
Software Piracy Protection & Detection using HMM, Code

Obfuscation & Cryptographic techniques

Bhuvan Pratap Singh Dr. Arun Prakash Agarwal Mr. Abhishek Singh Verma

MTech Associate Professor Assistant Professor

Dept. of Computer Science & Engineering Dept. of Computer Science Engineering Dept. of Computer Science Engineering

Sharda University Sharda University Sharda University

Uttar Pradesh, India Uttar Pradesh, India Uttar Pradesh, India

2021383191.bhuvan@pg.sharda.ac.in Arunpragrawal@gmail.com abhishek.verma1@sharda.ac.in

Abstract—With the rapid and widespread rise of

internet use, software piracy has become a big issue,

and new computer technologies have contributed in

expanding software piracy. Security threats like

tampering and malicious reverse engineering cost the

IT sector tens of billions of dollars each year. In order

to defend against these malicious assaults, code

obfuscation procedure could be incorporated by

converting program into patterns that are resistant to

them. In order to solve this, this research offers a novel

obfuscation approach that mixes nontrivial code

replicas with prevailing obfuscation practices to meet

efficacy requirements exclusively. Given the security

dangers, this makes it worthwhile. In this work, we

propose our method and provide an example to

demonstrate it. A software piracy prevention

mechanism is suggested in this study. To overcome

these issues, the proposed system employs established

techniques such as Triple DES, Zero-knowledge proof

& Enhanced RSA. The suggested scheme employs a

projected technique for protecting s/w documentation

& records, as well as a propositioned methodology for

generating a software Copy Identification Number

known as (ICN). Using the opcode sequences retrieved

from these altered replicas, the resultant competent

model is cast-off to mark suspicious s/ware in order to

identify its resemblance to basis programme. An

elevated score suggests that the suspicious programme

is likely a revised version of the underlying s/ware. A

downcast score, on other hand, shows that suspicious

s/ware differs greatly in contrast to the grounded

s/ware. This work demonstrates that the suggested

technique is resilient in the viewpoint that the

underlying programme ought to be heavily updated

prior to it is identified.

Keywords—Software Piracy, Improved RSA, Triple

DES, Zero-knowledge proof, Hidden Markov models,

Code-Obfuscation, Code Encryption.

I. INTRODUCTION

Software security has become one of the most

enticing topics with a great financial interest, luring

everyone from enormous software vendors to

content producers such as the film & audio recording

industries. Software's digital data is extremely

susceptible. Data authenticity & Confidentiality are

two key security concepts. Data concealment

ensures a message's data privacy, whereas data

authenticity ensures the message's integrity.

Software protection lies within the purview of

several disciplines, including security, cryptography

[17], and engineering. Among the most challenging

concerns for s/ware suppliers is securing code

against assaults such as reverse engineering [18],

analysis, and manipulation. If a rival is successful in

getting and utilising an algorithm, it will cause a

huge problem. Further, it is not intended security-

related code, sensitive data, secret keys should not

be devoured, obtained, pillaged, or annihilated.

Despite legal safeguards like as trademarking &

cybercrime regulations in position, these approaches

continue to pose a significant risk to privacy

advocates & s/ware developers. Forms of Software

Piracy Business Software Association [BSA]

classifies software piracy into five categories [1]:

1) The end-user infringement happens when an end-

user replicates s/ware outside permission. It might

express itself in either of the subsequent forms: a) A

end-user attains a solitary licenced replica of the

program & installs the same on many machines. b)

The software installation DVDs are replicated and

distributed. c) A end-user buys & establishes an

advancement without having beforehand purchased

a authorized version.

2) The client-server model infringement happens

whenever a programme is set up on a networked

computer & is being utilised via numerous

individuals compared to those licensed to use it.

3) Cyberspace theft happens whenever illicit

replicas of s/ware are accessible for free or for a

price on the Internet.

4) When unauthorized s/ware is mounted on a novel

workstation & vended, hard-disk loading happens.

This practise frequently occurs whenever a

corporation is endeavouring to diminish

expenditures in order to formulate its products

considerably alluring.

Software-Based Security: Software-based security

approaches rely on the same distributed software.

Leveraging s/ware as a safeguard paradigm offers

several advantages, notably more dissemination

mobility & decreased protection added cost.

Collberg et al. [19] define ‘code obfuscation’ as a

family of procedures that turn a “basis programme P

into a direct programme P' so that P & P' have the

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1061

mailto:2021383191.bhuvan@pg.sharda.ac.in
mailto:Arunpragrawal@gmail.com
mailto:abhishek.verma1@sharda.ac.in

same "observable behaviour" & P' is intricate for an

attacker to converse engineer”. According to [19],

the following requirements must be met for an

obfuscating alteration from P to P' to be a lawful

obscuring makeover: [If P fails to terminate by

means of an fault ailment, P' might or might not

expire], [Or else, P' necessarily terminates & P' must

generate the identical o/p as P].

Encryption: The goal to encode disseminated

programme & require a [‘decryption key’] in order

to execute it. Countless ‘encryption approaches’,

like having several ‘encryption keys’, could be

utilised [2]. Content security approaches count on

cryptographical procedures in which ‘the decryption

key’ should be kept obscured from (dishonest) users.

In this study, a suggested software protection

approach based on cryptographic algorithms is

implemented [3].

Cryptography: The act of generating an encrypted

output, known as ciphertext, by combining certain

input data, known as plaintext, with a user-specified

key so an arrangement than nobody could

reasonably decipher the plaintext sans the key that is

used for encryption. Ciphers are the algorithms that

mix the keys and texts [4].

Symmetric Cryptography System: A transmission

of info. Is decrypted & encrypted via a single ‘secret

key’, as in traditional symmetric encryption. The

most popular kind of symmetric encryption (DES) is

known as "Data Encryption Standard." Despite

being replaced by the Advance Encryption Standard

(AES), DES is still the most important encryption

method. (However, the DES designation has been

revoked). DES (particularly Triple-DES) remains

immensely popular despite its removal [5].

Triple DES (TDES): It is a block cypher constructed

by augmenting the ‘Data Encryption Standard

(DES)’ cipher 3 epochs. When it was determined

that a "56-bit" DES key was inadequate to fend

against "brute forces attacks," the TDES was chosen

as an easy way to increase the "key field" without

switching to a novel method. To stop "meet-in-the-

middle attacks," which successfully circumvent

"double DES encryption," three stages are

necessary.

TDES's most basic variation works as comprehends:

“DES (k3; DES (k2; DES (k1; M)), where M is the

encrypted message block and k1, k2, and k3 are DES

keys” [6]. Triple-DES is DES repeated 3 times with

2 keys utilised in a certain directive. (Triple-DES

could also be performed via 3 distinct keys rather of

just 2. In any scenario, the final ‘key space’ is around

112 [7].

Asymmetric Cryptography System: The public-key

approach encrypts with one key & decrypts with a

separate but associated key [8]. RSA is the most

popular of the public key algorithms. An enhanced

RSA is investigated in this paper [9]. “The RSA

scheme is a block cipher in which the original

message and cipher message are integer values in the

interval ..0[n −]1 where ‘n’ a composite modulus.”

The novel message and cypher message from the

overall linear cluster of (h h) matrices over 'n z'

indicated by () n zhg and the novel message directed

by m are both included in the suggested framework.

The message is encoded in blocks using the RSA

arrangement and then rifted to blocks; each block's

value must change to be somewhat less than the

modulus n. In other words, finding eth roots mod a

composite modulus is the RSA difficulty. The

requirements established by the modulus n and the

public key e are intended to ensure that there is only

one m for every integer c where m c n e = mod for

every integer c.

Hidden Markov Models: A Markov process is a sort

of ‘statistical model’ with recognized transition

probabilities & states (Stamp, 2004). The states of a

‘Markov process’ are observable to the viewer.

II. LITERATURE REVIEW

Collberg et al. [10] presented a concise overview of

the techniques of mitigating these concerns. It

typically embeds secret, unique info. hooked on a

programme in a custom that it can be assured that a

convinced s/ware occurrence belongs to a specific

discrete or organisation. Unless the watermark is

crushed, this data can be used to distinguish

duplicated software from the original.

Code obfuscation strategy entails of more than one

programme changes that update a programme in a

manner so that it’s functionality stays unchanged

studying program's insider converts extremely

difficult.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1062

Table 1: Existing Piracy Protection Approaches

Existing Approaches Functionalities

[10] Collberg et al. Breakdown of the techniques taken to combat these dangers. S/ware

watermarking, however for example, emphasises rapidly securing applications

from infringement.

[13] Hongxia Jin et al. The emphasis is on identifying the attacker & conducting forensic

examinations. The author presented a preventive surveillance procedure for

combating a continual assault before to collaboration.

[11] Cappaert et al. A fractional encrypting solution based on code encryption was introduced.

[12] Chang et al. An integrated ensemble of application defenders that constantly evaluate their

respective coherence alongside that of the application's vital parts comprises

the backbone of the developer's privacy methodology.

[16] Horne et al. Self-checking code is used to avoid software manipulation.

[15] Song-kyoo Kim Focuses on unpredictable preservation for s/ware protection employing an

enclosed scheduling approach with suspicious records.

[14] Jung et al. A key chain-based code block encryption technique was presented to safeguard

software.

This study focuses on the security of a software

programme and the material it safeguards. Each

year, the industries spend billions of dollars, mostly

on s/ware infringement. The capacity to safeguard

s/ware program counter to modification & identify

the assailants who release infringed replicas

underpins the accomplishment of content/software

security in a large section. Hongxia Jin et al. [13]

focus on assailant documentation & legal

investigation in this study. The emphasis is on

identifying the attacker & conducting forensic

examinations. The author presented a preventive

surveillance procedure for combating a continual

assault before to collaboration.

Chang et al. [12] presented a method grounded on

s/ware fortifications. The author's security strategy

is primarily grounded on an amalgamated system of

s/ware sentinels that reciprocally check apiece

reliability. An integrated ensemble of application

defenders that constantly evaluate their respective

coherence alongside that of the application's vital

parts comprises the backbone of the developer's

privacy methodology.

Cappaert et al. [11] proposed a partial encryption

technique based on code encryption [12]. Users

decipher the encrypted binary codes during runtime.

Henceforth, A fractional encrypting solution based

on code encryption was introduced.

Jung et al. [14] proposed a key string-based block-

code cryptography approach for protecting software.

In Jung's method, the fundamental block, which is

component-size, is substituted with a component

that interfere alongside, and is a solved-size block.

Cappaert and Jung both employ similar tactics.

Jung's approach makes an effort to correct

Cappaert's procedure's flaws.

Song-kyoo Kim [15] discusses the strategy to

demonstrate the theoretical software protection

approach. If the software components are

recognized as alternatives in the specified

architectural framework, the system's vulnerabilities

might be subverted adopting an unpredictable

maintenance model that includes fundamental

reliable with randomised supplementary reserves

& substitution techniques.

Horne et al. [16] described s/ware altering protection

using self-checking code. Testers are pieces of code

that check the integrity of code segments. It is

feasible to take advantage of an unidirectional

hashing algorithm with a predetermined hash value.

The necessary action will have to be implemented to

comply with the fidelity the norm if it fails to be

fulfilled. As the assortment of inspectors expands,

the assailants grow increasingly perplexed, thereby

making it impossible to convince them to penetrate

the individuals who are testing.

III. METHODOLOGY

The approach employs a checksum corresponding to

regardless of application it has been combined

therewith. An encrypted value is produced

everytime the application goes online and the result

is then contrasted to the hashed result which has

been formerly preserved. If both variables match one

another, the application executes; if not and it

collapses. Aside from this capability, it also changes

every serial number characters to hexadecimal or

mangled data, making it extremely difficult to

determine the serial number required to access the

software. Figure 1 depicts the model's architecture.

It is made up of the following sections.

Employing Nonlinear Measurements, Collberg et al.

[19] convey a trio of metrics to assess the efficacy of

code obfuscation strategies: Cost, Resilience, and

Potency.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1063

A. Principles linked s/ware intricacy

measurements like McCabe's cyclomatic

intricacy [20].

B. Grounded on Confrontation to Outbreaks,

Static Analysis Attack: In this kind of assault, the

assailant constructs a CFG (Control Flow Graph, an

elevated visualisation of the instructions) of s/ware

that aids in figuring out how the application

performs. It can be found by empirically exploring

programme [21].

Fig 1: ID generation using TDES

An obfuscation strategy that upsurges an invader's

analysis exertions is considered to be resistant to the

attack. As explained by Schrittwieser et al. [23], the

more the analysis work required, the greater the

resistance against reverse engineering assaults.

Dynamic Analysis Attack: An attacker conducts this

attack by running the software on many inputs and

inspecting the execution traces [21]. Because the

software must be performed with different inputs,

dynamic analysis is more challenging than static

analysis.

Cipher Replica Recognition Attack: An aggressor

novelties & eliminates code clones in a programme

in order to minimise the program's code size (Baxter

et al. [22]).

Fig 2: Proposed Design

Plain code in this study was developed in C++,

which is straightforward to grasp even for noob

programmers.

Encryption Tool: This is the programme that we

used to encrypt the software. The encryption tool

encrypts the plain code, making it more difficult for

a cracker to decipher.

Encrypted Code: Normal code is converted to

encrypted code that is difficult to understand even

for a programming expert using our encryption tool.

Only when the correct key is used to decode the

encryption can the encrypted code be read and

understood. Encrypted software are notoriously

tough for crackers to decipher. When a cracker

struggles to grasp encrypted software, it suggests

that breaking such a code is exceedingly unlikely.

Decoding Module: Using the decrypted key, the

encrypted code is converted to a more readable

format in this module. The decoded version of the

code is now returned to its original basic form,

making it easier to understand and read.

Finally, to produce our application licences, the

‘serial number generation’ is disguised via

cryptography. It is a code transformation approach

that preserves the functionality of the code but

twisted in such a manner that a software cracker

cannot easily comprehend it. On the first

installation, a serial key must be entered into the

software via the interactive section.

If the legitimate key is input, the inclined provides

you with contact & you might performance it. The

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1064

game will not allow access “if the serial number

entered is invalid.” The serial number code portion

was built, and a keygen.exe executable file was

created. As soon as ‘double-clicking’, ‘the

keygen.exe’, it immediately creates the ‘serial

number’.

This paper focuses on the precise topic of securing

delicate elements of s/ware, like licensing

verification & ‘data masking’ methods, in this study.

Delicate components are often a minor fraction of

the overall software in many software applications.

Such components are typically a few hundred lines

of code in our internal projects.

Fig 3: Code Obfuscation Scheme

Given such sensitive software components, we offer

a 4-step technique to obscuring them. Split the subtle

bits into rational code pieces first. Finally, using

dynamic predicate variables, connect the clones to

the matching original pieces to generate legitimate

control flow pathways, 1 of which is arbitrarily

picked at run- time. Figure 3 depicts this process,

with ellipses representing logical code clones built

for obfuscation.

Step 1: Rational Cipher Wreckages because of

instinctive technique for identifying subtle code

fragments, to provide sensitive code snippets. With

this requirement, we separate the program providing

elusive functionality to rational cipher parts.

Step 2: Complex Code Clones: This protects against

static analysis attacks at this level. A semantically

equivalent code specimen C' is a clone of code

fragment C. In other words, replacing “C in a

programme P with C'” results in a programme “P'

that produces the same output as P for all inputs

(unless P terminates for that input)”. Article [19]

discusses cipher replicating as a scheme for

enhancing reverse engineering efforts.

Obfuscated software have become more

complicated as a result of the employment of code

clones. Baxter et al. [15] suggest AST matching as a

method for detecting code clones. The necessity for

reverse engineering might be eliminated by

employing these methods to identify and eliminate

code replicas. The Swap1 and Swap2 (collected by

rearranging constants) duplicates in Figure 4 may be

recognized by traditional methods, but the "The

Memory swap" & "XOR swap" duplicates in the

code that comes next neither be.

Fig 4: Memory swap & XOR distinct clones

A developer must manually build the code clones in

this stage. After the clones are built, the subsequent

spell you encounter a critical code snippet, check to

see whether there is a structurally identical clone in

the repository. If such a clone is discovered, the

repository's nontrivial clones could be utilised to

obfuscate the code snippet.

Step 3: Associating Code Clone Fragments:

Protection against dynamic analysis assaults is

added in this stage. After constructing the nontrivial

code clones, the original code fragments are

replaced by the clones that are arbitrarily picked

throughout every implementation of the associated

novel code portion. Establish variable quantity are

‘Boolean-valued variable star offered information

(e.g. Collberg et al. [19]) assist solve challenge. As

Low [25] describes, such predicate variables

introduce bogus control routes into programmes.

Static predicates are vulnerable to ‘dynamic scrutiny

outbreaks’ since false rheostat pathways are on no

occasion chosen throughout execution of s/ware.

Palsberg et. al [24] defined dynamic predicate

variables as a resolute of interrelated Boolean

variable quantity. Variables have the identical rate in

one run of the s/ware, have diverse standards on

other scores of the s/ware.

In this paper, obfuscation approach leverages a

variation of ‘dynamic predicate variables’. These

variables allow a specific mix of code clone pieces

to be selected for a given run of obfuscated

programme. They maintain dynamic structures

(such as linked lists) to establish legitimate control

flow pathways, as seen in Fig 4. This raises dynamic

& static analysis exertions since an assailant grasp

the apprehensible outline.

To describe an HMM, aforementioned notations are

shown below:

T = length of the observation sequence

N = number of states in the model

M = number of observation symbols

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1065

Q = {q0, q1, ... , qN−1} = distinct states of the

Markov process

V = {0, 1, ... , M − 1} = set of possible observations

A = state transition probabilities

B = observation probability matrix

π = initial state distribution

O = (O0, O1, ... , OT−1) = observation sequence

Fig 5: HMM Scheme

We do not demand that the final morphed code

maintain the functionality of the original code in

order to streamline the morphing procedure. In order

to stop dead code from running, we inject it rather

than including the necessary jump instructions. It

deserves to be emphasised that this hinders

recognition as a whole when an HMM-based sensor

might effortlessly discern the altered source code

distinct from the initial version due to the omitted

jumping sequences. Furthermore, an upsurge in leap

directives might represent an advantageous metric

for detecting and eliminating code that has expired.

The opcode sequence is compared to the previously

determined threshold after being scored against the

HMM model established during the training phase.

If the allegedly fraudulent the software's score

surpasses than the deadline to it implies it is

sufficiently analogous to the actual programme that

it deserves further investigation. On the contrary

side, an evaluation beneath the minimum threshold

suggests that this sceptical software is unable to be

recognised from the authentic software. The

detection procedure is depicted at a high level in

Figure 6.

Fig 6: Detection Phase of HMM

Since the matrices A, B, and define a hidden Markov

model, signify an “HMM as = (A, B,)”. The modules

are depicted in Figure 1, with the "hidden" element

situated above the dashed line. The existence of

efficient approaches for dealing with each of the

following challenges adds greatly to the strength and

usability of HMMs. sThe proposed approach has

two stages: aiming & recognition. During the

training phase, a concealed Markov model is trained

using subtly changed copies of the fundamental

software. Comparison of the suspicious software to

the model generated during the training phase during

the detection phase.

IV. IMPLEMENTATION & RESULTS

As a whole, the level of complexity of the disguised

code doubles with the assortment of software

replicas used for concealment, but a greater amount

of manpower is required to generate the replicas.

Developers are in charge control the generation of

complicated software replicas. If copies were reused

throughout initiatives, the expense would be

minimised since they would be amortized all

throughout the various initiatives.

Furthermore, the proposed approach will result in

minor performance loss because:

 Using dynamic predicate variables, code clones

are connected. The proposed design of dynamic

predicated variables was demonstrated to be

computationally cheap. Static analysis assaults

therefore are defeated. In obfuscated code, the

proposed obfuscation approach familiarizes an

‘exponential no.’ of legal controller stream

pathways.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1066

 If the obfuscated code has 'N logical

code fragments' & 'K clones per fragment', it

will comprise 'KN routes', every one of whom

correlates to a specific distinct route in the

source code. As a result, an assailant must

implement s/ware several whiles in order to

gather traces and hence withstand dynamic

analysis techniques. Finally, the clones'

structural dissimilarity opposes static clone

detection approaches.

Table 2: Comparison of Original & Obfuscated Code

searchData() & sortData() are the search & sort

functions of Figure 6's data processing program.

Whereas, The 'LOC' depicts ‘Lines of Code’, while

the following three rows represent the execution

times with input varying from 10KB to 50KB in size

for the Data Processing Application. NTOb, Ori &

TOb represent the novel package, the program

obfuscated using inconsequential code replicas, &

the software package obfuscated with program

replicas, respectively. Conclusions demonstrate that

whereas there is no substantial degradation in

performance for the information handling

implementation, our approach traverses the Cost

demand. The computation times on a "64-bit

Windows 10 computer with 4 GB of RAM and a 2.1

GHz dual-core processor" are shown in Table 2. We

examined three other parameters in addition to

performance, which are depicted in Table II. This

table demonstrates the cyclomatic intricacy of the

novel software & the programming obfuscated using

nontrivial code clones. Cyclomatic complexity

quantifies the amount of self-regulating directions.

The PMD tool was incorporated to determine this.

The cc of an obfuscated program is ‘>’ the cc of an

novel program. This suggests that the obfuscated

s/ware is resilient, and hence our technique meets

the Resilience requirement. Also, the increased

Cyclomatic complexity & LOC provide substantial

obstacles for even an individual developer of the

obfuscated code. Hence, the proposed approach

encounters the Effectiveness criteria.

Table 3: Measurement of Other Parameters

The row Coverage in Table 3 represents the basic

block coverage. The EMMA tool was incorporated

to determine coverage. The findings reveal that

whole essential code-blocks of were executed,

indicating replicas were implemented throughout a

specific iteration of the other's code. This shows that

the obscured s/ware comprises all valid control flow

routes. The proposed obfuscation approach is

impervious to “dynamic analysis efforts” since the

no. of allowable regulator flow routes in the context

of replicas of code & logical segments of code is

limitless. How much RAM the original & disguised

programs used were also measured. The proposed

approach has no major memory overhead, as

evidenced by the 'Memory' row in Table 3. Lastly,

the tools on code obfuscated were tested with simple

clones & code wrapped with complex replicas to

verify if replicas could be encountered

programmatically. Every single one of the

aforementioned techniques recognised basic code

clones. This illustrates how challenging it is for an

intruder to recognise non-trivial software copies.

Fig 7: Results

Metric [Ori, Tob, NTOb]

sortData()

[Ori, Tob, NTOb]

searchData()

{LOC} [23,432,67] [9,181,50]

{10KB} Data [7s,7s,8s] [1s,1s,1s]

{25KB} Data [110s,110s,115s] [2s,2s,2s]

{50KB} Data [540s,542s,553s] [7s,7s,7s]

Metric sortData() [Ori,

NTOb]

searchData() [Ori,

NTOb]

Cyclomatic [5,19] [3,16]

Coverage [100%, 100%] [100%.100%]

Memory [4MB,4MB] [4MB,4MB]

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1067

 The opcode classification from the undone base

file was collected, and 100 modified replicas

ignoble folder were produced, by 10% altering

& 1 block of deceased cipher. To avoid the

HMM from overfitting the training data,

modified versions of the basic programme are

used.

 Hidden Markov models with five-fold cross-

validation were trained using the 100 morphing

copies.

 Relying on the results for a sample of 15

"normal" documents that were not used in the

warping or instruction plus a set of morphing

files which were not employed in the training, a

criterion was established. The threshold had

been established at the highest achievable score

for any of the "standard" files.

As predicted, detection success falls as the rate of

tampering increases. Unexpectedly the quantity of

tampered wedges has a substantial influence

identification stages, specifically when tampering

frequencies are high. Figure 7 demonstrates that "1-

block tampering significantly influences on rising

rates, with 70% or more tampering; none of the 1-

block tampered files are accurately identified".

V. CONCLUSION

In this research, an obfuscation approach was

introduced for protecting critical software code

pieces. Code obfuscated by the proposed technique

meets the efficacy standards specified in the

manuscript, subject to the eminence of the s/ware

replica outlines. Even though the approach

necessitates surplus building costs for the replicas, it

appears to be beneficial for obscuring subtle

software portions such as information concealing &

licensing verification. Furthermore, although this

paper presented the strategy for obfuscating C++ &

Java programs, the outline is relevant to s/ware

inscribed in any imperative language, counting C &

C++. We intend to test our technique on huge

industry codes.

As od now, a functioning sample is complete, it

needs supplementary execution assistance. As soon

as established, will allow to conduct experiments to

better comprehend the real-world challenges

intricate in implementing the proposed approach.

The suggested approach of S/ware Fortification is

safe contrary to recognized intimidations of assault

(Man-in-the-Middle attack, Brute force attack &

Replay attack) by employing upgraded MD5 & RSA

encryption techniques & a combination of

cryptoanalysis procedures. The experimental

findings reveal that our technique is resilient in the

sagacity that the underlying program might be

heavily updated formerly fail to categorize it with a

high prospect. In testing, the conclusion is that

morphing is extremely effective at lowering the

HMM scores, that the attacker selects the morphing

code in the best possible way, i.e., from files that are

the same as those used to calculate the threshold.

Furthermore, we neglect to take into consideration

how challenging it would be for the assailant to

preserve the code operating whilst morphing. The

"morphing" code might have a few alterations

constraining the evolving possibilities, knowledge

about the files that are utilised for the thresholding

would prove diligently for someone to come by,

& preserving the intended features of the source

code would ultimately be difficult at times. In

practice, the perpetrator would ultimately be at a

substantial disadvantage in these areas of the code.

The findings of this study suggest that inserting a

huge chunk of deceased program is the best method

for an invader. But, in fact, the efficacy of such a

method may certainly be countered utilising some of

the approaches outlined. Further morphing

approaches and more tests on a wider range of file

formats might be used in future development.

Furthermore, because ‘1-block tampering’ might be

a successful assault technique, additional tests

targeted to reduce the efficacy of such an attack

would be beneficial.

REFERENCES

[1] BSA website http://www.bsa.org/country/Anti-

Piracy/What-is-Software-

Piracy/Types%20of%20Piracy.asp x, 2007.

[2] T.Premkumar Devanbu and Stuart Stubblebine, “Software

engineering for Software Engineering for security a

roadmap” ,In Proceeding of the conference on the future of

software Engineering,pages 227-239.ACM Press,2000.

[3] Bruce Schneier. “ Schneier on Security: Sony's DRM

Rootkit: The Real Story”,

http://www.schneier.com/blog/archiv

es/2005/11/sonys_drm_rootk.html, 2005.

[4] “Concepts of Cryptography,”

URL:http://www.Kremlinencrypt.co m/concepts.htm.

[5] “Encryption

Algorithms”,URLhttp://www.networksorcery.com/enp

/data/encryption.htm.

[6] Wikipedia, “The Free Encyclopedia, Data Encryption

Standard,” URL: http://www.wikipedia . 2(28), 44-60,

1997.

[7] Smith,Don Copper,“The Data Encryption Standard (DES)

and its Strength Against Attacks", IBM Journal of Research

and Development (1994), 38(3), p243-250.

[8] Zoeller & Renate. “ Nest of Pirates”, Transitions Online,

p.5-5, 2007.

[9] Mustafa Al-Fayoumi, Sattar J. “An Efficient RSA Public

Key Encryption Scheme”, Information Technology: New

Generations, 2008. ITNG 2008. Fifth International

Conference, p.127- 130, 2008.

[10] Collberg, C.S.; Thomborson, C.; “Watermarking, tamper-

proofing, and obfuscation - tools for software protection”,

IEEE Transactions on Software Engineering, Volume: 28 ,

Issue: 8, Page(s): 735 – 746, 2002.

[11] J. Cappaert et al., “Toward Tamper Resistant Code

Encryption: Practice and Experience,” LNCS, vol. 4991,

2008, pp. 86-100.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1068

[12] H. Chang and M. J. Atallah. Protecting software codes by

guards. ACM Workshop on Digital Rights Managment

(DRM 2001), LNCS 2320:160-175, 2001

[13] Hongxia Jin; Lotspiech, J.; “Forensic analysis for A Survey

on Software Protection Techniques against Various Attacks

© 2012 Global Journals Inc. (US) Global Journal of

Computer Science and Technology Volume XII Issue I

Version I 57 January 2012 [14] Presented a code block

encryption approach to protect software using a key chain

tamper resistant software”, 14th International Symposium

on Software Reliability Engineering, 2003. ISSRE 2003.

[14] D.W Jung, H.S Kim, and J.G. Park, “A Code Block Cipher

Method to Protect Application Programs From Reverse

Engineering,”J. Korea Inst. Inf. Security Cryptology, vol.

18, no. 2, 2008, pp. 85-96 (in Korean)

[15] Song-kyoo Kim; “Design of enhanced software protection

architecture by using theory of inventive problem solving”,

IEEE International Conference on Industrial Engineering

and Engineering Management, 2009. IEEM 2009.

[16] B. Horne, L. Matheson, C. Sheehan, R. Tarjan, “Dynamic

Self-Checking Techniques for Improved Tamper

Resistance”, Proc. 1st ACM Workshop on Digital Rights

Management (DRM 2001), Springer LNCS 2320, pp.141–

159 (2002).

[17] P. Gutmann, “An Open-source Cryptographic

Coprocessor”, Proc. 2000 USENIX Security Symposium.

[18] E. Eilam, Reversing: Secrets of Reverse Engineering, Wiley

Publishing, Inc., 2005

[19] C. Collberg, C. Thomborson, and D. Low, ”A taxonomy of

obfuscating transformations”, Technical report 148,

Department of computer science, the University of

Auckland, New Zealand, 1997.

[20] T. J. McCabe. ”A complexity measure”, IEEE Transactions

on Software Engineering, 2(4):308-320, December 1976.

[21] M. Madou, B. Anckaert, B. D. Sutter, and D. B. Koen.

”Hybrid static-dynamic attacks against software protection

mechanisms”, In Proceedings of the 5th ACM Workshop on

Digital Rights Management. ACM, 2005.

[22] I. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier.

Clone Detection Using Abstract Syntax Trees. In

Proceedings of ICSM. IEEE, 1998.

[23] S. Schrittwieser and S. Katzenbeisser, ”Code Obfuscation

against Static and Dynamic Reverse Engineering”, Vienna

University of Technology, Austria, Darmstadt University of

Technology, Germany

[24] Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao,

Q., and Zhang, Y.: ”Experience with software

watermarking”, In Proceedings of 16th IEEE Annual

Computer Security Applications Conference. IEEE Press.

p308. New Orleans, LA, USA. 2000.

[25] Low, D. (1998). ”Java Control Flow Obfuscation”, Master’s

thesis. University of Auckland.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 06 (June) - 2023

http://ymerdigital.com

Page No:1069

