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Abstract 
 

In this paper, a neural network is introduced and utilized to calculate the dominant 

eigenvalue and related eigenvector of a symmetric square matrix. These neural networks 

are built because of their capacity to deal with custom loss functions and compute X 

estimations for large-scale problems, these neural networks are constructed. 

 

Keywords: Recurrent neural networks, Dominant eigenvalue, Eigenvector, Symmetric 
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1. Introduction  
 

Neural network-based Eigen problem solving is an exciting and relatively new 

topic of computational mathematics and machine learning [3]- [7]. The aim of an 

Eigen problem is to find the eigenvalues and eigenvectors of a given symmetric 

square matrix, which has several applications in the fields of physics, engineering, 

data analysis, and many more. Numerical algorithms like the power iteration, QR 

iteration, or Jacobi method have historically been used to solve eigen problems. In 

particular, for big matrices or high-dimensional issues, these methods can be 

computationally expensive and time-consuming [2]- [4]. An alternate strategy that 

might offer quicker and more effective solutions for specific Eigen problem types is 

neural networks. 

In this work, neural networks are described and utilized to find the dominating 

eigenvalue and accompanying eigenvector of a symmetric square matrix. These 

neural networks are developed due to their capacity to deal with custom loss functions 

and compute x estimations for large-scale challenges. Thus, the goal of this work is 

to solve a linear system [1]. 

 

(𝐴 − 𝜆)𝑥 = 0                                                                                                                   (1) 
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The rest of this paper is structured as follows. Section (2) will look at the attributes 

of the network model's equilibrium points. In section (3), Neural Implementation 

Description, an intriguing depiction of network solutions will be constructed. The 

network's convergence will be covered in section example and discussion (4). Finally, 

we end with a conclusion in section (5). 

 

2. Problem formulation and neural solution 
 

Let A of 𝑅𝑛×𝑛 be a symmetric matrix. We consider the constrained maximization problem 

[6]: 

 

{
𝑚𝑎𝑥(𝑥𝑇𝐴𝑥)2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑇𝑥𝑥 = 1
                                                                (2) 

 

We can use the Lagrange multiplier method to solve such optimization problems. Consider λ  the 

Lagrange multiplier. The task then becomes identical to maximizing. 

 

𝐸(𝑥, 𝜆) = (𝑥𝑇𝐴𝑥)2 − 𝜆(𝑥𝑇𝑥 − 1)                                                                           

(3) 
𝜕𝐸

𝜕𝑥
= 2𝐴𝑥 − 𝜆(2𝑥) = 0 ⇨ 𝐴𝑥 = 𝜆𝑥 

𝜕𝐸

𝜕𝜆
= 2𝐴𝑥 − 𝜆(2𝑥) = 0 ⇨ 𝑥𝑇𝑥 = 1     

   

This implies that 𝑥, λ  must be  an  eigen pair of A.  For  any  solution  𝜆 = 𝜆𝑖 ,  

𝑥 = 𝑣𝑖 , the objective function takes the value,  𝑣𝑖
𝑇𝐴𝑣𝑖 = 𝑣𝑖

𝑇(𝜆𝑖𝑣𝑖) = 𝜆𝑖𝑣𝑖
𝑇𝑣𝑖 = 𝜆𝑖. 

Therefore, the eigenvector v₁ (corresponding to dominant eigenvalue 𝜆1 of 𝐴 is the 

global maximizer, and it yields the absolute maximum value 𝜆1 . Similarly, the 

eigenvector 𝑣𝑛 corresponding to the least eigenvalue 𝜆𝑛 is the global minimizer with 

absolute minimum 𝜆𝑛. 

 

𝐸(𝑥, 𝜆) = (𝑥𝑇𝐴𝑥)2 − 𝜆(𝑥𝑇𝑥 − 1) 

   

Gradient descent can be used to minimize−𝐸(𝑥, 𝜆). The gradient of 𝐸(𝑥, 𝜆) with 

respect to 𝑥 is 

 

∇𝑥𝐸 = −2(𝑥𝑇𝐴𝑥)𝑄𝑥 + 2𝜆𝑥 

    = −2(𝑥𝑇𝐴𝑥)(𝐴𝑥 − 𝜆𝑥) 

 

In dynamical system form, the gradient above can be expressed as: 

 

∆𝑡𝑥 = −2(𝑥𝑇𝐴𝑥)(𝐴𝑥 − (𝑥𝑇𝐴𝑥)𝑥) 

 

or, according to the learning rule: 

 

∆𝑡𝑥 = 𝜂(𝑥𝑇𝐴𝑥)(𝐴𝑥 − (𝑥𝑇𝐴𝑥)𝑥)                                                                                          (4) 

 

This type is obviously a recurrent neural network. Network (4) is a nonlinear differential equation 

[8]- [9]. Its dynamic behavior is critical and vital in its applications. From an engineering 

standpoint, neural networks with well-understood dynamic characteristics are most 
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appealing. The dynamic behaviors of the network model are clearly explored in this 

research.  

Equation (4) can be utilized to solve the typical eigenvalue problem as indicated in 

equation (1). In this work, we limit ourselves to find the dominant eigenvalue and the 

corresponding eigenvector of a symmetric square matrix [5].   

 

 

3. Description of Neural Implementation 

 
The given research focuses primarily on the classical neural network differential 

equation, as indicated in equation (4), where 𝐴 = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1,2, … , 𝑛 are symmetric 

matrix that need to calculate their dominant eigenvalue and related eigenvector, 𝑥(𝑡) =
[𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)] is a column vector representing the states of neurons in the neural 

network dynamic system, as well as the elements of a symmetric square matrix 𝐴 

representing the connection weights between those neurons. 

In practice, we always need a non-zero column vector,  

 𝑥(0) = [𝑥1(0), 𝑥2(0), … , 𝑥𝑛(0)]𝑇to begin the neural network system using the 

following update rule:  

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝜂𝑥𝑇(𝑡)𝐴𝑥(𝑡)(𝐴𝑥(𝑡) − 𝑥𝑇(𝑡)𝐴𝑥(𝑡)𝑥(𝑡)), where 𝑡 denote the 

iteration at 𝑡 and 𝜂 is a small time step.  

Iteration ends when ‖𝑥(𝑡 + 1) − 𝑥(𝑡)‖ < 𝜀 , where 𝜀 is a small constraint error that 

can be predetermined.  If ‖𝑥(𝑡 + 1) − 𝑥(𝑡)‖ < 𝜀 , we could consider that 

‖𝑥(𝑡 + 1) − 𝑥(𝑡)‖ = 0 , that is to say, 𝐴𝑥(𝑡) = 𝑥𝑇(𝑡)𝐴𝑥(𝑡)𝑥(𝑡), according to the 

theory in section (2), 𝑥(𝑡) is the eigenvector corresponding to the dominant 

eigenvalue, which can be written as 𝑥𝑇(𝑡)𝐴𝑥(𝑡). 

 

4. Example and Discussion 

 
This section will provide an example of computer simulation results to demonstrate the 

preceding theory. The simulation will demonstrate that the suggested network can 

calculate the the eigenvector corresponding to the dominant eigenvalue of any symmetric 

matrix. 

In a simple way, a symmetric matrix 𝐴  could be randomly generated. Allow  𝐵 to be 

any randomly generated real matrix, define 𝐴 = 𝐵𝐵𝑇. Obviously  𝐴 is a symmetric matrix. 

 

𝐴 = [

0.0263 0.1316 0.2145 0.1210
0.1316 0.3624 0.1967 0.5974
0.2145 0.1967 0.2030 0.0128
0.1210 0.5974 0.0128 0.6820

] 

 

𝑥 = [

0.5383
0.9961
0.0782
0.4427

] 

 

For the reader's reference, the true largest modulus of the eigenvalues of 𝐴 and the 

corresponding eigenvector computed by MATLAB are:  

Dominant eigenvalue, 𝜆𝑚𝑎𝑥 = 1.1955 ,   

𝑣𝑚𝑎𝑥 = [0.1776 0.6089 0.1688 0.7545]𝑇  
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Table 1. Code 
 

 
 

 

When using the network model the estimated dominant eigenvalue is  𝜆𝑚𝑎𝑥 = 1.1955   
and the corresponding eigenvector is:  

 𝑣𝑚𝑎𝑥 = [0.1781 0.6091 0.1696 0.7541]𝑇.  

 

As shown in Figure 1 the convergence of computational of 𝜆(𝑡) to 𝜆𝑚𝑎𝑥, which is 

synthesized by weight-updating formula (4). Evidently, after 20 iterations, 𝜆(𝑡) in the 

above MATLAB code Table. 1 could converge to 1.1955 the dominant eigenvalue of 𝐴. 

 

 

 

 
Figure 1. Estimation of the dominant eigenvalue of the matrix A. 
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5. Conclusion 
 

This paper examines the issue of finding the eigenvectors of a symmetric square matrix 

using a neural network approach. It has been suggested that a class of artificial recurrent 

neural networks can be used to calculate the eigenvector that correspond to the dominant 

eigenvalue of any real symmetric square matrix. This network concept can produce 

excellent computing performance since it supports asynchronous parallel processing. The 

mathematical knowledge of the network model's dynamic behaviors is rigorous and 

unambiguous. According to simulation findings, the network model is effective. 
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