

Oxidative and endoplasmic reticulum stress, lipotoxicity, and hepatocyte damage are likely 

causes of excessive fat deposits in the liver, triggering inflammatory and wound healing 

responses that accelerate disease progression from steatosis to NASH [4–7]. NAFLD is 

considered a component of the metabolic syndrome because it is associated with risk factors 

such as obesity, insulin intolerance, and hypertension. Its incidence increases to around 70% 

in type 2 diabetes patients and 90% in morbidly obese individuals. Furthermore, NASH is a 

complex disease with extrahepatic components such as dysfunctional adipose tissue, altered 

gut flora, and genetic susceptibility. The purpose of this study is to provide the most up-to-date 

understanding of NAFLD pathogenesis, with a focus on factors that cause steatosis, hepatocyte 

injury, inflammation, and fibrosis [8–10]. 

 

Steatosis 

Hepatic steatosis is a medical condition that occurs when lipid droplets, which are composed 

mainly of triglycerides, accumulate in liver cells. This histological characteristic is often used 

to diagnose NASH. An imbalance in lipid metabolism, with an excess of lipid inputs over lipids 

consumed, causes steatosis in hepatocytes [11-13]. The liver acquires lipids from three primary 

sources: dietary fats, circulating free fatty acids (FFAs), and de novo lipogenesis (DNL). High-

fat meals are commonly used in rodent models to induce hepatic steatosis. FFAs are absorbed 

by the liver from fatty tissues, which is dependent on the FFA concentration in the blood and 

transport proteins. DNL is a metabolic route that synthesizes fatty acids from basic metabolic 

precursors, and it is mainly controlled by insulin and glucose [14,15]. NAFLD patients have a 

higher influx of fatty acids to the liver and higher hepatic expression of FFA transport proteins 

than healthy individuals. FFAs provide energy to the liver through oxidation, and when these 

processes cannot use the extra FFAs, they are esterified into TGs and deposited in lipid 

droplets, causing hepatic steatosis. Hepatic steatosis can result from increased FFA flow to the 

liver, increased DNL, decreased FFA oxidation, and decreased VLDL production [16-19]. 
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Insulin Resistance 

The activation of phosphoinositol-3-kinase and AKT/PKB kinase is triggered when insulin 

binds to its receptor, resulting in several effects on the liver. Insulin normally reduces glucose 

synthesis, increases glucose uptake, and has a positive impact on postprandial de novo 

lipogenesis (DNL) in healthy individuals [20-22]. However, in cases of insulin resistance (IR), 

the inhibitory effect on glucose synthesis is diminished, while the stimulatory effect on DNL 

persists, leading to hepatic steatosis. All NAFLD patients have IR, which affects insulin 

signalling in hepatocellular and disturbs lipid metabolism. Skeletal muscle and adipose tissue 

IR also contribute to hepatic steatosis [23-25]. In addition, the increase in DAG level, mediated 

by traditional (b) and new (d and e) PKC activation, has been found to link steatosis to IR. 

However, it is possible for genes that cause hepatic steatosis in humans not to cause IR, as 

observed in individuals with familial hypobetalipoproteinemia who have hepatic steatosis due 

to a genetic defect in the synthesis of hepatic apolipoprotein B but do not show insulin 

resistance [26-28]. 

 

 
Figure 1: The multiple-hit pathogenesis of NAFLD and NASH 

Autophagy 

Autophagy is a lysosome-dependent process that helps to maintain cellular energy levels by 

breaking down cellular components. Recently, it has been associated with fat metabolism in 

hepatocytes, where it is known as lipophagy. Studies have shown that dysfunctional autophagy 

can exacerbate non-alcoholic fatty liver disease (NAFLD), with blockage of autophagy 

resulting in increased lipid droplet storage in hepatocytes, while activation of autophagy 

decreases it [29-31]. Additionally, extreme cases of steatosis have been found to have reduced 

levels of autophagy markers. Insulin resistance, which is frequently linked with NAFLD, may 
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also impact autophagy. While the exact role of autophagy in NAFLD is unclear, there appears 

to be a link between autophagy, lipolysis, and regulation of lipid levels in the liver [32-34]. 

 

Adipose Tissue Dysfunction 

Although hepatic steatosis mainly affects hepatocytes, adipose tissue, among other extrahepatic 

factors, can have a significant impact on NAFLD. In NAFLD patients, dysfunctional adipose 

tissue is common and has various roles in the etiology of NASH, such as adipose hypertrophy, 

insulin resistance, and altered adipokine production. The ability of adipose tissue to store lipids 

is compromised due to excessive lipid accumulation and hypertrophy, which impairs its normal 

function. Excessive cholesterol buildup in the liver and fatty tissue can lead to insulin resistance 

[35-37]. 

Insulin resistance is often caused by the inhibition of hormone-sensitive lipase (HSL), adipose 

triglyceride lipase (ATGL), and monoglyceride lipase (MGL)-induced degradation of lipids in 

adipose tissue. Insulin inhibits lipolysis by reducing the production of ATGL and cAMP, which 

in turn results in less PKA activation and less PKA phosphorylation of HSL. As a result of 

increased lipolysis rates and elevated FFA release into circulation, which is then absorbed by 

the liver, individuals who are obese and insulin-resistant tend to have elevated ATGL 

expression in their adipose tissue [38-40]. 

 

Microbiota 

Apart from adipose tissue, the gut microbiota can also impact lipid metabolism in hepatocytes 

and contribute to the progression of steatosis. A high Firmicutes/Bacteroidetes ratio, which is 

commonly associated with obesity and NAFLD, may exacerbate the condition. However, 

studies have shown that Firmicutes are reduced in NASH. Modulating the gut microbiota can 

affect the development of steatosis, as demonstrated by research showing that antibiotics can 

decrease hepatic TG accumulation in mice fed a high-fat diet [41-44]. Short-chain fatty acids 

(SCFAs) produced by gut microbiota can provide energy and promote their transport to the 

liver, leading to the development of steatosis. Alcohol generated by bacterial enzymes can also 

cause hepatic steatosis, and changed gut microbiota can lead to choline deficiency, 

exacerbating NAFLD. Changes in the gut microbiota's composition in NAFLD can have 

significant effects on host energy metabolism and contribute to the progression of steatosis [45-

48]. 

 

Genetic Factors 

SCFAs produced by gut microbiota have been implicated in providing energy and promoting 

their transportation to the liver, thus contributing to the development of steatosis. The 

production of alcohol by bacterial enzymes can also lead to hepatic steatosis, and NAFLD may 

result in choline deficiency caused by changes in the gut microbiota. Alterations in the 

composition of gut microbiota in NAFLD can significantly affect the host's energy metabolism 

and contribute to the development of steatosis [45-48]. The PNPLA3 gene is expressed in 

hepatocytes, hepatic stellate cells, and adipocytes, and it is located in the endoplasmic 

reticulum and on lipid droplets [52,53]. The PNPLA3 I148M mutation has been found to impair 

lipid droplet remodeling and VLDL secretion, thereby increasing the risk of hepatic steatosis. 
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The TM6SF2 E167K variant, which is associated with decreased VLDL production, is also 

linked to NAFLD and its more severe variants. Although several genetic modifiers have been 

investigated, further research is needed to confirm and understand their mechanisms [54-56]. 

 

Oxidative Stress 

Rewritten: The duration of cellular stressors can cause severe injury, leading to cell death 

through necrosis or apoptosis. Hepatocyte injury is a common finding in nonalcoholic 

steatohepatitis (NASH), with hepatocyte ballooning observed under microscopy as an 

indication of damage. The enlargement of hepatocytes is due to oxidative stress-induced 

changes in the distribution of intermediate filaments, which can cause damage such as 

mitochondrial dysfunction. Mitochondria are especially vulnerable to reactive oxygen species 

(ROS) because they produce ROS [57-59]. Polyunsaturated fatty acids (PUFA), the major 

component of phospholipids in mitochondrial membranes, are targeted and destroyed by ROS. 

ROS also deactivates antioxidant enzymes like superoxide dismutase, reducing antioxidant 

capacity, and the products of lipid peroxidation can impede the electron-transport chain, 

aggravating ROS generation. ROS can damage mitochondrial DNA, causing mitochondrial 

malfunction. Dysfunctional mitochondria can result in more ROS generation, lowering the 

capacity for oxidising free fatty acids (FFA) and initiating a self-perpetuating loop of increased 

ROS production. Deficiencies in ATP homeostasis, an impeded electron transport chain, 

paracristalline inclusions, and cristae loss are all symptoms of mitochondrial dysfunction, 

which is frequent in nonalcoholic fatty liver disease [60-62]. Normally, intracellular organelles 

that become damaged are removed and repurposed through mechanisms like autophagy. 

However, if stress persists, despite robust antioxidant defenses, hepatocytes may suffer 

irreparable damage, leading to cell death via necrosis or apoptosis. Apoptosis is the primary 

cause of cell death in NASH, with its severity corresponding with the extent of the disease. 

Both intrinsic and extrinsic apoptosis mechanisms contribute to the etiology of NASH, with 

defective mitochondria causing apoptosis via cytochrome c release. Prolonged endoplasmic 

reticulum stress increases calcium release from the ER, which can cause apoptosis. FFAs are 

involved in apoptosis, with hepatocyte apoptosis levels corresponding with serum FFA levels. 

FFAs can cause cellular damage and death by activating the Fas receptor and upregulating Fas 

ligands, lysosomal subsequent activation and release of the lysosomal protease, cathepsin B, 

and activating the TLR4 receptor. In conclusion, increasing cellular stressors can cause cell 

damage and apoptosis, which are the primary causes of fibrosis and inflammation in liver 

diseases [63-66]. 

 

Apoptosis 

Prolonged cellular stress can result in significant harm, leading to necrosis or apoptosis. In 

NASH, hepatocytes exhibit damage, characterised by an enlarged hyperchromatic nucleus and 

foamy, pale cytoplasm due to oxidative stress-induced changes in the distribution of 

intermediate filaments [67-68]. Oxidative stress damages mitochondrial membranes, inhibiting 

the electron-transport chain and disrupting ATP homeostasis, leading to dysfunctional 

mitochondria. This can lead to apoptosis via cytochrome c release, while chronic endoplasmic 

reticulum stress also leads to apoptosis. Excess FFAs activate Fas receptors, promote lysosomal 
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permeabilization, activate TLR4 receptor, and trigger apoptosis. Increased cellular stress can 

cause inflammation and fibrosis in liver disorders [69,70]. 

 

Inflammation 

TNFa, IL6, and CCL2 are examples of proinflammatory cytokines and chemokines that play a 

role in inflammation in NASH. These mediators can be secreted by injured hepatocytes and 

adipose tissue, stimulating the NF-jB pathway and increasing proinflammatory cytokines. In 

NASH inflammation, Kupffer cells, which are the liver's resident macrophages, are crucial [71-

73]. The balance of proinflammatory M1 and anti-inflammatory M2 Kupffer cells is critical, 

and an uneven M1/M2 Kupffer cell phenotype can cause steatohepatitis. The chemokine CCL2 

is responsible for increasing the infiltration of macrophages, monocytes, and neutrophils into 

the liver. Kupffer cells are equipped with pattern recognition receptors that recognize and 

eliminate infections and harmful chemicals through Toll-like and NOD-like receptors. The 

upregulation of Kupffer cells is influenced by TLR and NLR receptors [74-77]. 

 

Fibrosis  

Persistent liver damage, as seen in nonalcoholic steatohepatitis (NASH) and other chronic liver 

diseases, leads to hepatic fibrogenesis and eventual liver cirrhosis. This fibrosis occurs due to 

the accumulation of high-density extracellular matrix proteins in response to a wound-healing 

reaction. Resident mesenchymal cells that accumulate vitamin A, known as hepatic stellate 

cells (HSCs), play a key role in the fibrogenic response. HSC activation is complex and 

involves paracrine stimulation from neighboring cells and cytokines. The metabolic 

environment of NAFLD, including hyperinsulinemia, dysglycemia, and type 2 diabetes, may 

impact fibrogenesis [78-83]. Adipokines, such as leptin and adiponectin, are also involved in 

the development of hepatic fibrosis. Other factors that may contribute to fibrosis in 

NAFLD/NASH include free cholesterol accumulation and changes in gut bacteria. Dysbiosis, 

which promotes inflammation and HSC activation, can contribute to fibrogenesis in NAFLD, 

and gut-derived bacterial metabolites can activate HSCs in NASH. Inflammasome activation 

in the liver and gut has also been linked to NASH-related liver damage and fibrosis [84-89]. 

 

Conclusion 

The accumulation of excess fat in the liver, known as hepatic steatosis, is a consequence of 

abnormal lipid metabolism caused by several factors such as insulin resistance, increased fatty 

acid influx into the liver, genetic predisposition, and imbalanced gut flora. Although previously 

considered a benign condition, a significant proportion of individuals with hepatic steatosis 

may progress to nonalcoholic steatohepatitis (NASH), although the exact mechanisms 

underlying this are not well understood. Oxidative and endoplasmic reticulum stress are 

thought to be the primary drivers of hepatocyte damage and apoptosis, leading to inflammation 

and fibrogenesis. NASH is associated with an increased risk of cirrhosis and liver cancer, 

emphasizing the urgent need for effective therapies. A better understanding of the underlying 

causes of NASH may pave the way for the development of novel treatment options for this 

condition. 
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