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Abstract

Let Fη be the set of all polynomials of degree η, then for F ∈ Fη,
the Lq analogue of Bernstein’s inequality was proved by Zygmund. In
fact, he proved that

‖F ′‖q ≤ η‖F‖q, for q > 0.

In literature, so many generalizations and refinements of this result
exists. Recently K Krishnadas and B Chanam [10,Theorem 1] proved
a generalisation of above result. In this paper we prove a refinement
of above result which in turn provides a generalization of several other
results.
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Keywords and Phrases: Polynomials, integral mean inequalities, Zeros,
Lq norm.

1 Introduction

Let Fη be the set of all polynomials of degree η.
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For F ∈ Fη define,

‖F‖q :=

 1

2π

2π∫
0

|F (eiΘ)|qdΘ


1
q

, 0 < q <∞

‖F‖∞ := max
|z|=1
|F (z)|

Also,

‖F‖0 := exp

 1

2π

2π∫
0

log|F (eiΘ|dΘ


If F ∈ Fη,

‖F ′‖q ≤ η‖F‖q, q > 0. (1.1)

inequality (1.1) was found out by Zygmund [18]. Letting q→∞ in (1.1),
we get

‖F ′‖∞ ≤ η‖F‖∞ (1.2)

which is a well-known Bernstein’s inequality.
Arestov[1] proved that (1.1) is true for q ∈ [0, 1) as well.
If F ∈ Fη such that F(z) doesnot vanish in |z| < 1, then (1.2) and (1.1) can
be respectively replaced by

‖F ′‖∞ ≤
η

2
‖F‖∞ (1.3)

and

‖F ′‖q ≤
η

‖1 + z‖q
‖F‖q, q > 0. (1.4)

The inequality (1.3) was conjectured by Erdös and later verified by Lax
[10], inequality (1.4) is due to Debruijn [4] for q ≥ 1. Rahman and
Schmeisser[14] verified that (1.4) is valid for q ∈ [0, 1) as well.
Turan[18] proved that, if F ∈ Fη vanishes in |z| ≤ 1,then

‖F ′‖∞ ≥
η

2
‖F‖∞. (1.5)
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equality holds in both the inequalities (1.3) and (1.5) for F (z) = l + τzη,
where |l| = |τ |.
Also, Govil and Rahman [7] proved that, if F ∈ Fη does not vanishes in
|z| < h, h ≥ 1, then

‖F ′‖q ≤
η

‖h+ z‖q
‖F‖q, q ≥ 1 (1.6)

Gardener and Weems [6] and Rather [14] independently verified the validity
of (1.6) for 0 < q < 1 as well.
Also, Aziz and Rather[2] proved that if F ∈ Fη does not vanishes in
|z| < h, h ≥ 1, then for every q > 0

‖F ′‖q ≤
η

‖∆h,1 + z‖q
‖F‖q, q ≥ 1 (1.7)

where ∆h,1 =
η|a0|h2 + h2|a1|
η|a0|+ h2|a1|

Malik[12] proved that if F ∈ Fη vanishes in |z| ≤ 1, then for every qpositive.

‖F ′‖q ≥
η

‖1 + z‖q
‖F‖q. (1.8)

Aziz and Rather [2] generalised the inequality (1.8) as if F ∈ Fη vanishes in
|z| ≤ h, h ≤ 1, then for every q > 0

‖F ′‖q ≥
η

‖1 + th,1z‖q
‖F‖q. (1.9)

and

‖F ′‖∞ ≥
η

‖1 + th,1z‖q
‖F‖q. (1.10)

where th,1 =
η|aη|h2 + |aη−1|
η|aη|+ |aη−1|

Govil et al. [8] demonstrated the following two theorems, in which they
generalised (1.6) and (1.8), and also the inequality (1.11) by involving some
coefficients of F(z).
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Theorem 1.1. If F ∈ Fη does not vanishes in |z| < h, h ≥ 1, then

‖F ′‖∞ ≤
η

1 + h

(1− |α|)(1 + h2|α|) + h(η − 1)|µ− α2|
(1− |α|)(1− h+ h2 + h|α|) + h(η − 1)|µ− α2|

‖F‖∞,

(1.11)

where

α =
ha1

ηa0

and µ =
2h2a2

η(η − 1)a0

.

Theorem 1.2. If F ∈ Fη vanishes in |z| ≤ h, h ≤ 1, then

‖F ′‖∞ ≥
η

1 + h

(1− |β|)(1 + h2|β|) + h(η − 1)|γ − β2|
(1− |β|)(1− h+ h2 + h|β|) + h(η − 1)|γ − β2|

‖F‖∞,

(1.12)

where

β =
aη−1

ηhaη
and γ =

2aη−2

η(η − 1)h2aη
.

Recently, Krishnadas and Chanam[10] demonstrated the following two
theorems in which they extended inequalities (1.14) and (1.15) to Lq norms.
,

Theorem 1.3. If F ∈ Fη does not vanishes in |z| < h, h ≥ 1, then for every
q > 0

‖F ′‖q ≤
η

‖Γ + z‖q
‖F‖q. (1.13)

where

Γ = h
(1− |α|)(|α|+ h2) + h(η − 1)|µ− α2|
(1− |α|)(|α|h2 + 1) + h(η − 1)|µ− α2|

(1.14)

α =
ha1

ηa0

and µ =
2h2a2

η(η − 1)a0

.

Theorem 1.4. If F ∈ Fη vanishes in |z| ≤ h, h ≤ 1, then for every q > 0

‖F ′‖q ≥
η

‖1 + Sz‖q
‖F‖q. (1.15)
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where

S = h
(1− |β|)(|β|+ h2) + h(η − 1)|γ − β2|
(1− |β|)(|β|h2 + 1) + h(η − 1)|γ − β2|

(1.16)

β =
aη−1

ηhaη
and γ =

2aη−2

η(η − 1)h2aη
.

2 Main Results

In this paper,first we obtain the following result which includes not only a
refinement of Theorem 1.3 but also provides some generalization of other
results.

Theorem 2.1. If F ∈ Fη does not vanishes in |z| < h, h ≥ 1, then for every
q > 0

‖F ′ + τηmzη−1‖q ≤
η

‖Γ + z‖q
‖F‖q. (2.1)

where Γ is defined by (1.17) and m = min
|z|=h
|F (z)|.

Remark 2.2 If we put m = 0 and let q→∞ in (2.1), the Theorem 2.1
reduces to Theorem 1.1 by using the inequality (1.17).

Remark 2.3 For m = 0 , inequality (2.1) reduces to inequality (1.16).
Next, we prove the theorem as a refinement of Theorem 1.4. In fact we
prove

Theorem 2.4. If F ∈ Fη vanishes in |z| ≤ h, h ≤ 1, then for every q > 0

‖F ′ + τηmzη−1‖q ≥
η

‖1 + Sz‖q
‖F‖q. (2.2)

where S is defined by (1.19)

Remark 2.5. For m = 0 Theorem 2.4 reduces to Theorem 1.4.

Instead of proving Theorem 2.4, we prove a more general result, from which
Theorem 2.4,follows as a special case.
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Theorem 2.6. If F ∈ Fη vanishes in |z| ≤ h, h ≤ 1, then for every
q > 0, r > 1, s > 1 with r−1 + s−1 = 1.

‖F ′ + τηmzη−1‖sq ≥
η

‖1 + Sz‖rq
‖F‖q. (2.3)

where S is defined by (1.19).

Remark 2.7. Put r = 0 or s = 0, we obtain Theorem 2.4.

3 Lemmas

In this section we present some lemmas which will help us to prove our
results.

Lemma 3.1. If F ∈ Fη does not vanishes in |z| < h, h ≥ 1, then

Γ|F ′(z)| ≤ |Q′(z)| (3.1)

where Γ is defined by (1.17) and Q(z) = zηF (
1

z
)

Above Lemma 3.1 is due to Govil et al.[8]. By applying Lemma (3.1.) to the
polynomial F (z) = F (z) +mτzη, we immediately get the following result.

Lemma 3.2. If F ∈ Fη does not vanishes in |z| < h, h ≥ 1, then for any
complex number τ with |τ | ≤ 1,

Γ|F ′(z) + τηmzn−1| ≤ |Q′(z)| (3.2)

where Γ is defined by (1.17) and m = min
|z|=h
|F (z)|.

Lemma 3.3. If F ∈ Fη vanishes in |z| ≤ h, h ≤ 1, then on |z| = 1

|Q′(z)| ≤ S|F ′(z) + ηmτzη−1| (3.3)

where S is defined by (1.19).

Proof of Lemma 3.3. Since F (z) vanishes in |z| ≤ h, h ≤ 1 , then the

polynomial Q(z) = zηF (
1

z
) does not vanishes in |z| < 1

h
,

1

h
≥ 1. Thus

applying Lemma 3.2 to the polynomial Q(z), we have
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|Q′(z)| ≤ h
(1− |β|)(| 1

h2
β|+ 1) +

1

h
(η − 1)|γ − β2|

(1− |β|)(|β|+ h2) +
1

h
(η − 1)|γ − β2|

∣∣F ′(z) + ηmτzη−1
∣∣

β =
1/h

η

aη−1

aη
=
aη−1

ηhaη
and γ =

2/h2

η(η − 1)h2

aη−2

aη
=

2aη−2

η(η − 1)h2aη
.

Then,

|Q′(z)| ≤ h
(1− |β|)(|β|+ h2) + h(η − 1)|γ − β2|
(1− |β|)(|β|h2 + 1) + h(η − 1)|γ − β2|

∣∣F ′(z) + ηmτzη−1
∣∣

which proves Lemma 3.3.

Lemma 3.4. If F ∈ Fη , then for every l, 0 ≤ l < 2π and q > 0

∫ 2π

0

∫ 2π

0

|Q′(eiΘ) + eilF ′(eiΘ)|qdΘdl ≤ 2πηq
∫ 2π

0

|F (eiΘ)|qdΘ (3.4)

The above lemma is due to Aziz [2]

Lemma 3.5. If F ∈ Fη , then for every l, 0 ≤ l < 2π ,q > 0 and for any
complex number τ with |τ | ≤ 1,

∫ 2π

0

∫ 2π

0

|Q′(eiΘ) + eil
{
F ′(eiΘ) + ηmτei(η−1)Θ

}
|qdΘdl ≤ 2πηq

∫ 2π

0

|F (eiΘ)|qdΘ

(3.5)

Proof of Lemma 3.5. By applying Lemma (3.4.) to the polynomial
F (z) = F (z) +mτzn, we can easily get the proof of Lemma 3.5.

Lemma 3.6. Let z be any complex and independent of l , where l is any
real, then for q > 0

∫ 2π

0

|1 + zeil|qdl =

∫ 2π

0

|eil + |z||qdl (3.6)

Lemma 3.6 is due to Gardner and Govil[5].
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4 Proofs of Theorems

Proof of Theorem 2.1. As F (z) does not vanishes in |z| < h, h ≥ 1
hence, by Lemma 3.2. we have

Γ|F ′(z) + τηmzη−1| ≤ |Q′(z)| (4.1)

where Γ is defined by (1.17) and m = min
|z|=h
|F (z)|.

For each Real l and G ≥ r ≥ 1, we have

|G+ eil| ≥ |r + eil|

Then, for every q > 0, we have

∫ 2π

0

|G+ eil|qdl ≥
∫ 2π

0

|r + eil|qdl (4.2)

For points eiΘ, 0 ≤ Θ < 2π, for which F ′(eiΘ) + ηmτei(η−1)Θ does not

vanishes, we denote G =

∣∣∣∣ Q′(eiΘ)

F ′(eiΘ) + ηmτei(η−1)Θ

∣∣∣∣ and r = Γ, then by (4.1),

we for every q > 0

∫ 2π

0

∣∣Q′(eiΘ) + eil
{
F ′(eiΘ) + ηmτei(η−1)Θ

}∣∣qdl
=
∣∣F ′(eiΘ) + ηmτei(η−1)Θ

∣∣q ∫ 2π

0

∣∣∣∣ Q′(eiΘ)

F ′(eiΘ) + ηmτei(η−1)Θ
+ eil

∣∣∣∣qdl
=
∣∣F ′(eiΘ) + ηmτei(η−1)Θ

∣∣q ∫ 2π

0

∣∣∣∣∣∣∣∣ Q′(eiΘ)

F ′(eiΘ) + ηmτei(η−1)Θ

∣∣∣∣+ eil
∣∣∣∣q dl by (3.6)

=
∣∣F ′(eiΘ) + ηmτei(η−1)Θ

∣∣q ∫ 2π

0

∣∣G+ eil
∣∣q dl

≥
∣∣F ′(eiΘ) + ηmτei(η−1)Θ

∣∣q ∫ 2π

0

∣∣r + eil
∣∣q dl by (4.2)

Hence,

∫ 2π

0

∣∣Q′(eiΘ) + eil
{
F ′(eiΘ) + ηmτei(η−1)Θ

}∣∣qdl ≥ ∣∣F ′(eiΘ) + ηmτei(η−1)Θ
∣∣q ∫ 2π

0

∣∣Γ + eil
∣∣q dl

(4.3)
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for eiΘ, 0 ≤ Θ < 2π, for which F ′(eiΘ) + ηmτei(η−1)Θ does not vanishes.
For points eiΘ, 0 ≤ Θ < 2π, for which F ′(eiΘ) + nmτei(n−1)Θ vanishes, (4.3)
trivially holds. Hence, using (4.3) in Lemma 3.5, we get for each q > 0,∫ 2π

0

∣∣F ′(eiΘ) + ηmτei(η−1)Θ
∣∣q dΘ

∫ 2π

0

∣∣Γ + eil
∣∣q ≤ 2πηq

∫ 2π

0

|F (eiΘ)|qdΘ

which is equivalent to

{∫ 2π

0

∣∣F ′(eiΘ) + ηmτei(η−1)Θ
∣∣q dΘ

}1

q ≤ η

{
1

2π

∫ 2π

0

∣∣Γ + eil
∣∣q dl}−

1

q
{∫ 2π

0

∣∣F (eiΘ)
∣∣q dΘ

}1

q

(4.4)

which proves Theorem 2.1.

Proof of Theorem 2.6. Since F (z) vanishes in |z| ≤ h, h ≤ 1, F (z) also
vanishes in |z| ≤ h, h ≤ 1. Hence, by Gauss-Lucas Theorem,

zη−1F (
1

z
) = ηQ(z)− zQ′(z) (4.5)

vanishes in |z| ≥ 1

h
,

1

h
≥ 1. Further, since F (z) vanishes in |z| ≤ h, h ≤ 1,

we have by Lemma 3.3.

|Q′(z)| ≤ S|F ′(z) + ηmτzη−1| (4.6)

= S {|F ′(z)|+ tηm} for |z| = 1.

where S is defined by (1.19) and |τ | = t.
For |z| = 1, we also have

|F ′(z) = |ηQ(z)− zQ′(z)|. (4.7)

Using (4.7) in (4.6) , we have on |z| = 1

|Q′(z)| ≤ S {|ηQ(z)− zQ′(z)|+ tηm} (4.8)

Thus, by (4.5) and (4.8),

ψ(z) =
zQ′(z)

S {|ηQ(z)− zQ′(z)|+ tηm}
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is analytic in |z| ≤ 1, |ψ(z)| ≤ 1 on |z| = 1 and ψ(0) = 0. Therefore,
1 + Sψ(z) is subordinate to the function 1 + Sz for |z| ≤ 1. Hence, by a
well known property of subordination [9], we have for every q > 0

∫ 2π

0

|1 + Sψ(eiΘ)|qdΘ ≥
∫ 2π

0

|1 + SeiΘ|qdΘ (4.9)

Now,

1 + Sψ(z) = 1 +
zQ′(z)

|ηQ(z)− zQ′(z)|+ tηm
=

ηQ(z)

|ηQ(z)− zQ′(z)|+ tηm

which implies for |z| = 1,

|ηQ(z)| =|1 + Sψ(z)|| |ηQ(z)− zQ′(z)|+ tηm

= |1 + Sψ(z)|| |F ′(z)|+ tηm by (4.7)

As |F (z)| = |Q(z)| on |z| = 1, by preceding inequality we have

η|F (z)| = |1 + Sψ(z)|| |F ′(z)|+ tηm on |z| = 1 (4.10)

Then for every q > 0 and 0 ≤ Θ < 2π, we have

ηq
∫ 2π

0

|F (eiΘ)|qdΘ =

∫ 2π

0

|1 + Sψ(eiΘ)|q
{∣∣F ′(eiΘ)

∣∣+ tηm
}q
dΘ

Applying Holder’s inequality to the above inequality, we have for
r > 1, s > 1 with r−1 + s−1 = 1 and for every q > 0

ηq
∫ 2π

0

|F (eiΘ)|qdΘ ≤
{∫ 2π

0

∣∣1 + Sψ(eiΘ)
∣∣rq dΘ

}1

r
{∫ 2π

0

{∣∣F ′(eiΘ)
∣∣+ tηm

}sq
dΘ

}1

s

which implies

η

{∫ 2π

0

|F (eiΘ)|qdΘ

}1

q ≤
{∫ 2π

0

∣∣1 + Sψ(eiΘ)
∣∣rq dΘ

} 1

qr
{∫ 2π

0

{∣∣F ′(eiΘ)
∣∣+ tηm

}sq
dΘ

} 1

sq
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using (4.9) in the above inequality , we have

η

{∫ 2π

0

|F (eiΘ)|qdΘ

}1

q ≤
{∫ 2π

0

∣∣1 + SeiΘ
∣∣rq dΘ

} 1

qr
{∫ 2π

0

{∣∣F ′(eiΘ)
∣∣+ tηm

}sq
dΘ

} 1

sq

by choosing argument of τ as in the proof of Theorem 2.4 , we get the
above inequality as

η

{∫ 2π

0

|F (eiΘ)|qdΘ

}1

q ≤
{∫ 2π

0

∣∣1 + SeiΘ
∣∣rq dΘ

} 1

qr
{∫ 2π

0

∣∣F ′(eiΘ) + τηmei(n−1)Θ
∣∣sq dΘ

} 1

sq

which proves the theorem.
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