
On the Use of Reference Nets to Enhance Building and
Running Scientific Workflows on the Cloud

Hayat Bendoukha
Department of Computer Sciences, University of Science and Technology of Oran -

Mohamed Boudiaf, Oran, Algeria
hayat.bendoukha@univ-usto.dz

Abstract
Cloud computing provides a large number of powerful resources that enhance the

productivity. Running complex scientific workflows on Cloud resources rather than on-
premise increases their performance. Nevertheless, traditional scientific workflow
management systems (SWfM) are not yet adapted for the Cloud. Creating scientific and
deploying workflows on the Cloud still face many challenges due to the complexity of the
Cloud environment. Besides, migrating a part or the whole scientific application to the Cloud
is not trivial. It should be based on a solid strategy. Issues like: Where to store the data and
where to execute the processes need to be investigated. In this paper, we first present
RenewGrass, a tool for modeling and executing image processing workflows by reference
nets. Then, we discuss the deployment of RenewGrass into the Cloud. This paper includes
also a use case example related to the remote sensing domain.

Keywords: Scientific Workflow, RenewGrass, Petri nets, Reference Nets, Remote Sensing,
Cloud Computing, Image Processing.

1. Introduction
Scientific workflows are a special class of workflows, which are characterized as large-

scale, long-running and resource-intensive [1]. The major goal of scientific workflows is to
allow scientists to focus on domain-specific (science) aspects of their work, rather than
dealing with complex data management and software issues [2]. How the sequence of the
workflow tasks is represented can be handled in different ways. The sequence can be
specified either by scripting languages or through graph-based techniques such as Petri nets
or π-calculus [3], [4]. Scripting languages are usually based on markup languages such as
Extensible Markup Language (XML). They may be convenient for well skilled users and do
not need to be converted to be run on a cloud environment. But, they are not user-oriented
and do not permit to specify large and complex workflows manually [5]. In this work, Petri
nets [6] and more specifically reference nets [7] are presented as a modeling technique
suitable to model the workflow patterns in an elegant and easy way [8], [9].

Nevertheless, due to the large amount of data and tasks, that need to be processed, the
execution of such kind of workflows requires often to be mapped into external resources.
During last few years, Cloud computing is growing considerably and it is gaining popularity
in both academia and industry. We believe that Clouds are the suitable environment for the
execution of scientific workflows thanks to the powerful resources, which range from
storage, computing and networks. Unfortunately, existing Workflow Management Systems
are not adapted to perform in the Cloud. They need to fit to the Cloud architecture. They also
need to provide modeling means and migration mechanisms that enable a full integration
between workflow concepts and Cloud technology.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:701

The objective of the current work is twofold. First, we implemented a tool named
RenewGrass for the specification and the execution of scientific workflows. Then, we,
successfully, integrated RenewGrass in the REference NEts Workshop (RENEW) which is
available at (www.renew.de), our chosen modeling and simulation tool for Petri nets. As a
domain of application, the tool is suitable for remote sensing especially processing of satellite
imagery. Modeling and implementing such kind of workflows need specific tools and
techniques, which are unfortunately not provided by RENEW [10]. Technically, the
integration of RenewGrass consists on extending RENEW by modules and components of the
Geographic Resource Analysis Support System (GRASS) GIS (Geographic Information
System). This allows users to invoke GRASS GIS modules directly from their Petri net
models, which can be later executed. With the integration of RenewGrass into RENEW, the
latter is now able to deal with other research domains such as the scientific domain.
Moreover, as soon as the workflow requirements become locally unsatisfied, workflow tasks
need to be mapped to distributed resources. Therefore, we will discuss the deployment of
RenewGrass into the Cloud. Questions like: Where to store the data? Where to execute the
activities? will be investigated. Here, we propose an agent-based architecture, where each
functionality of the system is performed by a specific agent. In our approach, we follow the
Petri net-based, Agent-Oriented Software Engineering (PAOSE) paradigm for developing
agent-based applications.

The rest of the paper is organized as follows. Related work as well as the conceptual and
technical background of this work is presented in Section 2. RenewGrass is described in
Section 3. How RenewGrass can be deployed in the Cloud is investigated in Section 4.
Section 5 discusses further solutions. Section 6 concludes the paper with summary and future
works.

2. Related Work and Background
It is noteworthy to introduce some concepts, techniques and tools that constitute the

conceptual and functional background of this work. These are essential to understand
how the contributions work.

2.1. Cloud Computing
Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) [11]. Cloud computing can be viewed as a
collection of services, which can be presented as a set of loosely-coupled layers [12].
These service models are closely related and can be seen as three layers, which are the
Infrastructure as a Service (IaaS), the Software as a Service (SaaS) and the Platform as a
Service (PaaS). Before the emergence of the Cloud technology, there were significant
research projects dealing with the development of distributed and scientific workflow
systems with the grid paradigm. Workflow enactment service can be built on top of the
low level grid middle-ware (eg. Globus Toolkit1, UNICORE2, EGI3 and Alchemi4),
through which the workflow management system invokes services provided by grid
resources [13]. At both the build-time and run-time phases, the state of the resources
and applications can be retrieved from grid information services.

1https://globus.org/
2 http://www.unicore.eu/
3 https://www.egi.eu/
4 http://www.cloudbus.org/ ∼ alchemi /

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:702

http://www.renew.de/
https://globus.org/

There are many grid workflow management systems in use; like these representative
projects: ASKALON5, Pegasus6, Taverna7, Kepler8, Triana9 and Swift [14]. Most of
these projects, have been investigating the adaptation of their architectures to include
the Cloud technology. For instance, the Elastic Compute Cloud (EC2) module has been
implemented to make Kepler supports Amazon Cloud services.

The Amazon Simple Workflow (SWF)10 is an orchestration service for building
scalable applications. It maintains the execution state of the workflow in terms of
consistency and reliability. It permits structuring the various processing steps in an
application running on one or more systems as a set of tasks. These systems can be
Cloud-based, on-premise or both. But they lack of use of standard specification tools
and notations. Contrarily to Petri nets, the specification tools of these systems present
also the disadvantage of missing a verifying tool.

2.2. Reference Nets
As stated above, we use Petri nets and more specifically reference nets [7]. The latter
extend the colored Petri net formalism by combining the concepts of synchronous
channels. Reference nets [15] are the implementation of the concept of nets-within-nets
[16], which allows tokens to be nets again. With reference nets, Petri nets are not only
useful for modeling and analyzing of systems but also for implementation. Their
advantage is that the model is transformed into an implementation without changing the
formalism. Thus, the gap between modeling and implementation is diminished [17].
Reference nets are object-oriented high-level Petri nets and are based on the nets-
within-nets formalism introduced by [16], which allows tokens to be nets again. They
extend Petri nets with dynamic net instances, net references, and dynamic transition
synchronization through synchronous channels. Reference nets consist of places,
transitions and arcs. The input and output arcs have a similar behavior to ordinary Petri
nets. Tokens can be available in any type within the Java programming language. In
opposite to the net elements of P/T nets, reference nets provide supplementary elements
that increase the modeling power. These elements are: virtual places, declaration and arc
types. The places are typed and the transitions can hold expressions, actions, guards,
etc. Firing a transition can also create a new instance of a subnet. The creation of the
instances is similar to object instances in object-oriented programming. This allows a
specific, hierarchical nesting of networks, which is helpful for building complex
systems.
The nets shown in Fig. 1 are to illustrate two important features of reference nets, which
are the notion of synchronous channels and net inscription (Java). These two features
are used frequently in this work. The figure shows the modeling of a simple Cloud-
based storage workflow. The model is composed of two different nets that need to
communicate with each other in order to store files in the Cloud using a Cloud service
(DropBox).

5 http://www.askalon.org/
6 http://www.pegasus.org/
7 http://www.taverna.org.uk/
8 https://kepler-project.org/
9 http://www.trianacode.org/
10 aws.amazon.com/swf

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:703

http://www.trianacode.org/
https://kepler-project.org/
http://www.taverna.org.uk/
http://www.pegasus.org/
http://www.askalon.org/

Figure 1. The reference Net (a) The system net (b) The sub-net upload

 2.3. Renew
The Reference NEts Workshop (RENEW) is a graphical tool for creating, editing and

simulating reference nets. It combines the nets-within-nets paradigm with the
implementing power of Java. With RENEW it is possible to draw and simulate both
Petri nets and reference nets.

 During the simulation, a net instance is created and can be viewed in a separate
window as its active transitions fire. Simulation is used in RENEW to view firing
sequences of active transitions in reference nets. Simulation can run in a one-step
modus where users can progress in steps where only one transition fires. RENEW also
offers the possibility to set breakpoints to hold the simulation process. Breakpoints can
be set to places and transitions. By changing the compiler, RENEW can also simulate P/
T nets, timed Petri nets, Workflow nets, etc.

RENEW is an editor as well as a simulator for Petri nets and reference nets. Since
the version 1.7, RENEW is built on a highly sophisticated plug-in architecture, which
was developed and introduced in [18]. It allows the extension of RENEW with
additional functionality through the use of interfaces from RENEW components without
changing the core of RENEW.

2.4. The GRASS GIS
GRASS is a multi-purpose open source GIS, which can be used for geoprocessing

applications such as: geospatial data production, analysis and mapping. It can handle
raster as well vector data. The most important specificity of the GRASS GIS is its
modularity, which diminishes overhead. This allows running only the required modules
(same as RENEW). These modules are organized in categories (general GIS modules,
raster modules, vector modules, etc.).

Table 1 shows the modules provided by the GRASS GIS [19]. In order to allow
RENEW executing these commands directly from the Petri net transitions; RenewGrass
offers a wrapping layer, which makes the GRASS modules available at runtime. Before
using the modules for processing the data, the latter should be first imported into a
GRASS DATABASE. Within the DATABASE, the projects are organized as
subdirectories called “LOCATIONS”. Each LOCATION can have one or more
MAPSETS. Each MAPSET may represent a sub region within a given LOCATION.
These are mostly the important variables that need to be set.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:704

3. RenewGrass
In this section, we show how the GRASS GIS is integrated in RENEW. First, we present

the issues that we faced while integrating GRASS modules in RenewGrass. Then, we
describe our architecture with all the components taking part to the integration.

Table 1. GRASS GIS Commands
Prefix Function class Type of command
d.* display graphical output

db.* database database management

g.* general general file operations

i.* imagery image processing

m.* misc miscellaneous commands

ps.* postscript map creation in Postscript format

r.* raster 2D raster data processing

r3.* 3D raster 3D raster data processing

v.* vector 2D and 3D vector data processing

3.1. Integration Issues

The first challenge that confronted us when trying to integrate the GRASS GIS with
RENEW is that these tools are written in different programming languages. (The GRASS
GIS is written in C and RENEW in Java), which makes a direct communication between
them arduous. Thus the GRASS GIS needs to be adapted to the running environment of
RENEW. Moreover, a proper environment variables need to be pre-specified. In order to
achieve this integration, there are three possibilities:

• Desktop integration: this means that the GRASS GIS is locally deployed and
interfaces are provided to use geoprocessing functions from RENEW.

• Web-based integration: in this case, the objective is to publish and execute geo-
processes over the web, following the Web Processing Service (WPS) interface
specification11 from the Open Geospatial Consortium (OGC)12.

• Remote execution (Vagrant): this is another alternative to deploy the GRASS GIS
into the Cloud and is discussed in Section 5.

 Fig. 2 is a simple overview of the integration of GRASS GIS as desktop application. With
RENEW scientific workflows are specified as Petri net models. When some of workflow
tasks require GRASS commands, this can be easily performed directly at the transitions. In
order to communicate directly with the GRASS GIS, an interface or a wrapper is necessary.

Figure. 2 GRASS GIS integration with RENEW

Over the last few years some effort has been dedicated to leverage the strength of Java
and GRASS GIS. There are some contributions dealing with this issue [20]. Two candidate

11 http://www.opengeospatial.org/standards/wps
12 http://www.opengeospatial.org/

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:705

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/wps

projects are interesting for our work, which are the JGrasstools13 and the vtkGRASSBridge14.
The vtkGRASSBridge provides a VTK/C++ interface to most of the GIS GRASS raster,
voxel and vector C library functions This library can be used to build comprehensive 3D
visualisation of GIS GRASS data with Java, Python and C++. Although the project seems
promising, it was quickly rejected, due to building issues. We realized, that future users of the
tool will certainly run into similar issues, when modeling and executing workflows with
RenewGrass if we followed this approach. For this work, we chose to take advantages from
the JGrasstools project. JGrasstools is a library that is extracted from the Java Geographic
Resources Analysis Support System (JGrass) project.

3.2. Architecture

As mentioned above, RENEW’s architecture has been decomposed into several
components. Each component is characterized as a plug-in. This provides more flexibility and
extensibility. Thus new features can be easily integrated. The basis for this is the RENEW
plug-in system [21], which is responsible for the addition and the removal of plug-ins at
runtime. New features include some new plug-ins as for instance the Workflow and the
WFNet, which provide workflow management functionality. The original functionality was
already presented in [22]. The RenewGrass tool is also built following the plug-in
architecture of RENEW. Fig. 3 shows a simplified view of the position of RenewGrass in
RENEW.

The Workflow and the WFNet plug-ins are not required when using RenewGrass. They
are used especially when the users want to integrate workflow management functionality
such as log-in, tasks management, etc. As you can see in the figure, the RenewGrass plug-in
is built on top of the JGrasstools, which was adapted for RENEW. The main requirements are
the GRASS GIS installation and the GRASS data. The first one provides all the modules
presented in Section 2.4. The GRASS data is a directory that holds all the required files
(raster or vector images). Both GRASS GIS installation and the GRASS Data path should be
specified to RenewGrass prior any utilization. The actual implementation of the tool allows
local execution only, since both RENEW and GRASS GIS are installed on-premise.

Figure. 3 Architecture of the RenewGrass tool

4. RenewGrass in the Cloud
RenewGrass has been successfully tested in a local environment. All the required

components were hosted on-premise (RENEW, GRASS GIS and the data). Nevertheless,
as soon as the number of tasks increases and the size of data become large, we start

13http://udig.refractions.net/gallery/jgrass/
14 https://code.google.com/p/vtk-grass-bridge/

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:706

https://code.google.com/p/vtk-grass-bridge/
http://udig.refractions.net/gallery/jgrass/

facing computing and storage issues. This is due to insufficient resources on the local
site. This section presents our vision to deploy the current implementation of the
RenewGrass tool onto the Cloud services. First, different possibilities to Cloud-enable
an application in general are shortly illustrated. These possibilities are formulated in
form of patterns. The illustration is based on the work of [23] and [24]. They investigate
and strive to answer questions like: where to enact the processes? Where to execute the
activities? and Where to store the data? Thus the entities taken in account are: (1) the
process engine (responsible for the execution and the monitoring of the activities) (2)
the activities that need to be executed by the workflow and (3) the Data. Next, we
propose an architecture to introduce a new pattern and an appropriate methodology to
enable remote execution in the Cloud. This has been also described in a previous work.

4.1. Migration Patterns

Moving an existing application to the Cloud should be based on a solid strategy [25].
Providing the business management system (or WfMS) or a part in the Cloud raises a
series of concerns about ensuring the security of the data and the performance of the
system. For example, Cloud users could lose control on their own data in case of a fully
Cloud-based solution. Some activities, which are not compute-intensive can be executed
on-premise rather than moving them to the Cloud. Unfortunately, this transfer can be
time and cost-consuming because of the pay-per-use model and the nature of the
workflow tasks.

In the following, the patterns from [23, 24] are shortly introduced. The first pattern
designs the traditional scenario where all the components of the workflow system are
hosted at the user side (on-premise). The second scenario represents a case when users
already have a workflow engine but the application contains compute or data-intensive
activities, so they are moved to the Cloud for acquiring more capabilities and better
performance. The third case designs a situation, where the end-users do not have a
workflow engine, so they use a Cloud-based workflow engine, which is provided on-
demand. In that case, workflow designers can specify transfer requirements of activity
execution and data storage, for example, sensitive data and non-compute-intensive
activities can be hosted on-premise, and compute-intensive activities and non-sensitive
data can be moved to the Cloud [23]. The last scenario presents a situation where all
components are hosted in a Cloud and accessed probably from a Web interface. The
advantage is that users do not need to install and configure any software on the user
side. To make an analogy with the elements of our approach, RENEW is the process
engine, the activities are the geoprocessing tasks (performed by the GRASS services),
which are related to the satellite images (data). The latter (data and GRASS GIS) can be
either on-premise or hosted in the Cloud. Based on these elements and the illustration
presented above, Fig. 4 presents an overview of the diverse approaches (patterns) to
design our workflow system based on the Cloud technology.

Figure. 4 Patterns for Cloud-based workflow systems

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:707

We have noticed that both [23] and [24] do not address all possible situations. For
instance, the following situation has been not addressed: the process engine is available
on the user side but due to circumstances (internal failure, not sufficient compute or
storage resources), remote process engines need to be integrated and remotely invoked.
Fig. 5 shows approximately how this scenario looks like. Our solution consists on
transferring the data and executing the process by another process engine. This is
discussed in the following sections.

Figure.5 A pattern designing multiple process engines integration

4.2. Architecture
Fig. 6 shows the architecture to integrate the current implementation into a Cloud

system. While RenewGrass is already implemented and successfully integrated in
RENEW (see section 3), most efforts are dedicated now to move the execution of the
geoprocessing tasks to the Cloud and the provision of an interface to invoke these
services directly from workflow models.

 In our work, we follow an agent-based approach, i.e., many components
functionalities are performed by special agents. In summary, the role of each agent used
in the approach is described below.

(1) Workflow Holder Agent: It is the entity that specifies the workflow and holds the
generated Petri net models. This entity can be either human or a software
component. The specification of the image processing workflow is performed using
RenewGrass, which provides a modeling palette or downright predefined modeling
blocks.

(2) Cloud Portal Agent: provides the Workflow Holder Agent a Web portal as a
primary interface to the whole system. It contains two components: Cloud Manager
and Workflow Submission Interface. The latter provides a Web interface to the
workflow holders to upload all necessary files to execute the workflow. This
includes the workflow specification (RENEW formats), input files (images). It also
serves getting notifications from the Cloud Broker Agent about the status of the
workflow or the availability of the Cloud provider. The role of the Cloud Manager
is to control the Cloud instances (start and stop or suspend).

(3) Cloud Broker Agent: It is a critical component of the architecture, since it is
responsible of (i) the evaluation and selection of the Cloud providers that fits the
workflow’s requirements (e.g., data volume and computing intensities) and (ii)
mapping the workflow tasks. Both activities require information about the Cloud
provider, which are available and provided by the Cloud Repository Agent.

(4) Cloud Repository Agent: The Cloud repository register the information about the
Cloud providers and the state of their services. These information are saved in a
database and are constantly updated, since they are required by the Cloud Broker

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:708

Agent. To avoid failure scenarios (repository down, loss of data), we use distributed
databases, which allows high availability and fault-tolerant persistence.

(5) Cloud Provider Agent: The role of this agent is to control the instances and to
manage the execution of the tasks. Regularly, the Cloud providers need to update
their status and send it to the Cloud Repository Agent. The status concerns both the
instance and the services (GRASS services).

Concerning the Cloud Broker Agent, the evaluation and the selection of the Cloud
providers are critical processes for the Workflow Holders. In Cloud computing there are
various factors impacting the Cloud provider evaluation and selection [26], [27] such as:
computational capacity, IT security and privacy, reliability and trustworthiness,
customization degree and flexibility/scalability, manageability/usability and customer
service, geolocations of Cloud infrastructures. For this, in our work, brokering factors
are limited to the computational capacity and the customization degree.

Figure 6. The Architecture of the Cloud-based Workflow System

4.3. Cloud Configuration
Concerning the customization degree, there are some requirements for a successful

deployment onto the Cloud. In general, a common procedure to deploy applications onto
Cloud services consists of these two main steps:
(1) set up the environment: this mainly consists of the provision of Cloud instances15 and the

configuration the required softwares properly. Essential are the environment variables,
which differ from the local implementation such as JAVA configuration for the Web
server.

(2) deploy the application: it consists of the customization of the Cloud instance with the
appropriate softwares. For our work, RENEW and the GRASS GIS should be correctly
and properly configured, especially the database and the installation path.

Furthermore, the GRASS commands can be invoked in different ways. Either through a
wrapper like in the original implementation of RenewGrass or provided as Web services. For
the latter, we follow a Web-based approach with respect to the Open Geospatial Consortium
(OGC) Web Processing Service (WPS) interface specification. Thus the GRASS GIS

15 The Cloud instances should be in priori customized, i.e, they need to have the Grass GIS as back-end, the WPS server and Renew. We
assume that the Cloud storage is a service, which is configured by the Cloud provider itself.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:709

functionalities are provided as Web services instead of desktop application. To achieve this,
we chose the 52North16 as a WPS server as well as the wps-grass-bridge17.

4.4. Execution Scenario

Considering the proposed architecture and the agent roles described above, a typical
deployment scenario is broken into the following steps:
a. Workflow holders specify their image processing workflows (data and control-flow)

using Petri nets for example the NDVI workflow (see section 3.).
b. They send a request to the Cloud Broker via the Cloud Portal.
c. The Cloud Broker checks for available Cloud providers, which provide

geoprocessing tools (GRASS GIS). This information is retrieved from the Cloud
Repository.

d. The Cloud Broker sends a list to the Workflow Holder (through the Cloud Portal) to
accept or to reject the offer.

e. If the offer is accepted, the Workflow Holder submits the workflow specification
(.rnw + .sns) to the selected Cloud Provider.

f. Launch a customized Cloud instance with RENEW and GRASS GIS running in the
background.

g. After simulation/execution of the workflow, results (in our prototype it consists of
calculating the NDVI value) are transmitted to the Workflow Holder through the
Cloud Portal.

h. Rejecting an offer does not conclude the execution process immediately. Since the
list transmitted by the Cloud Broker is updated constantly, it might be that new
Cloud providers are available and fits the requirements. Therefore, from step (3),
the process is iterative until the satisfaction of the Workflow Holder. Regarding
step (5) and (6), RENEW supports starting a simulation from the command line.
This is possible by using the command startsimulation (net system) (primary net) [-
i]. The parameters to this command have the following meaning:

net system: The .sns file.
primary net: The name of the net, of which a net instance shall be
opened when the simulation starts.
-i: If you set this optional flag, then the simulation is initialized only,
that is, the primary net instance is opened, but the simulation is not
started automatically.

5. Discussion

 In previous sections, we presented RenewGrass and its integration in the modeling and
simulation tool RENEW. We explained that there are many possibilities to deploy the tool,
either on-premise or in the Cloud. For now RenewGrass has been successfully deployed in
local environment following Desktop integration (see Section 3.). GRASS GIS modules can
be easily invoked from Petri net models. Concerning the deployment of RenewGrass into the
Cloud, the proposed solution involves the provision of GRASS functionalities as Web
services using the WPS specification (see Section 4).
Here we discuss another alternative to deploy RenewGrass into the Cloud. Our solution
consists of creating customized Cloud instances, which includes RENEW and the GRASS
GIS. Thus all activities are performed in the Cloud. The idea is that Cloud customers have the
possibility to specify image processing workflows using Petri nets. The latter are then pushed

16 http://52north.org/software/software-projects/wps
17 https://code.google.com/p/wps-grass-bridge/

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:710

to the Cloud, where they are executed/simulated. This scenario is summarized in Fig. 7. Our
concept is based on enabling RENEW simulations in the Cloud. We already provide
mechanisms to Cloud customers to create Cloud instances and provision them by Java,
RENEW and other softwares that they need for running their applications [28].

 Figure. 7 Renew Simulation in the Cloud

Unfortunately, the current solution raises other interesting issues that need more
investigation. For example, our proposition is based on the fact that workflows are executed
once as a single process. There is at the moment no mechanism to control the simulation of
the workflow in the Cloud. We mean by control: the management of firing the Petri nets
transitions in the Cloud instance. RENEW already provides the possibility to control the
simulation by specific commands like: simulation run, simulation halt or simulation stop.

Nevertheless, it is not possible to use these functionalities within a Cloud instance. This
should be in priori customized. What about the ability to decompose the workflow in order
enable selected execution of the tasks composing the workflow? For this purpose we are
investigating other alternatives as the remote execution of RENEW. One of these solutions
has been already discussed in [28].

In the latter work we provide mechanisms and implementation for moving the execution
of computation- and time- consuming workflows into the Cloud. Different kind of interfaces
is provided to enable remote execution of RENEW in the Cloud. These interfaces define how
input and output to the Cloud calls are defined. They range from simple, simulation and
complex.

Interesting for the current work are the complex interfaces. Through such kind of interface
we seek bringing intelligence and autonomy to the managing system. Concretely, special
agents are used as gateways between the workflow (Petri net) model and the Cloud. With
respect to the Mulan/Capa framework, there exists a WebGateway Agent [29].

It plays the role of a gateway between RENEW and the Web environment. Since GRASS
GIS commands can be also published as Web services (see Section 4) coupling the
WebGateway functionality into the architecture proposed in Section 4 will certainly enhance
building agent-based scientific workflows.

6. Conclusion

The objective of the work presented in this paper is twofold. On the one side, we provide
techniques and tools to support scientists building their applications. For this purpose, a
geoprocessing tool named RenewGrass is presented. The tool has been implemented and
successfully integrated in the modeling and simulation tool RENEW. The application domain
of RenewGrass is the remote sensing, especially image processing, a kind of scientific
workflows. Therefore, we afford scientists with a palette of processing functionalities based
on the GRASS GIS. Furthermore, we discuss the extension of the current work by the
integration of the Cloud technology. For this purpose, we introduce migration patterns and

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:711

introduced our architecture for the deployment of workflows onto Cloud providers. The
natural next step is to concertize the deployment mechanisms introduced in Section 4.. This
means concretely to implement the functionality of each agent. In our perspective, this can be
performed by using the Mulan/Capa framework and following the POASE approach.

References
[1] M. Sonntag and D. Karastoyanova, “ Model-as-you-go: An approach for an advanced

infrastructure for scientific workflows’, J. Grid Comput., vol. 11, no. 3, (2013), pp. 553–583.
[2] A. Bolt, M. de Leoni, and W. M. P. van der Aalst, “Scientific workflows for process mining:

building blocks, scenarios, and implementation”, Int. J. Softw. Tools Technol. Transf., vol.
18, no. 6, (2016), pp. 607–628.

[3] W. van der Aalst, “Pi calculus versus petri nets: Let us eat “humble pie” rather than further
inflate the ”pi hype”, (2003).

[4] H. Smith and P. Fingar, “Workflow is just a pi process”, BPTrends, January (2004).
[5] H. Bendoukha, Y. Slimani, and A. Benyettou, “Uml refinement for mapping uml activity

diagrams into bpel specifications to compose service-oriented workflows”, Networked
Digital Technologies, ser. Communications in Computer and Information Science, R.
Benlamri, Ed., vol. 294. Springer, , Berlin Heidelberg, (2012), 537–548.

[6] L. Hélouët, Z. Miklós, and R. Singh; “ Cost and quality in crowdsourcing workflows,
Application and Theory of Petri Nets and Concurrency” - 42nd International Conference,
PETRI NETS 2021, Virtual Event, June 23-25, 2021, Proceedings, ser. Lecture Notes in
Computer Science, D. Buchs and J. Carmona, Eds., vol. 12734. Springer, (2021) 33–54.

[7] J.H. Rowekamp, M. Taube, P. Mohr and D. Moldt, “Cloud Native Simulation of Reference
Nets”, in Proceedings of the International Workshop on Petri Nets and Software
Engineering, Paris, France, June, (2021).

[8] S. Bendoukha. Multi-agent approach for managing workflows in an inter-cloud environment.
Ph.D. dissertation, University of Hamburg, Germany, (2017).

[9] D. Mosteller, M. Haustermann, D. Moldt and D. Schmitz, “Integrated Simulation of Domain-
Specific Modeling Languages with Petri Net-Based Transformational Semantics”, in Trans.
Petri Nets Other Model. Concurr., Vol. 14, (2019), Pages 101—125.

[10] J. H. Röwekamp and D. Moldt. “Renewkube: Reference net simulation scaling with renew
and kubernetes”, in Application and Theory of Petri Nets and Concurrency - 40th
International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019,
Proceedings, ser. Lecture Notes in Computer Science, S. Donatelli and S. Haar, Eds., vol.
11522. Springer, (2019), pp. 69–79.

[11] B. Varghese, M. A. S. Netto, I. M. Llorente, and R. Buyya. “New generation cloud
computing”, Softw. Pract. Exp., vol. 50, no. 6, (2020), pp. 803–804.

[12] T. G. Peter Mell. “The nist definition of cloud computing”, National Institute of Standards
and Technology, Information Technology Laboratory, Tech. Rep., (2011).

[13] J. Yu and R. Buyya. “A taxonomy of workflow management systems for grid computing”,
J. Grid Comput., vol. 3, no. 3-4, (2005), pp. 171–200.

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T.
StefPraun, and M. Wilde, “Swift: Fast, reliable, loosely coupled parallel computation”, in
Services, 2007 IEEE Congress, , July (2007), pp. 199–206.

[15] L. Cabac, M. Haustermann, and D. Mosteller, “RENEW - the reference net workshop”, in
Proceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’15), Brussels, Belgium, June 22-23, (2015).

[16] R. Valk, “Petri nets as token objects - an introduction to elementary object nets”, in 19th
International Conference on Application and Theory of Petri nets, Lisbon, Portugal, ser.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:712

Lecture Notes in Computer Science, J. Desel and M. Silva, Eds., no. 1420. Springer, (1998),
pp. 1–25.

[17] L. Cabac. “Net components: Concepts, tool, praxis”, in Petri Nets and Software
Engineering, International Workshop, PNSE’09. Proceedings, ser. Technical Reports
Université Paris 13, D. Moldt, Ed. 99, avenue Jean-Baptiste Clément, 93 430 Villetaneuse:
Université Paris 13, Jun. (2009), pp. 17–33.

[18] B. Schleinzer, L. Cabac, D. Moldt, and M. Duvigneau, “From agents and plugins to
pluginagents, concepts for flexible architectures”, in New Technologies, Mobility and
Security, 2008. International Conference, NTMS ’08, Tangier, Morocco. Electronical
proceedings. IEEE Xplore, Nov. (2008), pp. 1–5.

[19] M. Neteler, M. H. Bowman, M. Landa, and M. Metz. “{GRASS} gis: A multi-purpose open
source {GIS}, Environmental Modelling & Software”, vol. 31, no. 0, (2012), pp. 124 – 130.

[20] F. Kordon and D. Moldt, “Introduction to the special issue from petri nets 2016”, Sci.
Comput. Program., vol. 157, (2018), pp. 1–2.

[21] M. Duvigneau, “Konzeptionelle Modellierung von Plugin-Systemen mit Petrinetzen, ser.
Agent Technology” – Theory and Applications. Berlin: Logos Verlag, vol. 4, (2010).

[22] T. Jacob, O. Kummer, D. Moldt, and U. Ultes-Nitsche, “Implementation of workflow
systems using reference nets” – security and operability aspects, in Fourth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, K. Jensen, Ed. Ny
Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark: University of Aarhus, Department of
Computer Science, Aug. (2002), pp. 139–154.

[23] Y.-B. Han, J.-Y. Sun, G.-L. Wang, and H.-F. Li, “A cloud-based bpm architecture with
user-end distribution of non-compute-intensive activities and sensitive data”, Journal of
Computer Science and Technology, vol. 25, no. 6, (2010), pp. 1157–1167.

[24] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards bpel in the cloud:
Exploiting different delivery models for the execution of business processes”, in Services - I,
2009 World Conference, (2009), pp. 670–677.

[25] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Multiple workflows scheduling in multi-
tenant distributed systems: A taxonomy and future directions”, ACM Comput. Surv., vol. 53,
no. 1, (2021), pp. 10:1–10:39.

[26] C. Haddad, “Selecting a cloud platform : A platform as a service scorecard”, WSO2, Tech.
Rep., (2011).

[27] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud computing synopsis and
recommendations”, NIST Special Publications 800-146, Tech. Rep., (2011).

[28] S. Bendoukha and T. Wagner, “Improving performance of complex workflows:
Investigating moving net execution to the cloud”, in Petri Nets and Software Engineering.
International Workshop, PNSE’15, Brussels, Belgium, June 22-23, 2015. Proceedings, ser.
CEUR Workshop Proceedings, D. Moldt, H. Rölke, and H. Störrle, Eds., vol. 1372. CEUR-
WS.org, (2015), pp. 171–189.

[29] T. Betz, L. Cabac, M. Duvigneau, T. Wagner, and M. Wester-Ebbinghaus, “Software
Engineering with Petri Nets: A Web Service and Agent Perspective”, in Transactions on
Petri Nets and Other Models of Concurrency IX, ser. Lecture Notes in Computer Science, M.
Koutny, S. Haddad, and A. Yakovlev, Eds. Springer Berlin Heidelberg, (2014), pp. 41–61.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 10 (Oct) - 2023

http://ymerdigital.com

Page No:713

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

