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Abstract

This manuscript considered the system governed by the non-instantaneous impulsive evolution
control system and discusses trajectory controllability of the governed system with classical and non-
local initial conditions over the general Banach space. The results of the trajectory controllability
for governed systems are obtained through the concept of operator semigroup and Gronwall’s
inequality. This manuscript is also equipped with examples to illustrate the applications of derived
results.
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1 Introduction

Impulsive differential equations play a very important role in studying the behavior of the phenomenon
having abrupt changes in the physical problems. If the changes are at a fixed moment of time then it is
called instantaneous impulsive differential equations and the changes are over the small intervals then
it is called non-instantaneous impulsive differential equations. There is a wide range of applications
of these impulsive evolution equations in all fields of sciences namely, physical sciences, biological
science, environmental sciences. These applications are found in the monograph [1, 2, 3] and research
articles [4, 5, 6, 7, 8] and references their in. Qualitative properties like existence and uniqueness of
solution and continuity of the solutions of instantaneous and noninstantaneous differential or integro-
differential or evolution equations are found in research articles with initial conditions are found in
research articles [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] and references
therein.

Nowadays, the concept of controllability plays an important role in the field of applied mathematics.
In the notion of controllability, one has to find the control which steers the initial state at the initial
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time to desired final state at the final time. Complete controllability of finite-dimensional linear system
using functional analytic approach was first introduced by Kalmann. Thereafter many researchers were
involved in developing the different controllability of various linear and nonlinear finite and infinite
dimensional impulsive and non-impulsive systems using the functional analytic approach. The notion
of the controllability are found in the monographs [29, 30, 31] and articles [32, 33, 34, 35, 36, 37]
and reference their in. Trajectory controllability is the strongest form of controllability amongst all
other forms of controllability. The study of trajectory controllability of one-dimensional systems was
initiated by George [39]. Thereafter Chalishajar, et. al. [40] generalized the concept of trajectory
controllability on finite and infinite-dimensional systems.

This manuscript established the trajectory controllability of the system:

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ), τ ∈ [sk, tk + 1), for all k = 0, 1, 2 · · · , p
x(τ) = Gk(τ, x(τ)) +Wk(τ), τ ∈ [tk, sk), for all k = 1, 2, · · · , p,

(1.1)

with local condition x(0) = x0 and non-local condition x(0) = x0 − h(x).

2 Preliminaries

This section discusses definitions and prepositions to establish trajectory controllability of the system
governed by non-instantaneous impulsive evolution equation with classical as well nonlocal conditions.

Definition 2.1. The system (1.1) is completely controllable on the interval J = [0, T0] if for any
x0, x1 ∈ X , if there exist a control W (·)n in U (control space) steers the system from x0 at τ = 0 to
x1 at τ = T0.

In the definition of complete controllability, there is no information of the path or trajectory on
which the given system is to be driven. Sometimes this leads to high cost So to overcome this situation
we select the path or trajectory (having minimum cost) under which the control system drives from
x0 to x1 over the interval J . Searching of controller W (·) in a way that the system drive from x0 to x1
over the interval is called trajectory controllability of the system. Therefore, trajectory controllability
of the system is strongest amongst all types of controllability.

Definition 2.2. Let, CT be the set of all trajectories under which the system (1.1) drives from x0
to x1 over the interval J . The system (1.1) is trajectory controllable if for any z ∈ CT , there is a
controller W (·) ∈ U such that state of the system x(τ) drives on prescribed trajectory z(τ). This means
x(τ) = z(τ) a.e. over the interval J .

3 T-controllability with local conditions

Consider the system governed by the non-instantaneous impulsive evolution equation

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ), τ ∈ [sk, tk+1)

x(τ) = Gk(τ, x(τ)) +Wk(τ), τ ∈ [tk, sk)

x(0) = x0

(3.1)

over the interval [0, T0]. Here, x(τ) is the state of the system lies in Banach space X at any time
τ ∈ [0, T0], A(τ) at any time τ is a linear operator on the Banach space X , F,GK : [0, T0] × X → X
are nonlinear functions.
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To discuss trajectory controllability of the system governed by non-instantaneous impulsive evo-
lution equation (3.1), we have following theorem:

Theorem 3.1. If,

(A1) Linear operator A in the system (3.1) infinitesimal generator of C0 semigroup.

(A2) The non-linear map F : [0, T0] × X → X is continuous such that there exist a non-decreasing
function lF : R+ → R+ and positive real number r0 satisfying

||F (τ, x1)− F (τ, x2)|| ≤ lF (r)||x1 − x2||

, for all τ ∈ [0, T0], x1, x2 ∈ Br(X ) and r ≤ r0.

(A3) The non-linear map Gk : [0, T0] × X → X for all k are are continuous such that there exist
constants 0 < lgk < 1 satisfying

||Gk(τ, x1)−Gk(τ, x2)|| ≤ lgk||x1 − x2||

, for all τ ∈ [0, T0] and lg = max{lgk;∀k}.

Then, the system (3.1) is trajectory controllable over the interval [0, T0].

Proof. Let u(τ) be any trajectory in Cτ satisfying x(t+k ) = u(t+k ) along which the system (3.1) steered
from initial state x0 at τ = 0 to desired final state x1 at τ = T0.

Over the interval [0, t1), the system (3.1) becomes:

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ)

x(0) = x0
(3.2)

Consider
W (τ) = u′(τ)−A(τ)− F (τ, u(τ))

over the interval [0, t1) in and plugging it in the (3.2) the system (3.2) becomes

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) + u′(τ)−A(τ)− F (τ, u(τ))

with initial condition x(0)− u(0) = 0.
Choosing variable z = x− u the equation system reduces to

z′(τ) = A(τ)z(τ) + F (τ, x(τ))− F (τ, u(τ))

z(0) = 0
(3.3)

and problem of trajectory controllability of the system (3.2) is reduced to the solvability of the system
(3.3) over the interval [0, t1). The mild solution of the system (3.3) is given by:

z(τ) =

∫ τ

0
T (τ − ζ)[F (ζ, x(ζ))− F (ζ, u(ζ))]dζ (3.4)
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where, T (τ) is C0 semigroup generated by linear operator A satisfying ||T (τ)|| ≤M for some positive
number M .
Therefore,

||z(τ)|| ≤
∫ τ

0
||T (τ − ζ)|| ||[F (ζ, x(ζ))− F (ζ, u(ζ))]||dζ

≤M
∫ τ

0
lF (r)||x(ζ)− u(ζ)||dζ

≤M
∫ τ

0
lF (r)||z(ζ)||dζ

and using Gronwall’s inequality, we obtain z(τ) = 0 over the interval [0, t1). Hence, x(τ) = u(τ) for
all τ ∈ [0, t1). Therefore, the system is trajectory controllable over the interval [0, t1).

Over the interval [tk, sk), the system becomes

x(τ) = Gk(τ, x(τ)) +Wk(τ), (3.5)

and at τ = t+k value of the state x is given by x(t+k ) = Gk(t
+
k , x(t+k )) +Wk(t

+
k ).

Plugging the control Wk(τ) = u(τ) − Gk(τ, x(τ)) over the interval [tk, sk) in the system (3.5) the
system becomes:

x(τ)− u(τ) = Gk(τ, x(τ))−Gk(τ, u(τ))

Choosing z(τ) = x(τ)− u(τ) we obtain

z(τ) = Gk(τ, x(τ))−Gk(τ, u(τ))

and the value of the z at τ = t+k is zero. Therefore, we have

||z(τ)|| ≤ ||Gk(τ, x(τ))−Gk(τ, u(τ))|| ≤ lg||z(τ)||,

using (A3) lg < 1 we obtain z(τ) = 0 for all τ ∈ [tk, sk) Therefore, system (3.1) is T-Controllable over
the interval [tk, sk). Moreover, z(sk) = 0 as G′

Ks are continuous.
Over the interval [sk, tk+1) the system (3.1) becomes:

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ)

x(sk) = u(sk)
(3.6)

Choose the control over the interval [sk, tk+1 as:

W (τ) = u′(τ)−A(τ)− F (τ, u(τ))

and plugging it in the equation (3.6) we get,

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) + u′(τ)−A(τ)− F (τ, u(τ))

considering z(τ) = x(τ)− u(τ), above expression becomes:

z′(τ) = A(τ)z(τ) + F (τ, x(τ))− F (τ, u(τ))

z(sk) = 0,
(3.7)
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Therefore

||z(τ)|| ≤
∫ τ

sk

||T (τ − ζ)|| ||[F (ζ, x(ζ))− F (ζ, u(ζ))]||dζ

≤M
∫ τ

0
lF (r)||x(ζ)− u(ζ)||dζ

≤M
∫ τ

0
lF (r)||z(ζ)||dζ

and using Gronwall’s inequality, we obtain z(τ) = 0 over the interval [sk, tk+1). Hence, x(τ) = u(τ)
for all τ ∈ [sk, tk+1). Therefore, the system is T- controllable over the interval [sk, tk+1).

Since, the system is T-controllable over the intervals [0, t1), [sk, tk+1) and [tk, sk) for all k. Hence,
the system is controllable over entire interval [0, T0]. This completes the proof of the theorem.

Example 3.1. Let, X = L2([0, π],R) and consider the system governed by non-instantaneous impul-
sive evolution equation:

∂H(τ, ψ)

∂τ
= ∂2ψH(τ, ψ) + F (τ,H(τ, ψ)) + w(τ, ψ) τ ∈ [0, 1/3) ∪ [2/3, 1],

H(τ, ψ) = G1(τ,H(τ, ψ)) + w1(τ, ψ) τ ∈ [1/3, 2/3),

H(τ, 0) = 0 H(τ, π) = 0 τ > 0,

H(0, ψ) = H0(ψ) 0 < ψ < π,

(3.8)

over the interval [0, 1].
Defining the operator on the space X as A(τ) = ∂2ψ, A(τ) is the infinitesimal generator of the C0

semigroup T (τ). The representation of T (τ) is

T (τ)z =
∞∑
m=0

exp(µmτ) < z, φm > φm

where, φm =
√

2sin(nψ) for all m = 1, 2, · · · is the orthonormal basis corresponding to eigenvalue
µm = −m2 of the operator A.

With this concept the equation (3.8) can be rewritten as and abstract equation on the space X as

x′(τ) = A(τ) + F (τ, x) +W (τ) τ ∈ [0, 1/3) ∪ [2/3, 1],

x(τ) = G1(τ, x) τ ∈ [1/3, 2/3),

x(0) = x0,

(3.9)

where, x(τ) = H(τ, ·),W (τ) = w(τ, ·) and W1(τ) = w1(τ, ψ). The system (3.9) is trajectory control-
lable over the interval [0, 1] if the functions F and G1 satisfies the hypotheses of the theorem.

4 T-controllability with non-local conditions

Consider the system governed by the non-instantaneous impulsive evolution equation

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ), τ ∈ [sk, tk+1)

x(τ) = Gk(τ, x(τ)) +Wk(τ), τ ∈ [tk, sk)

x(0) = h(x)

(4.1)
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over the interval [0, T0]. Here, x(τ) is the state of the system lies in Banach space X at any time
τ ∈ [0, T0], A(τ) at any time τ is a linear operator on the Banach space X , F,GK : [0, T0] × X → X
are nonlinear functions and h : X → X is the operator representing the non-local conditions. The
mild solution of the equation (4.1) is given by

x(τ) =


T (τ)h(x) +

∫ τ

0
T (τ − ζ)F (ζ, x(ζ))dζ, τ ∈ [0, t1)

Gk(τ, x(τ)), τ ∈ [tk, sk)

T (τ)Gk(sk, x(sk)) +

∫ τ

sk

T (τ − ζ)F (ζ, x(ζ))dζ, τ ∈ [sk, tk+1),

(4.2)

where, T (τ) is semigroup generated by the linear operator A(τ).
The following theorem discusses the trajectory controllability of the system governed by the equa-

tion (4.1).

Theorem 4.1. If,

(A1) Linear operator A in the system (3.1) infinitesimal generator of C0 semigroup.

(A2) The non-linear map F : [0, T0] × X → X is continuous such that there exist a non-decreasing
function lF : R+ → R+ and positive real number r0 satisfying

||F (τ, x1)− F (τ, x2)|| ≤ lF (r)||x1 − x2||

, for all τ ∈ [0, T0], x1, x2 ∈ Br(X ) and r ≤ r0.

(A3) The non-linear map Gk : [0, T0] × X → X for all k are are continuous such that there exist
constants 0 < lgk < 1 satisfying

||Gk(τ, x1)−Gk(τ, x2)|| ≤ lgk||x1 − x2||,

for all τ ∈ [0, T0] and lg = max{lgk; ∀k}.

(A4) The function h : X → X is Lipchitz continuous with Lipchitz constant 0 ≤ lh ≤ 1.

Then, the system (4.1) is trajectory controllable over the interval [0, T0].

Proof. Let u(τ) be any trajectory in Cτ satisfying x(t+k ) = u(t+k ) along which the system (4.1) steered
from initial state x(0) = h(x) at τ = 0 to desired final state x1 at τ = T0.

Over the interval [0, t1), the system (4.1) becomes:

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ)

x(0) = h(x)
(4.3)

Consider
W (τ) = u′(τ)−A(τ)− F (τ, u(τ))

over the interval [0, t1) and plugging it in the system (4.3), the system becomes

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) + u′(τ)−A(τ)− F (τ, u(τ))
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with initial condition x(0)− u(0) = h(x)− h(u).
Choosing variable z = x− u the equation system reduces to

z′(τ) = A(τ)z(τ) + F (τ, x(τ))− F (τ, u(τ))

z(0) = h(x)− h(u)
(4.4)

and problem of trajectory controllability of the system (4.3) is reduced to the solvability of the system
(4.4) over the interval [0, t1). The mild solution of the system (4.4) is given by:

z(τ) = T (τ)[h(x)− h(u)] +

∫ τ

0
T (τ − ζ)[F (ζ, x(ζ))− F (ζ, u(ζ))]dζ (4.5)

where, T (τ) is C0 semigroup generated by linear operator A satisfying ||T (τ)|| ≤M for some positive
number M .
Therefore,

||z(τ)|| ≤ ||T (τ)||||h(x)− h(u)||+
∫ τ

0
||T (τ − ζ)|| ||[F (ζ, x(ζ))− F (ζ, u(ζ))]||dζ

≤Mlh||x(τ)− u(τ)||+M

∫ τ

0
lF (r)||x(ζ)− u(ζ)||dζ

≤Mlh||z(τ)||+M

∫ τ

0
lF (r)||z(ζ)||dζ

This implies

||z(τ)|| ≤ MlF (r)

1−Mlh

∫ τ

0
||z(ζ)||dζ

Using Gronwall’s inequality, we obtain z(τ) = 0 over the interval [0, t1). Hence, x(τ) = u(τ) for all
τ ∈ [0, t1). Therefore, the system (4.1) is trajectory controllable over the interval [0, t1).

Over the interval [tk, sk), the system becomes

x(τ) = Gk(τ, x(τ)) +Wk(τ), (4.6)

and at τ = t+k value of the state x is given by x(t+k ) = Gk(t
+
k , x(t+k )) +Wk(t

+
k ).

Plugging the control Wk(τ) = u(τ) − Gk(τ, x(τ)) over the interval [tk, sk) in the system (4.6) the
system becomes:

x(τ)− u(τ) = Gk(τ, x(τ))−Gk(τ, u(τ))

Choosing z(τ) = x(τ)− u(τ) we obtain

z(τ) = Gk(τ, x(τ))−Gk(τ, u(τ))

and the value of the z at τ = t+k is zero. Therefore, we have

||z(τ)|| ≤ ||Gk(τ, x(τ))−Gk(τ, u(τ))|| ≤ lg||z(τ)||,

using (A3) lg < 1 we obtain z(τ) = 0 for all τ ∈ [tk, sk) and using continuity of Gk leads to z(sk) = 0.
Therefore, system (4.6) is T-Controllable over the interval [tk, sk).
Over the interval [sk, tk+1) the system (3.1) becomes:

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) +W (τ)

x(sk) = u(sk)
(4.7)
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Choose the control over the interval [sk, tk+1 as:

W (τ) = u′(τ)−A(τ)− F (τ, u(τ))

and plugging it in the equation (4.7) we get,

x′(τ) = A(τ)x(τ) + F (τ, x(τ)) + u′(τ)−A(τ)− F (τ, u(τ))

, considering z(τ) = x(τ)− u(τ), above expression becomes:

z′(τ) = A(τ)z(τ) + F (τ, x(τ))− F (τ, u(τ))

z(sk) = 0,
(4.8)

Therefore,

||z(τ)|| ≤
∫ τ

sk

||T (τ − ζ)|| ||[F (ζ, x(ζ))− F (ζ, u(ζ))]||dζ

≤M
∫ τ

0
lF (r)||x(ζ)− u(ζ)||dζ

≤M
∫ τ

0
lF (r)||z(ζ)||dζ

and using Gronwall’s inequality, we obtain z(τ) = 0 over the interval [sk, tk+1). Therefore, x(τ) = u(τ)
for all τ ∈ [sk, tk+1). Thus, the system is trajectory controllable over the interval [sk, tk+1).

Since, the system is T-controllable over the intervals [0, t1), [sk, tk+1) and [tk, sk) for all k. Hence,
the system is controllable over entire interval [0, T0]. This completes the proof of the theorem.

Example 4.1. Let, X = L2([0, π],R) and consider the system governed by non-instantaneous impul-
sive evolution equation:

∂H(τ, ψ)

∂τ
= ∂2ψH(τ, ψ) + F (τ,H(τ, ψ)) + w(τ, ψ) τ ∈ [0, 1/3) ∪ [2/3, 1],

H(τ, ψ) = G1(τ,H(τ, ψ)) + w1(τ, ψ) τ ∈ [1/3, 2/3),

H(τ, 0) = 0 H(τ, π) = 0 τ > 0,

H(0, ψ) = H(τ, ψ) 0 < ψ < π,

(4.9)

over the interval [0, 1]. Here, H(τ, ψ) is nonlocal opertor defined by
∑n

i=1 αiH(τi, ψ).
Defining the operator on the space X as A(τ) = ∂2ψ, A(τ) is the infinitesimal generator of the C0

semigroup T (τ). The representation of T (τ) is

T (τ)z =
∞∑
m=0

exp(µmτ) < z, φm > φm

where, φm =
√

2sin(nψ) for all m = 1, 2, · · · is the orthonormal basis corresponding to eigenvalue
µm = −m2 of the operator A.

With this concept the equation (4.9) can be rewritten as and abstract equation on the space X as

x′(τ) = A(τ) + F (τ, x) +W (τ) τ ∈ [0, 1/3) ∪ [2/3, 1],

x(τ) = G1(τ, x) τ ∈ [1/3, 2/3),

x(0) = h(x),

(4.10)

where, x(τ) = H(τ, ·),W (τ) = w(τ, ·),W1(τ) = w1(τ, ψ) and h(x) =
∑n

i=1 αix(τi). The system (4.10)
is trajectory controllable over the interval [0, 1] if the functions F,G1 and h satisfies the hypotheses of
the theorem.
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5 Conclusion

In this manuscript, we have discussed the trajectory controllability of the system governed by non-
instantaneous impulsive evolution equation with classical as well as nonlocal conditions on the infinite
dimensional Banach space.
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