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Abstract

Let F;, be the set of all polynomials of degree 7, then for F' € F;),
the Lq analogue of Bernstein’s inequality was proved by Zygmund. In
fact, he proved that

IFlq < nllFllg,  for q>0.

In literature, so many generalizations and refinements of this result
exists. Recently K Krishnadas and B Chanam [10,Theorem 1] proved
a generalisation of above result. In this paper we prove a refinement
of above result which in turn provides a generalization of several other
results.

Mathematics Subject Classification: 26D10, 30C15, 41A17.
Keywords and Phrases: Polynomials, integral mean inequalities, Zeros,
Ly norm.

1 Introduction

Let F;, be the set of all polynomials of degree 7.
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For F' € F), define,

Also,

If FeF,,

2T %
1 1
T %/|F(e OPde b | 0<q< o
0
[1Flloc = max | F(2)]
2
1 .
[Pl = eap{ 5= [ toglFe®de
2
0
1Flq <l Fllqs > 0. (1.1)

inequality (1.1) was found out by Zygmund [18]. Letting q — oo in (1.1),

we get

1F oo < nllF oo (1.2)

which is a well-known Bernstein’s inequality.

Arestov[1] proved that (1.1) is true for q € [0,1) as well.

If F € F, such that F(z) doesnot vanish in |z| < 1, then (1.2) and (1.1) can
be respectively replaced by

and

n
17 < 21Fll (13)
n
Flly < ———||F > 0. 1.4
1 < o ¥l o (14)

The inequality (1.3) was conjectured by Erdos and later verified by Lax
[10], inequality (1.4) is due to Debruijn [4] for ¢ > 1. Rahman and
Schmeisser[14] verified that (1.4) is valid for q € [0,1) as well.

Turan[18] proved that, if F' € F,, vanishes in |2| < 1,then
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equality holds in both the inequalities (1.3) and (1.5) for F'(z) =1 + 72",
where || = |7].

Also, Govil and Rahman [7] proved that, if F' € F,, does not vanishes in
|z| < h,h > 1, then

IF " [Fllqy a=1 (1.6)

lg <
S b+ 2]

Gardener and Weems [6] and Rather [14] independently verified the validity
of (1.6) for 0 < q < 1 as well.

Also, Aziz and Rather[2] proved that if /' € F,, does not vanishes in

|z| < h,h > 1, then for every q > 0

Ui

Flllg < —o—~—r
[Fq < TN

[Fllg; a=1 (1.7)

nlaolh? + h?|ay|
nlao| + h?|a|

where Ay 1 =

Malik[12] proved that if F' € F, vanishes in |z| < 1, then for every qpositive.

— (1.8)

1Flq > =——r
T+ 2l

Aziz and Rather [2] generalised the inequality (1.8) as if /' € F,, vanishes in
|z| < h,h <1, then for every q > 0

n

Fl,>— |F|,. 1.9

17l 2 g1 (19)
and

1F oo > ———||F|lq. (1.10)

11+ th12llq
h?

where £,  Manl? & 1o

77|a,7| + |an—1|

Govil et al. [8] demonstrated the following two theorems, in which they
generalised (1.6) and (1.8), and also the inequality (1.11) by involving some
coefficients of F(z).
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Theorem 1.1. If F' € F), does not vanishes in |z| < h,h > 1, then

||F/H < n (1_ |a|)(1+h2|a|)+h(77—1)‘M—042| HF“
T 14+ h(1—|a))(1 —=h+h2+hla|)+ hin—1)|u— a?| o
(1.11)
where
hCLl 2h2a2
a=—and pu=
nag n(n —1ao

Theorem 1.2. If F' € F}, vanishes in |z| < h,h < 1, then

U (L— 18D+ h2IB]) + h(n — Dy — 5|

F'lloo > Fll o,
1l = T T B = w2+ hiB) + k- Dy =7 |
(1.12)
where _ oq
apn_1 Ap—2
B=Ut and oy = 202
nha, T = 1)h%a,

Recently, Krishnadas and Chanam[10] demonstrated the following two
theorems in which they extended inequalities (1.14) and (1.15) to Lq norms.

9

Theorem 1.3. If F' € F, does not vanishes in |z| < h,h > 1, then for every
q>0

U
F'l|lq < Fllq- 1.13

where

(1 — laD(al + h?) + h(n — 1)|p — |

I'=h 1.14
(L~ Jal) (a2 + 1) + h(n — Dlu— a2 (1.14)
ha1 2h2a2
a=—and yu=
nag n(n —1)ao

Theorem 1.4. If F' € F, vanishes in |z| < h, h < 1, then for every q > 0

n
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where

(L= 1BDUBI+ h?) + h(n = DIy = 5|

S=h .
1881 + 1) + h(n— Dy — ] (1.16)
Gy 24,
b= nha, and 7y n(n — 1)h%a,

2 Main Results

In this paper,first we obtain the following result which includes not only a
refinement of Theorem 1.3 but also provides some generalization of other
results.

Theorem 2.1. If F' € F), does not vanishes in |z| < h,h > 1, then for every
q>0

F o — Ty (1 2.1

where I is defined by (1.17) and m = ‘7)”|LZ7;LL|F(Z)|

Remark 2.2 If we put m = 0 and let ¢ — oo in (2.1), the Theorem 2.1
reduces to Theorem 1.1 by using the inequality (1.17).

Remark 2.3 For m = 0 , inequality (2.1) reduces to inequality (1.16).
Next, we prove the theorem as a refinement of Theorem 1.4. In fact we
prove

Theorem 2.4. If F' € F, vanishes in |z| < h, h < 1, then for every q > 0

- n
I ey 2 (22)

— || F|,.
where S is defined by (1.19)
Remark 2.5. For m = 0 Theorem 2.4 reduces to Theorem 1.4.

Instead of proving Theorem 2.4, we prove a more general result, from which
Theorem 2.4, follows as a special case.
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Theorem 2.6. If F' € F, vanishes in |z| < h,h <1, then for every
qg>0,r>1,s>1withr ! 4+s1=1.

- Ui
1E" + mymz"" g 2 7o [ Flla: (2:3)
S, e
where S is defined by (1.19).

Remark 2.7. Put »r = 0 or s = 0, we obtain Theorem 2.4.

3 Lemmas

In this section we present some lemmas which will help us to prove our
results.

Lemma 3.1. If F' € F,, does not vanishes in |z| < h,h > 1, then

LIF'(2)] < 1Q(2)] (3.1)

where I' is defined by (1.17) and Q(z) = 2"F(-)

Above Lemma 3.1 is due to Govil et al.[8]. By applying Lemma (3.1.) to the
polynomial F(z) = F(z) +m72", we immediately get the following result.

Q| =

Lemma 3.2. If F' € F,, does not vanishes in |z| < h,h > 1, then for any
complex number 7 with |7]| < 1,

DIF'(z) +mpm2"" < |Q(2)] (3.2)

where I' is defined by (1.17) and m = m37z|F(z)|

Lemma 3.3. If F' € F,, vanishes in |z| < h,h <1, then on |z| =1
Q' (2)] < SIF'(2) + nmr2""| (3.3)
where S is defined by (1.19).

Proof of Lemma 3.3. Since F'(z) vanishes in |z| < h,h <1, then the

1 11
polynomial Q(z) = 2"F(=) does not vanishes in |z| < o > 1. Thus
z
applying Lemma 3.2 to the polynomial Q(z), we have
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(1= 18581 + 1) + 2 (n = Dy — 52

1Q'(2)] < h i |F'(2) + nmrz""!
(1= 18DUBl + h?) + E(U — Dy - 52
5 _ 1/hﬁz_1 _ 677:1 and v = 2/h2 261_2 _ 267]_2 —
e nha, nn—1h? @,  nn-1)h%,
en,

(L= 1BDUBI+ h?) + h(n = DIy = 5|

QN < B8 + 1) + Al = 1y = B2

‘ |F'(2) + nmrz""!

which proves Lemma 3.3.

Lemma 3.4. If F' € F,, , then for every [, 0 <! < 27 and q > 0

21

F(e®)]9de (3.4)

2 27
/ / 19/ (e®) 4 ' F' (") |4dOdI < 2mn? /
0 0

0

The above lemma is due to Aziz [2]

Lemma 3.5. If I’ € F}, , then for every [, 0 <[ < 27 ,q > 0 and for any
complex number 7 with |7] <1,

2T 27 2T
/ / 1Q(¢®) + ¢ {F(¢®) 4+ pmrc @D} (4404l < 27y / |F(c®)]2d0
0 0 0

(3.5)

Proof of Lemma 3.5. By applying Lemma (3.4.) to the polynomial
F(z) = F(z) + m72z", we can easily get the proof of Lemma 3.5.

Lemma 3.6. Let z be any complex and independent of [ , where [ is any
real, then for q > 0

27 27
/ 11+ ze™|dl = / e + | 2| |2l (3.6)
0 0

Lemma 3.6 is due to Gardner and Govil[5].
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4 Proofs of Theorems

Proof of Theorem 2.1. As F(z) does not vanishes in |z| < h,h > 1
hence, by Lemma 3.2. we have

DIF'(2) + mypmz"t < |Q/(2)] (4.1)

where I' is defined by (1.17) and m = ‘Tlﬂla32|F(z)|

For each Real [ and G > r > 1, we have

’G—i—@il’ 2 ’T—i—eil’

Then, for every q > 0, we have

2m 2w
/ |G+ e™|dl > / Ir + €|l (4.2)
0 0

For points €©, 0 < © < 2, for which F'(¢®) + nm7e!™=1® does not

Q/(eie)
F/(c®) + ymrelr 16 and r =T, then by (4.1),

vanishes, we denote G = ‘

we for every q > 0

2
/ |Q’(ei@) + e {F’(eie) + anei("’l)@} |qdl
0

(") + i(”‘l’e\q/% ) vt a
= |F'(e mre . . e
m o | F'(e©) + nmreitn—1)O
27 0 q
) Lo Q’(e ) )
= |F'(e® i 1>9q/ : : dl by (3.6
|F'(e"®) + nmre | || Fe®) £ pmreie +e y  (3.6)

2
= |F’(ei@) + anei(”_l)e‘q/ |G+ eil‘qdl
0
2
> |F'(eie) + nmrei(”_l)@‘q/ ’T + eil|qdl by (4.2)
0

Hence,

27 21
/ }Ql(ei@) + eil {F/(eiG) + anei(n—l)@qul > ‘F/(ez@) +nm76i(n—l)®|q/ |F + eil}qdl
0 0
(4.3)
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for €'®, 0 < © < 2m, for which F'(e'®) + nm7e!"=1® does not vanishes.
For points €'®, 0 < © < 27, for which F’(e*®) + nm7e™~Y® vanishes, (4.3)
trivially holds. Hence, using (4.3) in Lemma 3.5, we get for each q > 0,

2

2 27
/ ’F’(eie) + anei(”_l)G}qd@/ T+ eil|q < 27r77q/ |F(e©)|4dO
0 0 0

which is equivalent to

1 1

21 - 2w - 27 -

{/ |F/(e") +nmrei<n1>9\qd@}q < n{i/ \F+e“\qdz} q{/ |F(ei®)|qd@}q
0 21 Jo 0

(4.4)
which proves Theorem 2.1.

Proof of Theorem 2.6. Since F'(z) vanishes in |z| < h,h <1, F(z) also
vanishes in |z| < h,h < 1. Hence, by Gauss-Lucas Theorem,

1
() = nQ(2) —2Q(2) (4.5)
: . 11 : : :
vanishes in |z| > o > 1. Further, since F'(z) vanishes in |z| < h,h <1,
we have by Lemma 3.3.
Q'(2)] < S|F'(2) + nmrz"""| (4.6)

= S{|F'(z)| +tym} for |z|=1.

where S is defined by (1.19) and |7| = ¢.
For |z| = 1, we also have

|F'(2) = [nQ(2) — 2Q'(2)]. (4.7)
Using (4.7) in (4.6) , we have on |z| =1
Q' (2)] < S{InQ(2) — 2Q(2)] + tym} (4.8)
Thus, by (4.5) and (4.8),
e 2

~ 5{[nQ(z) — 2Q'(2)[ + tym}
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is analytic in |z| < 1,|¢(z)| <1 on |z] = 1 and ¥(0) = 0. Therefore,
1+ S(z) is subordinate to the function 1+ Sz for |z| < 1. Hence, by a
well known property of subordination [9], we have for every q > 0

2 2w
/ 11+ Sy(e®)[2de > / 11+ Se®©|9de (4.9)
0 0

Now,

2Q'(2) nQ(2)

1+ S9(2) =1+ nQ(2) — 2Q'(2)| + tym - nQ(2) — 2Q/(2)| + tnm

which implies for |z| = 1,

Q=) =1+ S¥(2)l| InQ(2) — 2Q'(2)| + tym
=1+ SY@)[|F'(2)| +tgm by (47)

As |F(2)| = |Q(z)| on |z| = 1, by preceding inequality we have

n|F(2)| = 14+ SP@R)F' () +tnm on |z] =1 (4.10)

Then for every q > 0 and 0 < © < 27, we have

27 27
nq/ |F(eie)|qd@ = / 11+ S@Z)(eie)|q{ ‘F'(ei®)| + tnm}qd@
0 0

Applying Holder’s inequality to the above inequality, we have for
r>1,s>1withr !+ s! =1 and for every q > 0

1 1
nq/jﬂ |F(e®)]%de < {/O% 11+ Sz/;(e@'@)\”d@}; {/0% {|F' ()] +tnm}5‘1d@}g

which implies

1 1 )
o et ([ s ey
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using (4.9) in the above inequality , we have

1 1 1

27 - 2T R 2T -
n{/ \F(e’@)]qd@}q < {/ it +sei@\”d@}qr {/ {|F'(®)) +tnm}8qd®}sq
0 0 0

by choosing argument of 7 as in the proof of Theorem 2.4 | we get the
above inequality as

1

1 1
2 - 27 —_ 27 —_
77{/ |F(eie)|qd@}q < {/ ‘1+Seie‘rqd@}qr {/ ‘F/(eié))_{_Tnmei(n—l)(%}sqd@}sq
0 0 0

which proves the theorem.
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