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Abstract: 

The influence of velocity slip, nanoparticle volume fraction parameter, chemical 

reaction, radiation absorption and non-linear thermal radiation on MHD three-dimensional 

heat and mass transfer boundary layer flow over a stretching sheet filled with water-based 

alumina nanofluid with irregular hear source is analyzed in this paper. To get more 

meaningful results we have taken nonlinear thermal radiation in the heat transfer process. 

Using similarity variables the non-linear partial differential equations converted into ordinary 

differential equations and are solved by using Finite-element method with quadratic shape 

functions. It is found that, higher the radiation absorption larger the primary velocity and 

smaller the secondary velocity in the flow region. The thickness of the thermal boundary 

layer grows and solutal boundary layer decays with increasing values of Q1. Both velocity 

profiles f  and g are enhanced, temperature and nanoconcentration reduces in based nanofluid 

as the nanoparticle volume fraction () increase. 

Keywords : Alumina-water, Nanofluid, Stretching Sheet, Radiation Absorption, Non-linear 

Thermal Radiation, Non-Uniform Heat Source, Finite Element Method. 

Nomenclature 
Cp        specific heat at constant pressure    ks         thermal conductivity of nanoparticle 

w uniform constant concentration     free stream concentration 

K          permeability parameter    M         Magnetic parameter 

Nux Nusselt number     Pr  Prandtl number 

Sc        Schmidt number                                                               Shx        Sherwood number 

qr radiative heat flux     T          temperature of the fluid                          

Tw        uniform constant temperature    T∞       free stream temperature 

v          velocity in the y - direction                                                w          velocity in the z - direction 

k0         rate of chemical reaction                                                    u          velocity in the x – direction 

Cfx       Skin-friction coefficient in x- direction                                Cfy        Skin-friction coefficient in y-direction 

K*  Mean absorption coefficient(x,y,z) Cartesian coordinates      R         Radiation parameter 

w  temperature parameter    U0      suction parameter 

 nanoparticle volume fraction    a Stretching rate (constant) 

Rex     local Reynolds number in x –direction   Rey     local Reynolds number in y -direction 
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Greek Symbols 
θ              non-dimensional temperature    μf          dynamic viscosity of the base fluid 

()nf      dynamic viscosity of the nanofluid    ɳ           dimensionless similarity variable 

f  kinematic viscosity of the base fluid   ρf          density of the base fluid 

ρnf           density of the nanofluid    f         thermal conductivity of base fluid 

(ρcp)nf  heat capacitance of the nanofluid    φ           non-dimensional concentration 

σ             electrical conductivity    *          stephan-Boltzmann constant 

γ            tangential momentum coefficient                molecular free path 

Sub Scripts 
f              Base fluid, nf   nanofluid 

 

 

1. INTRODUCTION: 

Due to the rapid progress in thermal engineered systems and heat exchangers, 

enhancement of rate of heating or co0oling has always been in demand for heating /cooling 

industrial processes. Poor heat transfer properties of traditional coolants have been an 

indispensable challenge for the scientists and engineers in heat transfer media and limit their 

applications. In fact the working fluids play a major contribution in the cooling systems. 

Recently great interest has been developed to analyse the heat transfer via nanofluids. 

Nanofluids are actually homogeneous mixtures of base fluids and nanoparticles with size (10-

100nm) diameter. Nanofluids are considered as a promising way of enhancing the capability 

of heat transfer in fluids. In fact, the outstanding features of a nanofluid is its superior thermal 

conductivity comparing  to base fluids. Nanoparticles are made from different materials, such 

as oxide ceramics(Al2o3,Cuo),metal nitrides (AIN, SiN),Carbide ceramics(Sic, Tic),metal 

s(CuAg,Au),Carbons (e.g. diamomd, graphite, carbon, nanotubes, fullerence) and 

functionalized nanoparticles. The term Nano was introduced by Choi [7]. Nowadays carbon 

nanooparticles are utilized to their higher thermal conductivity . 

Buongiorno[3] has reported seven possible mechanisms associating nanofluid natural 

convection through moment of nanoparticles in the base fluid using scale analysis. These 

mechanisms are nanoparticle size, inertia, particle agglomeration, Magnus effect, volume 

fraction of the nanoparticle, Brownian motion, particle size, thermophoresis etc. Several 

authors, (Kleinstreuer and Feng [13], Liao [16], Ozerinc et.al. [21], Sudarsan Reddy and 

Chamkha[30,31],  Sudarsana Reddy et.al.[32], Sundar et.al.[33], Chamkha et al.,[4, 5], 

Kuznetsov and Nield [14]) have presented numerical and experimental studies to know the 

thermal conductivity enhancement of the nanofluids and Brownian motion and 

thermophoresis.  

Thermal radiation plays very significant role in the surface heat transfer when 

convection heat transfer is very small and it has specific applications in the design of various 

innovative energy conversion systems working at high temperature. In view of above 

applications, Dulal pal et al., [8] has analyzed the MHD boundary layer flow, heat and mass 

transfer of a fluid over a stretching sheet. Many investigators have been (Punnet Rana et al., 

[24], Cheng [6], Behseresht et al.,[1], Kuznetsov et al., [15], Rashidi et al., [25], Sudarsana 

Reddy et al., [29], Sreedevi et al., [28], Sheremet et al.,[27]. Nogrehabadi et al. [20], Pop et 

al. [23]) reported the flow, heat and mass transfer of nanofluid over a stretching sheet. 

Recently, Ghalambaz et al., [9], Sudarsana Reddy et al., [29] have been analyzed the 

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:276



influence of nanoparticle diameter and concentration on natural convection heat and mass 

transfer of Al2O3 –water, Ag – water and Cu – water based nanofluids over a vertical cone.  

One of the serious issues all over the world at present is sustainable energy 

generation. Solar energy through minimal environmental impact thus offers a solution. Solar 

energy is considered a natural way of obtaining heat, water and electricity from the nature. 

The radiation from solar energy and the resultant solar energized resources (wind, biomass, 

hydroelectricity, wave power etc.) give an explanation for most of the accessible renewable 

energy that is present on the earth. Solar energy is regarded as one of the best resource for 

clear and renewable energy. Nanoparticles through scattering of the incident radiation allow 

higher levels of absorption within the fluid. Therefore, the utilization of nanofluids in solar 

thermal system seems quite interesting area of research.  

Also energy equation in the present investigation is non-linear, i.e temperature 

function is not expanded about the ambient temperature. Sakiadis flow with nonlinear 

Rosseland thermal radiation, nonlinear radiative heat transfer in the flow of nanofluid due to 

solar energy have been studied by Pantokratoras and Fang [22], Mushtaq et al [18]. Shehzad  

et al [26], Mustafa et al [19], Hayat et al [11]. Hayat et al [12], Tasawar and Hayat et al [34], 

Reddy [17] have discussed nonlinear thermal radiation in three-dimensional flow of Jeffrey 

nanofluid. Mustafa et al [19] analysed nonlinear radiative heat transfer in the stagnation point 

flow of power law fluid. Recently Prabhavathi et al [23a] have discussed three-dimensional 

heat and mass transfer flow over a stretching sheet filled with Al2O3-water based nanofluid 

with heat generation/absorption. 

In this paper, an attempt have been made to investigate the impact of variation 

absorption and chemical reaction on nonlinear convective heat and mass transfer flow of 

Al2O3-water nano fluid past stretching sheet in the presence of irregular heat sources. The 

transformed boundary layer equations which represent the flow, heat and mass transfer  are 

solved numerically using finite element method with quadratic interpolation function. A 

velocity, temperature and nano-concentration have been depicted graphically for different 

parameters. The rate of heat and mass transfer on the wall have been numerically evaluated. 

 

2. MATHEMATICAL FORMULATION  

Consider the steady, three dimensional, viscous incompressible, laminar, MHD 

boundary layer flow of a nanofluid past a stretching sheet through nanofluid-saturated porous 

medium filled with water – based alumina nanofluid situated at z = 0. The coordinate system 

is chosen such that (u, v, w) be the velocity components along (x,y,z) directions respectively. 

We also consider a constant magnetic field of strength B0 in the z - direction. The flow is 

caused by the stretching of the sheet which moves in its own plane with the surface velocity 

ax, where a (stretching rate) is positive constant. The stretching surface is maintained at 

uniform temperature and concentration Tw and w and these values are assumed to be greater 

than the ambient temperature and concentration T and  respectively. Under the above 

assumptions, the governing equations describing the momentum, energy and concentration in 

the presence of thermal radiation, chemical reaction, take the following form: 
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Fig. 6.1 Physical model and Coordinate system 
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The dynamic viscosity nf , density, nf  thermal diffusivity nf , thermal conductivity  

nfpC )(  specific heat , nfk   heat capacitance , electric conductivity nf of the nanofluid and 

kinematic viscosity   of the base fluid are defined as follows: 
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The similarity transformations are introduced as  
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 By using Rosseland approximation for radiation, the radiative heat flux  is defined as 
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Where A11 and B1 are the coefficients of space and temperature-dependent heat source/sink, 

respectively. The case B1>0 corresponds to internal heat source and the case  B1<0 

corresponds to internal heat sink.       
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Quantities of practical interest in this problem are the local skin-friction coefficient 

along x and y directions, local Nusselt number and local Sherwood number. These are 

defined, respectively, as 
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Table 1. Thermo - physical properties of water and nanoparticles. 

 
    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. FINITE ELEMENT ANALYSIS: 

The finite element analysis with quadratic polynomial approximation functions is 

carried out along the radial distance across the circular duct. The behavior of the velocity, 

temperature and concentration profiles has been discussed computationally for different 

variations in governing parameters. The Galarkin method has been adopted in the variational 

formulation in each element to obtain the global coupled matrices for the velocity , 

temperature and concentration in course of the finite element analysis.   

Choose an arbitrary element fk and let fk, gk, k and k be the values of f, g,  and  

in the element ek 

We define the error residuals as  
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where fk, gk  k & Ck are values of f, g, θ & C in the  arbitrary element ek. These are 

expressed as linear combinations in terms of respective local nodal values.   
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where 
k

1 ,  
k

2 --------- etc are Lagrange’s quadratic polynomials.     

Galerkin’s method is used to convert the partial differential Eqs. (18) – (20) into 

matrix form of equations which results into 3x3 local stiffness matrices. All these local 

matrices are assembled into a global matrix by substituting the global nodal values of order 1 

and using inter element continuity and equilibrium conditions. . In solving these global 
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matrices an iteration procedure has been adopted to include the effects of pertinent parametric 

variations. The iteration process is continued until the desired convergence is  gained. 

 

Table 2.Comparison of  with previously published data.(Q1=0,A=w=1,A5=-A6=0) 

Parameter 
 

   
Hayat et al. [10] Present Study 

0.1 1.1 0.1 0.74084 0.74078 

0.3 1.1 0.1 0.70977 0.70979 

0.5 1.1 0.1 0.68279 0.68280 

0.1 1.2 0.1 0.74410 0.74412 

0.1 1.3 0.1 0.74775 0.74774 

0.1 1.4 0.1 0.75180 0.75179 

0.1 1.1 0.05 0.73328 0.73326 

0.1 1.1 0.15 0.74802 0.74804 

0.1 1.1 0.2 0.75482 0.75481 

 

4. RESULTS AND DISCUSSION 

 Comprehensive numerical computations are conducted for different values of the 

parameters that describe the flow characteristics and the results are illustrated graphically. A 

representative set of computational results are presented in Figs. 2a-17d. The thermo-physical 

properties of water and nanoparticles are shown in Table 3. The Comparison of present 

results with the results reported by Hayat et al. [10] is made and found good agreement which 

is shown in Table 2.  

Figs2a-d exhibit the variation of f,g, and C with Grashof number(G).An increase in 

G enhances the primary velocity and reduces the secondary velocity in the flow region. The 

temperature and concentration depreciate with increasing values of G. This is due to the fact 

that increase in G decays the t6hickness of the thermal and solutal boundaries. 

It is noticed that the velocity profiles f  and g are both decreases as the values of M 

increases in the boundary layer regime. This is due to the fact that the presence of magnetic 

field in the flow creates a force known as the Lorentz force which acts as a retarding force as 

a result the momentum boundary layer thickness decelerates through out the flow region 

(Figs. 3a&b). Both the temperature and concentration sketches elevate as the values of 

magnetic parameter increases (Fig. 3c&d). This is because of the fact that, to overcome the 

drag force imposed by the Lorentzian retardation the fluid has to perform extra work; this 

supplementary work can be converted into thermal energy which increases the thickness of 

the thermal boundary layer. 

Figs.4a-d represent f,g, and C  with porous parameter (K) .From the profiles we find 

that lesser the permeability of the porous medium smaller the velocities in the flow region. 

The temperature and concentration rises with increasing values of K (figs.4c&d).This may be 

due to the fact that increase in K leads to thickening of thermal and solutal boundary layers. 

As the values of radiation parameter (Rd) raises, velocity profiles f reduces and g 

increases in  based nanofluid region and is shown in Fig. 5a&b. It is perceived from Fig.5c 
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that as the values of  increases the temperature profiles are also elevated This is because of 

the fact that the mean absorption coefficient decreases with increasing values of radiation 

parameter; as a result the thermal boundary layer thickness of the fluid is rises. 

The variation of f ,g, and C with Schmidt number(Sc) is shown in figs.6a-d.Lesser 

the molecular diffusivity smaller the primary velocity and larger the secondary velocity in the 

flow region. The thermal and solutal boundary layer thickness are educes with rising values 

of Sc. 

The variation of f ,g, and C with radiation absorption parameter(Q1) is shown in 

figs.7a-d. Higher the radiation absorption larger the primary velocity and smaller the 

secondary velocity in the flow region.The thickness of the thermal boundary layer grows and 

solutal boundary layer decays with increasing values of Q1(figs.7c&d). 

The effect of chemical reaction () on f ,g, and C is exhibited in figs.8a-d.The 

primary velocity reduces and secondary velocity enhancers in degenerating chemical reaction 

case. thermal and solutal boundary layers thickness decay as the values of chemical reaction 

parameter () rises and is shown in Fig. 8c&d.. 

The effect of thermo-diffusion(So)on the flow characteristics is shown in figs.9a-

9d.From the profiles we notice that higher the thermo-diffusion effects larger the primary 

velocity and smaller the secondary velocity in the flow region.The thickness of the thermal 

and solutal boundary layers are reduced by increasing the values of So. 

The velocity and temperature sketches of the based nanofluid for different values of 

space – dependent f  and temperature – dependent parameters(A5,A6) are depicted in 

Figs.10a&b to 11a&b. With higher values of f  and g the primary velocity elevates with 

easing values of A5&A6 and secondary velocity distribution diminish in the fluid region. It is 

observed that temperature in the thermal boundary layer increases with increase in the 

strength of the space depende4nt heat sink A5 <0 and reduces with that of heat source A5>0 

(positive values), whereas the thermal boundary layer thickness decelerates with the decrease 

in the heat absorption parameters  A6<0 and grows with A6>0 (positive values).This is due to 

the fact that the presence of the heat generating source generates the thermal energy while 

heat is absorbed due the presence of heat absorption source . 

 Figs.12a-c depict the velocity profiles along (x,y) directions for different values of 

nanoparticle volume fraction (𝜙).It is perceived from Fig. 12a.that both velocity profiles f   

and g are enhanced in based nanofluid as the nanoparticle volume fraction (𝜙) increases. This 

is due to the fact that increasing the nanoparticle volume fraction enhances the momentum 

boundary layer thickness in the flow regime. It is noticed from Fig. 12c that the temperature 

profiles retards as the nanoparticle volume fraction increases. It is noticed from Fig. 12d that 

the concentration profiles decelerates with the increasing values of nanoparticle volume 

fraction (𝜙) in the based nanofluid. 

It is observed from Fig.14a&b that as the values of suction parameter(fw) increases 

the both velocity profiles f   and  g are decelerates in  based nanofluid region. This is due to 

the fact that suction is taken away the warm fluid from the surface of the sheet and thereby 

decreases the thickness of the velocity boundary layer. It is seen from Figs. 14c&d that the 

thickness of both thermal and solutal boundary layer decays with higher values of . 
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It is observed from Fig. 15a&b that as the values of velocity ratio parameter 

(B)increases the velocity profiles of f   elevates and  graphs of g are decelerates in  based 

nanofluid region. It is seen from Figs. 15c&d that the thickness of both thermal and solutal 

boundary layers grows with higher values of (B).  

The velocity profiles of f  are reduced and that of g in  based nanofluid are elevated 

as the values of velocity slip parameter (R) increases in the boundary layer regime as shown 

in Fig. 16a&b.However, the thermal boundary layer thickness, as well as, solutal boundary 

layer thickness of  based nanofluidis decays as the values of(R) rises and is shown in Fig. 

16c&d.  

As the values of Prandtl number (Pr) raises, both velocity profiles decreases f  and g 

accelerates in based nanofluid region and is shown in Fig. 17a&b. Furthermore, the thermal 

boundary layer thickness deteriorates and that of solutal boundary layer grows with higher 

values of Pr as shown in Fig.17c&d.  

 Table.3 exhibits the variation of skin friction, Nusselt and Sherwood number on =0 

for different parametric variations. An increase in Grashof number reduces the skin friction 

coefficient  x, enhances z,Nu and Sh on the wall.Higher Lorentz force/ lesser the `porous 

permeability smaller x,Sh and larger z,Nu on =0.Higher radiative heat flux/thermo-

diffusion effect, larger the skin friction coefficients, smaller Nusselt and Sherwood numbers 

on the wall. An increase in Schmidt number(Sc) or chemical reaction parameter() smaller 

x,z and larger Nu,Sh on the wall. Higher radiation absorption(Q1)/ temperature 

ratio(A=w) larger x,z,Sh and smaller Nu, An increase in space dependent heat 

source(A5)/ temperature dependent heat source(A6) larger x,z, Sh while Nu reduces with 

A5 and enhances with A6 on =0.An increase in nanoparticle volume fraction() reduces  

x,z and enhances Nu,Sh on the wall.An increase in B reduces x,z , Nu,Sh while z 

,Nu,Sh increases, x reduces with increase in R. x, reduces, z,Nu Sh enhance with increase 

in suction parameter(fw>0),The variation of x,z,Nu and Sh with Prandtl number(Pr) shows 

that lesser the thermal diffusivity smaller the skin friction components, Sherwood number 

and larger the Nusselt number on the wall. 
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Fig.2: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with G 

M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05, =0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.3: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with M 

G=2,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 
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A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.4: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with K 

G=2,M=0.5,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.5: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with Rd 

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:285



G=2,M=0.5,K=0.2,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B1=0.2,R=0.2,Pr=6.2 

 

Fig.6: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with Sc 

G=2,M=0.5,K=0.2,Rd=0.5,=0.5,So=0.5,Q1=0.5,A5=0.5, 

A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.7: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with Q1 
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G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,A5=0.5, 

A6=0.6,A=1.05,=0.05,fw=0.2,B1=0.2,R=0.2,Pr=6.2 

 

Fig.8: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with  

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:287



Fig.9: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with S0 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,Q1=0.5,A5=0.5,A6=0.6, 

A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.10: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with A5 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5,A6=0.6, 

A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 
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Fig.11: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with A6 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5,A5=0.5, 

A=1.05,=0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.12: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with  

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05, fw=0.2,B=0.2,R=0.2,Pr=6.2 
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Fig.13: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with A 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6, =0.05,fw=0.2,B=0.2,R=0.2,Pr=6.2 

 

Fig.14: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with fw 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05, B1=0.2,R=0.2,Pr=6.2 
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Fig.15: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with B 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2, R=0.2,Pr=6.2 

 

Fig.16: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with R 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,Pr=6.2 
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Fig.17: Variation of [a]axial velocity(f’), [b]secondary velocity(g), [c]Temperature(), 

[d]nanoconcentration(C) with Pr 

G=2,M=0.5,K=0.2,Rd=0.5,Sc=0.66,=0.5,So=0.5,Q1=0.5, 

A5=0.5,A6=0.6,A=1.05,=0.05,fw=0.2,B=0.2,R=0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:292



Table 3 : Skin friction (x,z), Nusselt Number (Nu) and Sherwood Number (Sh) at =0 

Parameter x(0) z(0) Nu(0) Sh(0) Parameter x(0) z(0) Nu(0) Sh(0) 

G 2 0.148961 -0.457805 -1.16661 -0.481583 A5 0.5 0.148961 -0.457805 -1.16661 -0.481583 

4 1.0656 -0.476999 -1.24877 -0.523623 1.5 0.24084 -0.461765 -0.995071 -0.542365 

6 1.89058 -0.492251 -1.31256 -0.555485 -0.5 0.131738 -0.457054 -1.19878 -0.470073 

10 2.54547 -0.50367 -1.34633 -0.582231 -1.5 0.0185668 -0.452983 -1.33506 -0.417723 

M 0.5 0.148961 -0.457805 -1.16661 -0.481583 A6 0.5 0.148961 -0.457805 -1.16661 -0.481583 

1 0.0767514 -0.488944 -1.15305 -0.4725 1.5 0.180925 -0.459016 -1.07472 -0.511357 

1.5 0.0112854 -0.516546 -1.14076 -0.464445 -0.5 0.142921 -0.457577 -1.18431 -0.475853 

2 -0.146705 -0.566663 -1.10296 -0.451323 -1.5 0.0788182 -0.455852 -1.25635 -0.449459 

K 0.2 0.148961 -0.457805 -1.16661 -0.481583  0.05 -0.135433 -0.486981 -1.11185 -0.461915 

0.4 -0.0276697 -0.532722 -1.13345 -0.459739 0.1 0.129328 -0.465244 -1.16249 -0.478356 

0.6 -0.180754 -0.594824 -1.10476 -0.441905 0.15 0.433074 -0.435998 -1.21584 -0.499697 

0.8 -0.160754 -0.574824 -1.08476 -0.421905 0.2 0.739862 -0.40217 -1.25377 -0.527794 

Rd 0.5 -0.115217 -0.447444 -1.76804 -0.278719 fw 0.2 0.148961 -0.457805 -1.16661 -0.481583 

1.5 0.148961 -0.457805 -1.16661 -0.481583 0.4 -0.215845 -0.561055 -1.77165 -0.513802 

3.5 0.308616 -0.46479 -0.924636 -0.570481 -0.2 0.358702 -0.398293 -0.840704 -0.459055 

5 0.37101 -0.468691 -0.779546 -0.621464 -0.4 0.574666 -0.316688 -0.447004 -0.408887 

Sc 0.24 0.149292 -0.457822 -1.16632 -0.303559 A 1.05 0.148961 -0.457805 -1.16661 -0.481583 

0.55 0.148961 -0.457805 -1.16661 -0.481583 1.15 0.221941 -0.46049 -0.972575 -0.544183 

1.3 0.148709 -0.457792 -1.16686 -0.732739 1.2 0.259414 -0.461925 -0.891561 -0.570941 

2.01 0.11287 -0.457145 -1.15226 -0.987647 1.25 0.279531 -0.462356 -0.822807 -0.590502 

 0.2 0.148961 -0.457805 -1.16661 -0.481583 B 0.2 0.148961 -0.457805 -1.16661 -0.481583 

0.4 0.148894 -0.457802 -1.16668 -0.589819 0.4 0.112593 -0.324061 -1.14397 -0.475338 

0.6 0.148845 -0.457799 -1.16674 -0.680227 0.6 0.0904452 -0.25412 -1.13145 -0.471872 

0.8 0.11307 -0.457155 -1.15205 -0.763824 0.8 0.0651657 -0.218851 -1.10739 -0.470704 

So 0.5 0.148961 -0.457805 -1.16661 -0.481583 R 0.2 0.237881 -0.121978 -1.07918 -0.457915 

1 0.149038 -0.457809 -1.16652 -0.355384 0.4 0.199554 -0.25305 -1.11656 -0.467952 

1.5 0.149269 -0.45782 -1.16626 0.0230648 0.6 0.148961 -0.457805 -1.16661 -0.481583 

2 0.113825 -0.457192 -1.15117 0.511276 0.8 0.0572502 -0.73378 -1.20894 -0.499322 

Q1 0.5 0.148961 -0.457805 -1.16661 -0.481583 Pr 0.71 0.918364 -0.492321 -0.284337 -0.848796 

1 0.149302 -0.45782 -1.16602 -0.481801 1.71 0.879572 -0.490625 -0.318727 -0.822771 

1.5 0.150321 -0.457866 -1.16423 -0.482456 3.71 0.825304 -0.488226 -0.367349 -0.794939 

2 0.115882 -0.457282 -1.14709 -0.484938 6.20 0.585443 -0.478539 -0.535728 -0.716228 
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5. CONCLUSIONS 

 Three-dimensional flow, heat and mass transfer of Al2O3-water based nanofluid over 

porous stretching sheet is studied in this analysis. The velocity distributions elevated whereas 

temperature distributions decelerate with the higher values of () It is worth to mention that 

the heat transfer rates improve as the values of  increase. Increasing values of M, R, A and B 

decelerates the temperature of the fluid. 

Higher the radiation absorption larger the primary velocity and smaller the secondary 

velocity in the flow region. The thickness of the thermal boundary layer grows and solutal 

boundary layer decays with increasing values of Q1. Both velocity profiles f   and g are 

enhanced, temperature and nanoconcentration reduces in based nanofluid as the nanoparticle 

volume fraction (𝜙) increases. 
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