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Abstract:  

Currently Anti-solvent treatment (A.S.T) has emerged as one of the key techniques for creating 

highly efficient monolithic perovskite solar cells (mPSCs). Perovskite film quality issues, such 

as uneven surfaces and pinholes, are present in perovskite solar cells and have a direct impact 

on device performance. To enhance the perovskite film quality and device performance 

introduced ant solvent treatment method. It has been observed that the AST technique 

improved the solar cell efficiency, reduced hysteresis and stability. It has become achievable 

to produce uniform and pinhole free perovskite film with the AST that enhances the nucleus 

density during film formation. In the current research, MScs were fabricated by different anti-

solvents such as, Diethyl ether (DE), Chloroform (CF), O-Dichloride benzene (ODB), 

Chlorobenzene (CB), and Toluene (T). X-Ray Diffraction (XRD) and Scanning electron 

microscopy (SEM) were employed to evaluate the fabricated MScs. The power conversion 

efficiency (PCE) of perovskite through Toluene ant solvent results shows 4.21% as compared 

with pure perovskite (PCE; 3.93%) and other (DE, CF, ODB, CB) anti-solvents.  

 

Keywords: Monolithic perovskite solar cells, Anti-solvent treatment, Pinhole free-

homogeneous film, Power conversion efficiency.  

 

 

1. Introduction  

Nowadays, researchers are attentive toward perovskite solar cells (PSCs) because of their 

ability in increasing PCE, and cost-effectiveness in fabrication [1, 2]. The monolithic carbon 

electrodes are found to be a promising candidate in this scenario with their exceptional 

electrical conductivity and high stability [3, 4]. The deposition process such as drop-casting, 

inkjet-printing, press transferring, rolling transfer, doctor-blading, and screen printing are 

adapted on carbon electrodes [5, 6]. The problems faced while commercializing these solar 

cells are reliability and stability [7–10]. Stability can be enhanced either by encapsulation 

technologies or by additive engineering methods, but still not suitable for commercialization 

[11–14]. 
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The challenge faced while fabrication was unique perovskite film formation without pinhole 

to achieve higher efficiency. Because pinholes decrease shunt resistance and non-uniformity 

increases series resistance which reduces the productivity and stability of the device.  The 

surface morphology of perovskite films has been significantly improved using a variety of 

techniques, including solvent vapor annealing [15–16], gas-blowing [17], amino halide 

additives [18-20], anti-solvent treatment [21, 22] and vacuum treatment [23]. Among these 

methods, the application of antisolvents during the creation of perovskite films proved to be 

quite remarkable in obtaining a pinhole-free and homogenous layer, which significantly 

enhanced the device's efficiency. Also, these anti-solvents accelerate perovskite nucleation, 

resulting in a homogeneous, pinhole-free film [24].  

During the antisolvent engineering method, the physicochemical properties of solvents can lead 

to some complicated interactions. Some researchers used 12 antisolvents on perovskite solar 

cells. In this set, some were capable to tear down the perovskite film. Another group of 

researchers evaluated the dropping time effect of three different antisolvents on film formation 

[25]. Various research found that chlorobenzene, diethyl ether, and toluene are the best 

antisolvents for film formation [26-28] are the best antisolvents to produce a high-quality film 

in perovskite solar cells.  

In this research, five different antisolvents namely, Diethyl ether (DE), Chloroform(CF), O-

Dichlorobenzene (ODB), Chlorobenzene (CB), and Toluene (T) are used for the fabrication of 

mPSCs and also examine the impact of various antisolvents on film morphology and solar cell 

device performance. 

 

2. Experimental Section 

 

2.1 Materials and Method 

Solaronix SA (Aubonee, Switzerland) produced printed monolithic carbon electrodes with 

multilayers (glass/FTO/c-TiO2/mp-TiO2/mp-ZrO2/mp-carbon), which were heated at 400°C 

for 30 minutes before manufacturing and then allowed to cool to ambient temperature. A 

solution of pre-mixed organometal halide perovskite precursors; MAPbI3 (containing lead 

iodide, methylammonium iodide, and 5-aminnovaleric acid hydroiodide in Ƴ-butyrolactone) 

was bought from solaronix SA (Aubonee, Switzerland). Using an electronic digital 

micropipette, 0.5 µl of the perovskite precursor solution was injected through the monolithic 

carbon electrodes. After drop-casting, the produced films were spin-coated with 110 µl of each 

of five different anti-solvents (chlorobenzene, chloroform, diethyl ether, o-dichlorobenzene, 

and toluene ) and then annealed at 100°C for 30 minutes. The fabricated mPSCs devices were 

then enclosed in ossila’s E132 encapsulating epoxy.  

 

2.2 Characterization  

The characterization studies are carried out to assess the structural properties and surface 

morphology of fabricated mPSCs. Also, the electrical measurement performed to assess the 

photovoltaic performance of the fabricated device. An X-ray diffractometer was used to assess 

the structural properties (XRD, Model No; EMPYREAN) and surface morphology conducted 

using a scanning electron microscope (SEM, Model No; JEOL 7600). 
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 The current density-voltage (J-V) properties measured using the Abet sunshine solar simulator 

(Model No. Oriel 3A), which simulates sunlight with an illumination intensity of 100 mW/cm2. 

To assess the photovoltaic performance of the device, the active area of the cell was accurately 

controlled using a 0.16 cm2 black metal mask. 

 

3. Results and Discussion  

 

The X-ray diffraction pattern in figure 1(a). Depicts the effects of A.S.T on the fabricated MScs 

(glass/FTO/mp-TiO2/mp-ZrO2/MAPbI3/mp-carbon) films with various ant solvents. The 

signals at 14.0°, 28.4°, 31.8°, 40.5°, and 

43.1° are the attribute peaks of the MAPbI3 perovskite layer, the correlating planes are (110), 

(004), (310), (224) and (314). In all samples, the sharp diffraction peaks are detected at (2θ 

=26.3°) which signifies the (002) plane carbon. On the other hand, Figure.1(b) shows the 

introduction of ant solvent treatment greatly increases the diffraction peaks intensity (2θ =14.0 

o(110) and 2θ = 28.4 (004)), the perovskite film with Tol as an ant solvent show better 

outperforms as compared to pure perovskite film and other (DE, CF, ODB, and CB) ant 

solvents. 

 

Figure 1: (a) XRD pattern of mPSCs films processed with different antisolvents, (b) a 

comparison of the (110) and (004) diffraction peaks' intensities under various antisolvent 

treatments. 
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The crystallization reached the highest when Tol was an antisolvent, which is indicating that 

the addition of A.S.T with moderate content changes the surface wettability and enhances the 

crystallization of perovskite film, which is reliable with the SEM result. 

 Figure 2. SEM images of mPSCs film in top view with various antisolvents. 

 

The film is made up of only pure mPSCs exhibits (figure 2(a)) shows a rough surface, 

inadequate surface coverage, and several significant pinholes and cracks. In the case of anti-

solvents (figure 2(b-e)), shows flakes-like structures develop on the surface of perovskite 

layers.  As a result, when Tol an anti-solvent was applied to the perovskite film, only flake 

structures at the grain boundary were exposed. This is consistent with the XRD results and 

results in mechanical stress in the perovskite crystals, causing the major peaks ((110) and (004)) 

to be intensity increased. This perovskite with Tol antisolvent film, which resembles a layered, 

may have adequate surface area to expose more light-active sites, leading to high photovoltaic 

performance. 
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Figure 3: (a) J-V Cures and (b) statistic parameters of mPSCs film with different antisolvents. 

Device 

 

Voc, [V] Jsc, [mA/cm2] FF, [%] PCE, [%] 

Pure 0.73 

 

8.50 

 

63.4 

 

3.93 

DE 0.75 

 

7.53 

 

63.2 

 

3.57 

 

CF 0.73 7.55 68.9 3.80 

ODB 0.74 

 

8.49 

 

64.5 

 

4.05 

 

CB 

T 

 

0.74 

0.72 

8.93 

8.94 

74.8 

65.4 

4.17 

4.21 

 

Table 1: Photovoltaic parameter of mPSCs film with different ant solvents. 

 

To determine the effects of applying different anti-solvents on the photo voltaic parameters 

such as short circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and PCE 

of the mPSC device. The current density-voltage (J-V) cures and statistic parameters of mPSCs 

device produced with various anti-solvents are shown in figure 3(a and b). The statistic 

parameters exhibit good consistency with good results, confirming the A.S.T. on fabricated 

mPSCs devices. The corresponding photovoltaic characteristics are presented in Table 1. The 

pure mPSCs device shows a PCE of 3.93%, with a Voc of 0.73 V, Jsc of 8.50 mA/cm2, and an 

FF of 63.4%. In the mPSCs device, DE and CF were used as antisolvents, and the PCE (3.57% 

and 3.80%) showed poor as compared to the pure mPSCs device. But in the A.S.T situation, in 

the case of ODB, CB, and Tol the PCE slightly increased. From all the above anti-solvents the 

Tol device shows the best PCE of 4.21%, with a Voc of 0.72 V, a Jsc of 8.93 mA/cm2, and FF 

of 75.4%, among all anti-solvents. 

The enhancement in Jsc, Voc, and FF, which results from better morphology and more 

crystallinity following A.S.T in Tol mPSCs device, account for the majority of the increase in 

PCE.  
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But in the case of pure mPSCs film have a rough surface and pinholes would decrease the PCE. 

Furthermore, anti-solvent treatment, which enhances higher crystallinity with smaller grain 

boundaries results in reduced charge traps, which help charge transfer even more. From all of 

the mPSCs devices, the Tol anti-solvent with device shows the best morphology and 

crystallinity, it obtains a good PCE.  

 

Conclusion:  

In summary, ant solvent solvent treatment has been successfully applied to monolithic 

perovskite solar cells (mPSCs). In this study, five different organic solvents  (DE, CF, ODB, 

CB, and T) are used as antisolvents and their effect on the mPSCs. Due to enhanced perovskite 

film morphology and greater crystallinity, the antisolvent treatment results in a better PCE than 

the pure mPSCs device. Toluene performs the best among the five antisolvents (DE, CF, ODB, 

and CB) in terms of enhancing the effectiveness of mPSCs devices. 
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