
Faster processing of Multi-Tenant Distributed application

and log data from heterogeneous Data-Sources
Sripada H Ravindranath1 and Dr S Saravana Kumar2

1Department of Computer and Engineering, CMR University, Bangalore.

2Professor, Department of Computer and Engineering, CMR University, Bangalore.
1hrsripad@gmail.com 2saravanakumarmithun@gmail.com

Abstract - With the introduction of cloud-based computation, many like-minded enterprise organizations are

migrating applications to cloud and cloud oriented infrastructure platform. In any given system Transactions-Logs,
Application-Logs, System/Machine-Logs are one of the important key factors in identifying and managing the

customers/business related understanding and the overall-status of the applications running on the cloud/cloud/on-

premises hybrid platform environment. They are most vital for numerous scenario-based situation, such as SLA

agreements of the business, service-oriented stability assessment of the business, A proper root cause analysis of the

issues/impediments etc and user-based activity and its profiling. Therefore, it is essential and important to manage the

massive amount of numerous types of logs which are collected on the cloud/Hybrid premises and get insights from their

value. They are most vital for numerous scenario-based situation, such as SLA agreements of the business, service-

oriented stability assessment of the business, A proper root cause analysis of the issues/impediments etc and user-based
activity and it's profiling.

Key Words: Multi-Tenant, Latency, Tagging, Message-queue, Classification, Categorization

1. Introduction

This paper focus on handling this varied data sources from different environment into a parallel processing

module/ methodology which can do the justification of putting them into a varied mechanism to analyse over a

time for near-real/ real-time needs. Often it happens that in a multi-tenant architecture the tenant refers to the

Actual-Owners of a data segment which is the original source of respective client/ System/Operating-System/

Source-Data-Systems etc. The whole idea is to provide a varied mechanism into a granular way to handle the

aspects, processing mechanism, distributed log and provide a caching service in the end to faster retrieval and

making things easier and relevant for the downstream- ML/AI engine to use the content relatives information with

respect to performing LLAP/Low-Latency-Analytical- Processing as needed for faster processing on relevant tenet

data on-demand basis.

This paper will also discuss about different possibilities, mechanism related storing, processing, retrieving, under

the hood architecture, hand-off between 2 connected processing unites etc to make things clearer from upstream

to- downstream consumptions. Based on the broader areas of focus mentioned above we can classify the symbolic

processing units to below categories

1. Capturing events/source with respective tagged values

2. Tenant Separation at source and processing

3. Classification of heterogenous data sources and its characteristics

4. Building Unified processing capability

5. No feed forwarding for data

6. Segregated Analysis and pipelined processing of interim results

7. Collating results in streams

8. Publishing the results for respective tenant

2. Literature survey

Since the inception of BigData Technologies and Cloud- oriented platform. Its has become the most prominent

feature and necessity for enterprise-organization to handle the massive amount of data which needs to be

accumulated from multiple sources. These data sources may not only be limited to the transaction data related to

a specific-transaction performed by the vendor/client/customer etc. It goes beyond transaction, and it is subjected

to the items like code layout transactions, application logs, functional logs, server logs, VM-performance logs,

Api/client/server logs, load-balancer information, metadata management layer performance stack logs etc.

The need for storing, processing and using those app/ machine logs are need of the hour due to its inference towards

the metrics it provides of the tenet data processing which might be done using homomorphic way or in a discrete

way. These specified mechanisms are carried out in current industry standards but not in unified way. There are

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:45

mailto:1hrsripad@gmail.com
mailto:2saravanakumarmithun@gmail.com

tons of tools, processing utilities etc are being used in current day Software enterprises to make these work which

is not feasible in nature for long run, not a cost effective way and also requires numerous skilled professionals for

each minuscule part of the processing component being used for this purpose. Often this leads to delayed handover,

struck in between component situation and migration challenges on regular intervals on demand changes as needed

for modern requirements

In this paper we will focus us on using the platform and data generation using Cloud technologies like Microsoft-

Azure/Amazon-Web-Services/Google-Cloud-Platform etc. to mimic the same situation across the three platforms

as and when needed to eradicate the challenges of different offerings and also to keep the solution platform

agonistic. Data Collected, processed will be adhering to the HIPPA, SOC-2 compliance.

3. Methodology

A. Capturing events/source with respective tagged value: The Source system can be a cloud/on-

Premise/Database/ logger system which can be running on any given base OS etc with a Logging or may not

be with a logging system. This is identified with a Unique Identifier-Value associated with it.

Fig1. Event Capture mechanism from Source

As Showcased in Fig1. Each source systems are tagged with unique executor based event tagging mechanism

and those Executors can be Local or Remote in nature. The benefit of this executor is that is can be any source

catering mechanism which has capability to generate the Unique- Identity for every event under each and every

tent it is being used for. The unique identity is based on OS, Type of system, Type of data, Type of processing,

Type of executor etc.

A Event Adapters are collaborator of these such events and then unifies them and process them to collaboration

Bus, which is used for adding refined values depending of the nature of data capturing done at the executor level.

Target processing is the channel bus which gets the data from the Collaboration bus which is then fed into next

downstream consumption for processing layer of the events/action streams. Tagged values referred to the values

which comes associated with the event in the collaboration bus. This helps in capturing/managing the unique of

the event/data across the system from upstream till downstream mechanism.

B. Tenant Separation at source and processing: Tenant separation is the critical and very important piece of

processing that is done from the help of the Event listeners and Event adapters. Tenant Separation is either

done at the event capturing level or at event adapter processing level.

Event capturing level: The Event capturing is the process of capturing the

events/attributions of the respective event which comes with predefined attribution values like

eventtype, event-attribute name, time- interval definitions of the attributes etc. These values are

captured from the event listens which carefully process these information into possible unique

identifiers of the system. The collation of the different attributes into non- negated unique identifiers

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:46

which acts single source of truth for the underlying the consistent information system must be handled

by message-queue/event-queue bus architecture which has highest-mode of fault-tolerant-high-

availability.

Event adapter processing level: The event which is captured in tagged values without any discrepancy

in the unique identifier’s values in the Adapter level. This is usually done for the events which are not

captured as needed in Event-Capturing level. This process involves the mechanism of event-message

queue and collaboration bus integration which is needed for the downstream needs.

The below table TABLE1 provides the systematic evaluation of event captured in both ways. It describes the

functionalities supported by the both the mechanisms.

TABLE I

COMPARISON METRICS OF EVENT CAPTURING MECHANISM

Sl.

No.

Capturing Mechanism of Data-Events of Sources

Mechanism Event-

Capturing

level

Event-

Adapter level

1 Tagging

mechanism Support

Supported Partially Supported

2 Message

Queue

Aggregation

Not Supported Fully Supported

3 Efficiency Efficient Highly Efficient

4 Supported in Cloud

systems

Yes Yes

5 Support for

heterogenous events

Partially Yes Yes

C. Classification of heterogenous data sources and its characteristics: The Classification of the heterogenous

data is needed for the LLAP processing depending on the mulct tenant architecture. This is high likely to be

used in cross processing of the API layer in the enterprise use cases of the ML/AI applications. The

Classification of the heterogenous data sources can be defined based on the below inputs

1. Mode of Event Data:

Stream data or Batch or Near Real time data mode to be applicable for this requirement.

2. Type of Data in arrival:

Formatted, Non-Formatted, information which comes with supervised values embedded into it,

Interdependency of the values within it

3.Meta-Information separated at arrival:

In some cases the values like Metadata and Attributes and Entity Dictionary of the Data might be shared or

procured separately from the actual Data-Event

Characteristics of the heterogenous data to be determined with respect to the type of data being consumed and

the mode of the data being processed from the system at the time of capturing the event-data from the sources

which are discussed below

1. Semantic-Correspondences: The data being captured will be evaluated for Instance

level correspondences and Multi-variate Hierarchical Correspondences. The semantics observed out

of these values are ideally captured along with semantic values and relevant retrospective measures to

cumulatively address the metric generated over a time form the same sources.

2. Terminological Heterogeneity: This is part of the data conceptualization process in

which the Named-Entities of data-event are evaluated for being same the event type from different

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:47

source or not. This is done to abstract the semantic feature which is going to be injected into the

mechanism of the Target processing system.

3. Pragmatic Conclusion: The Pragmatic Conclusion is a mode of approach in which how

and when exactly the representation of the expected variation of the data is seen. Usually observed in

the multi-tenant and complex event processing like Homomorphic encrypted value processing and

Attribute-entity oriented Dictionary generation for the underlying process

Pragmatic Processing

D. Building Unified processing capability: The need of building semantic and unified layer is to have a dedicated

approach of processing the data streams/batches and its events in to a single multivariate layer instead of

breaking it into numerous nuclear processing events which is not efficient and const effective in nature.

The idea or rationale building the unified process is explained below.

1. To have unified capability for all tenants to view, manage the inference

2. Dedicated bandwidth as and when needed for Processing layer to cater the needs

3. Centralized mechanism to handle any processing events

4. No feed-forwarding mechanism for multivariate data

5. Reduced License cost and managed view of under the hood processing

6. All processing under one umbrella of Security and Data protection compliance

Some of the gains and Trade-offs of having unified processing layer is provided below in TABLE2

TABLE 2

COMPARISON MATRIX

Sl. No Feature Comparison

Methods Traditional Approach Proposed Approach

1 Storage Fixed, Doesn’t Change Dynamic, Changes as per

Needs like cost, Type,

Urgency etc.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:48

2 Upper Threshold Upper cap limited, can’t change

beyond a limit

Upper cap limited only by

infrastructure size and not by

processing capacity

3 Efficiency Efficient for limited and known

bandwidth processing

Highly efficient for more

complex and heterogenous

processing. Less efficient for

limited and mundane processing.

4 Cost Less Cost High Cost for traditional

processing. Less costly for

heterogenous processing

5 Code Complexity Less Complex Modular Complex

6 Automated

Management

Complex for handling Very easy and Cruise

control management

7 Preferable for Super

heavy processing

Not a right fit Great Fit for such processing

8 Centralized

Governance

Difficult to build but doable Easy to govern the entire system

up to thread level

9 Built in Services Depends on vendor No dependency on vendor to

build

The main purpose of handling all the events processing is to have dedicated CPU, Memory, Storage, Network

under the single hood for the structure which is going to be used for the larger purpose. The below diagram Fig2

explains the stack visually

Fig. 2 Stack of proposed Architecture
E. No feed-forwarding mechanism for multivariate data: The idea of Multilayer-feedforward neural- network

to perform the well-known Sammon nonlinear projection. The learning algorithm is an extension of the

backpropagation algorithm. A purpose of the network-based conjunctions over the traditional Sammon

algorithm is that the trained network is able to perform different type of patterns as and when needed based on

the variation on the inputs parameters provided towards the desired modelled approach. Experimental results

indicate that the projection network has good generalization but this is not necessarily an improvement for this

kind of stack as it involves many such proportions from particular evolution values. Lower The bound, together

with the dedicated-generalization capable values, it provides overall improvement to the system under

study/event-under study to make things better and capable than the traditional methods.

F. Segregated Analysis and pipelined processing of interim results: The results obtained from the collated

processing needs to be always combined to avoid many such iteration for intermediate-key value-pair to keep

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:49

and feed-forward mechanism. This helps in many such iteration which might occur due to normalized values

of multi meant values. The overall segregated abacuses is shown in below diagram Fig3

Fig. 3 Segregated Analysis

The interim results are such results which are obtained from the handoff from one thread/process in the entire

system which comprises of numerous process events which are interrelated with each other. The process of handoff

between the two or more different process of the interim results are called ideally as handover data process. This

is needed in orchestrated manner. This is essentially a pipelined process.

The pipelined process can be designed in Dag or a workflow in nature. A sample code module is provided below

""" try:

queue_runs = await

self.client.get_runs_queue(id=work_queue.i d,

limit=5)

)

submittable_runs.extend(queue_runs)

except ObjectNotFound:

self.logger.error(“error”) """

The larger implementation of the above code is provided in the below snapshot of the python code

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:50

Fig. 4 Code Snippet

G. Collating the results in Stream: The collation of the Data from the systems is a unique method in which the

overall data from the multiple tenant process threads are collated. The best part is that all the data are proceed
from same worker and event thread, but they are bifurcated at the event data level. This is possible because of

homomorphic encryptions.

H.

The collective usage if collation in stream to reduced time to gather the aggregated results needed for waiting

threads in ML/AI engines which are LLAP in nature and strongly Low-latency-native computation which are

occasionally resource hungry in nature due to the enormity of complexity associated with the data.

I. Publishing the results for respective tenants:

The last part of the proposed systems is to take a collated results and push them back to consumption layer of

the system. The publishing these results are taken care by 3 step process.

1. Update API Specs and Update the API cache

The API specs are always updated once the underlying processing engine updates the status of requested

compute ID. The Cache of the respective last call gets invalidated, and it updates the new cache with the newest

values

2. Update the client Sensor:

The Client sensor is the listener from client/Requester which had requested for the data/submitted the job

or waiting for the results. This is the listen which is checking for the cache/requested job id on its status if the

status is supposed to be updated based on previous step it is gets updated asynchronously.

3. Update the Job Status Pool:

The Job pool is the largest pool of current and ongoing jobs pool of information which has the highest

lookup from all the relevant and dedicated services in the system. As part of the process, The JOB ID and queue

and Specs/Cache status gets updated and thus marking the end of the processing.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:51

4. Conclusions:
The Overall processing capacity increases with increase in the best practices mentioned in this paper. Tighter

the module processing better will be the throughput and latency of the downstream layer. Few of the key

observation made in this analysis is provided below

1. Complexity remains constant after 70%-80% processing is complete

2. Initial Warm-up time decreases with increase in similar use case scenarios

3. Latency gets better with component evaluation fine tuning parameters in the processing and orchestration-

layer.

Fig. 5 Performance Plot

The plot obtained from the data after same events getting processed is shown above in Fig5.

Future Improvements

1. There is a huge scope to improve the performance in preprocessing stage by aggregating the typesource

information

2. Better results on metadata management can be achieved by connecting the semi-structured API layer with

collated metadata fields in processing layer

3. Fine Tuning can be done in Collation of result to reduce time by adopting the much optimized algorithm 4.

Improvement in Space Complexity can be achieved by pre analyzing the latency matrix of the process.

REFERENCES

1. M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm for building

scalable distributed systems. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles, pages 159–174, New York, NY, USA, 2007. ACM 2. https://www.akamai.com Akamai Org

3. S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin elevated channel low-temperature polySi

TFT,” IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.

4. J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou. Boxwood: abstractions as the

foundation for storage infrastructure. In OSDI’04: Proceedings of the 6th conference on Symposium on

Opearting Systems Design & Implementation, pages 8–8, Berkeley, CA, USA, 2004. USENIX Association

5. M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative Caching: Using Remote Client Memory to

Improve File System Performance. In Proceedings of the First Symposium on Operating Systems Design

and Implementation, pages 267–280, Nov 1994 6.

(2002) The IEEE website. [Online]. Available: http://www.ieee.org/

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:52

http://www.akamai.com/
http://www.akamai.com/
http://www.ieee.org/

7. Posix. http://standards.ieee.org/regauth/posix/.

8. FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

9. B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D.

Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–

1288, 2008

10. Javaid, A. Q. Niyaz, W. S., & Alam, M. A.: Deep learning approach for network intrusion detection system,

In Proc. 9
th

EAI Int. Conf. Bio-Inspired Inf. Commun. Technol. (BIONETICS), 21-26 (2016).

11. Kim, J. J., Kim, H. L., Thu, T., & Kim, H.: Long short term memory recurrent neural network classifier for

intrusion detection, In Proc. Int. Conf. Platform Technol. Service (PlatCon), 1-5, (2016).

12. Ali, F. A. B. H., & Len, Y. Y.: Development of host based intrusion detection system for log files, In Proc.

IEEE Symp. Bus., Eng. Ind. Appl. (ISBEIA), 281-285 (

13. Topallar, M. M., Depren, O., Anarim, E., & Ciliz, K.: Host-based intrusion detection by monitoring Windows

registry accesses,’’ in Proc. IEEE 12
th

Signal Process. Commun. Appl. Conf., Apr. 728–731 (2004)

14. Pise, N.: Application of machine learning for intrusion detection system. Information Technology in Industry,

9(1), 314-323 (2021)

15. Hsu, Chih-Yu, Shuai Wang, & Yu Qiao.: Intrusion detection by machine learning for multimedia platform."

Multimedia Tools and Applications 80(19), 29643-29656 (2021).

16. Jayasri, P., Atchaya, A. M. Sanfeeya P., & Ramprasath, J.: Intrusion detection system in software defined

networks using machine learning approach." International Journal of Advanced Engineering Research and

Science 8(4), (2021).

17. Bozcan, I., Oymak, Y., Alemdar, I. Z., & Kalkan, S.: What is (missing or wrong) in the scene? A Hybrid

Deep Boltzmann Machine for Contextualized Scene Modeling, in 2018 IEEE International Conference on

Robotics and Automation (ICRA), 1-6 (2018).

18. Deng, L.: Deep learning: Methods and applications, Found. Trends Signal Process. 7(3/4), 197-387 (2014).

19. Aghaei, E., & Serpen, G.: Ensemble classifier for misuse detection using N-gram feature vectors through

operating system call traces,’’ Int. J. Hybrid Intell. Syst., 14(3), 141–154 (2017).

20. Borisaniya, B., & Patel, D.: Evaluation of modified vector space representation using ADFA-LD and

ADFAWD datasets, J. Inf. Secur., 6(3), 250, 2015.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 08 (AUGUST) - 2023

http://ymerdigital.com

Page No:53

http://standards.ieee.org/regauth/posix/

