On Vertex Strongly*-Graph of some Flower Graphs

P Yuvashanmuga Shree ${ }^{\mathbf{1}}$, V Divya ${ }^{2}$
${ }^{1}$ Department of Mathematics, Assistant Professor of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.
${ }^{2}$ PG Scholar, Department of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.

Abstract

A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a vertex strongly*-graph if there exists a bijection $f: E \rightarrow\{1,2, \ldots . q\}$, such that for every vertex $u \in V, \sum f\left(u v_{i}\right)+\Pi f\left(u v_{i}\right)$ are distinct, where $\mathrm{u} v_{i}$ are the edges incident to the vertex u . In this paper, we will be proving that some flower graphs are vertex strongly*-graph.

1. Introduction

A graph $G(V, E)$ is a set of vertices V and edges E, each vertex $e \epsilon E$ has its end vertices in V. The graph is called a connected graph if there is a path between every two vertices. A graph with no self-loops and multiple edges is called a simple graph. Graph theory has a lot of applications in science and technology. Graph labeling is applied in cryptography, data science, and blockchain. Graph labeling is introduced by Rosa [1]. Gallian [5] gives different kinds of labeling. There are various kinds of edge labeling. One such work is the vertex strongly*-graph, which is introduced by Beaula and Baskar Babujee [2]. Baskar Babujee et. Al. [4] have proved that wheels, paths, crowns, fans, and umbrellas are vertex strongly*-graphs. In this paper, we will prove that some flower graphs are vertex strongly*-graphs.

Definition 1.1: Vertex strongly * -graph [2]

A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a vertex strongly*-graph if there exists a bijection $f: E \rightarrow\{1,2, \ldots . q\}$, such that for every vertex $u \in V, \sum f\left(u v_{i}\right)+\Pi f\left(u v_{i}\right)$ are distinct, where $u v_{i}$ are the edges incident to the vertex u.

Definition 1.2: Flower graph [3]

The flower graph $F l_{n}$ is obtained from a helm graph H_{n} by joining each pendant vertex to the apex of the helm graph. There are three types of vertices, the apex of degree $2 n, n$ vertices of degree four, and n vertices of degree two. The flower graph $F l_{n}$ has $2 n+1$ vertices and $4 n$ edges. For example, See Figure 1. Flower graph $F l_{8}$

Figure 1: Flower graph $F l_{8}$

Definition 1.3: Sunflower graph [6]

A sunflower planar graph $S f_{n}$ is obtained from a wheel graph with vertices $a_{0}, a_{1}, a_{2}, \ldots, a_{n}\left(a_{0}\right.$ is central vertex and $a_{1}, a_{2}, \ldots, a_{n}$ are rim vertices) and additional vertices $b_{1}, b_{2}, \ldots, b_{n}$ such that b_{j} is joined to a_{j} and a_{j+1} is taken modulo n. For example, See Figure 2. Sunflower graph $S f_{8}$

Figure 2. Sunflower graph $S f_{8}$

2. Main Results

Theorem 2.1

The flower graph $f l_{n}$ is a vertex strongly*-graph.

Proof:

Let $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set and, $E=\left\{\left(v_{0}, v_{i}\right),\left(v_{0}, u_{i}\right),\left(v_{i}, u_{i}\right) 1 \leq i \leq n\right\} \cup\left\{\left(v_{i}, v_{i+1}\right),\left(v_{n}, v_{1}\right) 1 \leq i \leq n-1\right\}$ be the edge set of the flower graph $f l_{n}$.

Labeling the edges of the flower graph $f l_{n}$ using a bijective function g defined as follows,
$g: E \rightarrow\{1,2,3, \ldots, 4 n\}$, such that
$g\left(v_{0}, v_{i}\right)=i, 1 \leq i \leq n$
$g\left(v_{0}, u_{i}\right)=n+i, 1 \leq i \leq n$
$g\left(v_{i}, u_{i}\right)=2 n+i, 1 \leq i \leq n$
$g\left(v_{i}, v_{i+1}\right)=3 n+i, 1 \leq i \leq n-1$
The following Figure 3 is an example of the edge-labeled flower graph $f l_{8}$

Figure 3: Edge-labeled flower graph $f l_{8}$
To prove that the flower graph $f l_{n}$ is a vertex strongly*-graph,
The vertex calculation for each vertex is given below,
$f\left(v_{0}\right)=(2 n)!+n(2 n+1)$
$f\left(v_{1}\right)=9 n+3$
$f\left(v_{i}\right)=8 n+4 i-1+(i)(3 n+i-1)(3 n+i)(2 n+i), 2 \leq i \leq n$
$f\left(u_{i}\right)=3 n+2 i+(n+i)(2 n+i), 1 \leq i \leq n$

To prove that the above calculations are distinct for each vertex.
Case (a): Consider $f\left(v_{i}\right)$ and $f\left(v_{i+1}\right), 2 \leq i \leq n-1$
$f\left(v_{i}\right)=8 n+4 i-1+(i)(3 n+i-1)(3 n+i)(2 n+i)$,
$f\left(v_{i+1}\right)=8 n+4(i+1)-1+(i+1)(3 n+i+1-1)(3 n+i+1)(2 n+i+1)$
$f\left(v_{i+1}\right)=f\left(v_{i}\right)+4+(3 n+2 i)(3 n+i+1)(2 n+i+1)+i(5 n+2 i+1)(3 n+i-1)$
$f\left(v_{i+1}\right) \neq f\left(v_{i}\right)$ for $2 \leq i \leq n-1$
Case (b): Consider $f\left(u_{i}\right)$ and $f\left(u_{i+1}\right), 1 \leq i \leq n$
$f\left(u_{i}\right)=3 n+2 i+(n+i)(2 n+i)$
$f\left(u_{i+1}\right)=3 n+2(i+1)+(n+i+1)(2 n+i+1)$
$f\left(u_{i+1}\right)=3 n+2 i+(n+i)(2 n+i)+3 n+2 i+3$
$f\left(u_{i+1}\right)=f\left(u_{i}\right)+3 n+2 i+3$
$f\left(u_{i+1}\right) \neq f\left(u_{i}\right)$ for $1 \leq i \leq n$

Therefore, the vertex calculation is distinct for each vertex.
Hence the flower graph $f l_{n}$ is a vertex strongly*-graph.

Theorem 2.2

The Sunflower graph $S f_{n}$ is a vertex strongly*-graph.

Proof:

Let $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}\right\}$ be the vertex set and, $E=\left\{\left(a_{0}, a_{i}\right),\left(a_{i}, a_{i+1}\right),\left(a_{n}, a_{1}\right)\left(b_{i}, a_{i}\right),\left(b_{i}, a_{i+1}\right),\left(a_{0}, a_{n}\right),\left(b_{n}, a_{n}\right),\left(b_{n}, a_{1}\right) 1 \leq i \leq n-\right.$ $1\}$ be the edge set of the Sunflower graph $S f_{n}$.

Labeling the edges of the Sunflower graph $S f_{n}$, using a bijective function g as defined below.
$g: E \rightarrow\{1,2,3, \ldots, 4 n\}$, such that
$g\left(a_{0}, a_{i}\right)=i, 1 \leq i \leq n$
$g\left(a_{i}, a_{i+1}\right)=n+i, 1 \leq i \leq n-1$
$g\left(a_{1}, a_{n}\right)=2 n$
$g\left(b_{i}, a_{i}\right)=2 n+2 i-1,1 \leq i \leq n-1$
$g\left(b_{i}, a_{i+1}\right)=2 n+2 i, 1 \leq i \leq n-1$
$g\left(b_{n}, a_{n}\right)=4 n-1$
$g\left(b_{n}, a_{1}\right)=4 n$

The following Figure 4 is an example of the edge labeled Sunflower graph $S f_{8}$.

Figure 3: Edge labeled Sunflower graph $S f_{8}$

To prove that the Sunflower graph $S f_{n}$ is a vertex strongly*-graph,
The vertex calculation for each vertex is given below,
$f\left(a_{0}\right)=n!+\frac{n(n+1)}{2}$
$f\left(a_{i}\right)=6 n+7 i-4+i(n+i-1)(n+i)(2 n+2 i-2)(2 n+2 i-1), 2 \leq i \leq n$
$f\left(a_{1}\right)=9 n+3+8 n^{2}(2 n+1)(n+1)$
$f\left(b_{i}\right)=4 n+4 i-1+(2 n+2 i-1)(2 n+2 i), 1 \leq i \leq n$

To prove that the above calculations are distinct for each vertex.
Case (a): Consider $f\left(a_{i}\right)$ and $f\left(a_{i+1}\right), 2 \leq i \leq n$
$f\left(a_{i}\right)=6 n+7 i-4+i(n+i-1)(n+i)(2 n+2 i-2)(2 n+2 i-1)$
$f\left(a_{i+1}\right)=6 n+7(i+1)-4+i(n+i+1-1)(n+i+1)(2 n+2(i+1)-2)(2 n+$ $2(i+1)-1)$,
$f\left(a_{i+1}\right)=f\left(a_{i}\right)+7+2(n+2 i)(n+i+1)(n+i)(2 n+2 i+1)$
$+12 i(n+i-1)(n+i)^{2}$
$f\left(a_{i+1}\right) \neq f\left(a_{i}\right)$ for $2 \leq i \leq n$
Case (b): Consider $f\left(b_{i}\right)$ and $f\left(b_{i+1}\right), 1 \leq i \leq n$
$f\left(b_{i}\right)=4 n+4 i-1+(2 n+2 i-1)(2 n+2 i)$,
$f\left(b_{i+1}\right)=4 n+4(i+1)-1+(2 n+2(i+1)-1)(2 n+2(i+1))$,
$f\left(b_{i+1}\right)=f\left(b_{i}\right)+8 n+8 i+6$
$f\left(b_{i+1}\right) \neq f\left(b_{i}\right)$ for $1 \leq i \leq n$

Therefore, the calculated values are distinct for each vertex.
Hence Sunflower graph $S f_{n}$ is a vertex strongly*-graph.

Conclusion:

This paper gives the results on vertex strongly*-graph on some flower-related graphs. This work can be extended to different graph structures. This labeling has good applications in radio signal assignments, network analysis, cryptography, and other engineering-related fields.

References

1. A Rosa, On certain valuation of the vertices of a graph, Theory of graphs, Proceedings of the Symposium, Rome, Gordon and Breach, New York, 349-355, 1967.
2. J Baskar Babujee and C Beaula, On vertex strongly*-graph, Proceed. Internat. Conf. Math. and Comput. Sci., 25-26, July 2008.
3. A Fathima Banu, S Chelliah and M P Syed Ali Nisaya, Even vertex tetrahedral mean graphs, World Scientific News, Volume 156, 26-39, 2021
4. J Baskar Babujee, K Kannan and V Vishnupriya, Vertex Strongly *-graphs, Internat. J. Analyzing Components and Combin. Biology in Math., Volume 2, 19-25.
5. J A Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 2020.
6. M Majeed, N Idrees, S Nasir, F B Farooq, On certain prime cordial families of graphs, Journal of Taibah University for Science, 14:1, 579-584.
DOI 10.1080/16583655.2020.1756561.
