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Abstract

India's economy heavily relies on agriculture, employing over 50% of the population and
serving as the main source of income for many. The agricultural sector contributes
approximately 16% of India's Gross Domestic Product (GDP) and is crucial for the rural
economy. As concerns over the environmental impact of traditional pest management
techniques and their associated costs increase, Integrated Pest Management (IPM) has become
a popular and efficient alternative. Traditional pest identification methods are time-consuming
and laborious, which highlights the importance of an automated insect detection and
management system. This study aimed to develop a two-step system for automatically counting
and identifying pests, overcoming the challenges posed by prior methods. The initial stage
utilized the YOLOV5 object detection algorithm to identify and count insects on a trap, while
the second stage involved classifying the detected insects into two species: Macrolophus
pygmaeus and Trialeurodes vaporariorum (Whitefly). Four machine learning algorithms
(Support Vector Machines, Naive Bayes Theorem, Decision Trees, and Random Forest) were
utilized in the classification process to compare their performance, along with an unsupervised
machine learning algorithm, K-means clustering.

Keywords Integrated pest management, You Look Only Once (YOLO), Support Vector
Machines, Naive Bayes theorem, K means clustering, Decision trees, Random Forest
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1. Introduction

Agriculture plays a crucial role in driving the country's economic progress and shaping the
overall standard of living (Kasinathan et al., 2020). However, severe losses in terms of yield
and agricultural productivity are regularly observed in agricultural fields due to various factors.
One of these factors includes pest attacks that hinder the development of agriculture by
affecting the metabolic processes of crops (Zhong et al., 2018). Plant diseases and insect
outbreaks are causing an average annual decline of 40% in global food supplies (Domingues
et al., 2022). To combat these insect invasions, farmers pin their hopes on pesticides, but
numerous studies have shown that pesticides are not a pragmatic and sustainable choice as they
are detrimental to human health and the environment (Rani et al., 2020). Not only do they
elevate health risks, but pesticides also have adverse impacts on the quality of soil, water, and
habitat of wildlife (Baker et al., 2020).

Due to increasing concerns about the environmental impact of conventional pest control
methods and the associated expenses, Integrated pest management (IPM) has emerged as a
highly effective and precise approach to managing pest infestations. (Wen et al., 2012). An
IPM approach is built upon the utilization of preventive measures for crop protection that relies
on comprehensive knowledge of the environment, crop, pests, and natural enemies, as well as
the application of efficient farming techniques to manage pests (Anderson et., 2019). Modern
IPM involves not only the adoption of sensible use of pesticides through the concept of
Economic Thresholds (ET) but also the integration of various pest management techniques,
such as resistance crops, augmentative biological control (ABC), biotechnology, and others, in
a harmonious manner (Bueno et al., 2021).

To effectively control pests, it's important to monitor their activity and population density. One
simple method to do so in greenhouses is by using sticky paper traps. These traps have a sticky
glue layer on a colored cardboard surface that attracts insects, allowing for quantitative
information on their population and variety (Rustia et al., 2019). While sticky traps provide an
affordable means of collecting insect samples, identifying the specimens manually is a
laborious, time-consuming process and often requires entomologist experts (Cabrera et al.,
2022). Conventional insect identification and classification techniques are tedious, fallible, and
susceptible to errors (Kasinathan et al., 2021). Precision agriculture tools empower farmers to
analyze the spatial-temporal variability of several key factors that impact plant health and
productivity (Lima et al., 2021). Therefore, an automated insect identification system can
benefit producers who have limited knowledge of pest scouting and own large farms (Wen et
al., 2012).

Recent technological growth in imaging and computer vision have led to the development of
image-based methods for detecting small-sized insects in controlled environment agriculture
such as in greenhouses. These methods utilize both conventional and popular machine learning
along with deep learning techniques (Wenyong et al., 2022). However, the majority of research
that pertains to this subject has been conducted solely in a controlled laboratory setting. The
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application of this research analysis in real-world situations presents a more significant obstacle
due to the differences in how images are obtained (Rustia et al., 2018).

Zhong et al., (2018) adopted a system described that uses a YOLO based deep learning method
to detect and roughly calculate the number of insects, and employs an SVM to classify them.
Furthermore, the system is designed to be implemented on a Raspberry PI. Solis-Sanchez et al.
(2010) used shape features and an adaptive threshold discriminant method to detect whiteflies,
while In their research, Xia et al. (2012) presented a multifractal analysis technique that
involved using a mobile robot to capture insects and proposed a way to identify three frequently
occurring pest species (aphid, thrips, and whitefly) in a greenhouse environment. Additionally,
Xia et al. (2018) put forth an approach that utilized the watershed algorithm and Mahalanobis
distance on the YCrCb color space, which resulted in a feasible and computationally efficient
method for identifying pests. In their study, Gassoumi et al. (2007) utilized morphology
features such as compactness, aspect ratio, and extent, to classify 12 common cotton pests.
Other researchers have proposed various color-based segmentation and counting algorithms,
but they were not robust to various conditions in the field, such as variable illumination and
sticky glue degeneration.

On the other hand, deep learning algorithms have the ability to recognize and understand
various aspects of data automatically by learning from the input data, which eliminates the need
for complicated image processing methods and laborious feature engineering. Rustia et al.
(2020) developed a sequential method that first identifies and removes non-insect objects from
images and then categorizes the remaining insect objects into various species using a multi-
class CNN classifier. Similarly, Li et al. (2021) introduced a deep learning technique based on
the Faster R-CNN architecture to enhance the accuracy of detecting small insects in images
captured by sticky traps. These techniques have great potential for improving pest detection
and classification in greenhouse agriculture.

For successful recognition, it is necessary to extract suitable features. Typically, both global
features (such as color, texture and morphology) and local features are chosen to assist in
identification (Zhong et al., 2018). The main aim of this study is to propose a procedure for
identifying small-sized insects using low-resolution images. The proposed method combines
techniques for Machine learning and Deep learning, making it suitable for species
identification. A detection and rough counting method based on the You Only Look Once
(YOLO) object detection, as well as a classification method and counting using feature
extraction based on Support Vector Machines (SVM) and other Machine learning algorithms,
have been developed.
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2. Material and Methods
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Figure 1 Flowchart of methodology
2.1 Image acquisition

The dataset used for training was obtained from the public repository on GitHub and was
downloaded (Deserno et al., 2021). The dataset consisted of 284 JPEG images with a landscape
orientation, measuring 5184 x 3456 pixels in size. The images depicted yellow sticky traps and
were annotated with bounding boxes for three distinct categories of flying insects that are
commonly found in greenhouse environments, namely Macrolophus pygmaeus, Nesidiocoris
tenuis, and Trialeurodes vaporariorum (also referred to as Whitefly).

2.2 Insect identification using YOLO

The YOLO neural network is a convolutional model that uses a single-step approach to detect
and classify objects. The YOLO algorithm works by taking an input image and passing it
through a deep neural network that is composed of convolutional and fully connected layers.
The network divides the input image into a grid of S X S cells and predicts bounding boxes for
each cell that contain objects, along with the class probabilities of those objects. The YOLO
algorithm uses a single neural network to predict all the objects within an image in one
evaluation, hence the name "You Only Look Once.” The YOLO algorithm uses anchor boxes
to predict the bounding boxes for each object. These anchor boxes are pre-defined shapes that
the algorithm uses to predict the size and shape of the object. During training, the algorithm
adjusts the anchor boxes to improve the accuracy of the predictions. The YOLO algorithm also
uses a concept called non-maximum suppression (NMS) to eliminate duplicate predictions.
NMS is used to select the most confident bounding box when multiple boxes overlap the same
object. The class-specific confidence score is calculated through network processing by
multiplying the confidence score and the conditional class likelihood. In the end, YOLO
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employs the comparison of the confidence scores specific to each class to determine the results
of object detection. (Kim et al., 2020).

Roboflow’s cloud-based training infrastructure was used to train the obtained dataset.
RoboFlow is an online tool that offers a dataset that's ideal for working with a small number of
images. It allows users to create annotations by drawing a rectangle around objects in the image
directly on the RoboFlow website, without the need for any additional downloads. RoboFlow
offers a range of annotation formats and data augmentation functions, which can help to prevent
overfitting during model training and save time during the training process (Park et al., 2022).
The YOLOV5 version was selected to predict the bounding boxes around the insect. The
purpose of this step was to detect the region of interest where the insect lies. A total of 284
images were uploaded on this platform and employed pre-trained COCO weights with 150
epochs. The overall dataset was sliced into a training dataset of 199 images, a set for validation
of 57 images, and a set for testing of 28 images. After the training process was completed,
various training graphs along with performance metrics were obtained.

For the purpose of comparison, YOLO object detection algorithm was also performed for insect
classification.

2.3 Image acquisition and processing for Machine learning

In order to improve the performance of object classification, the SVM is provided with the
bounding boxes of targets that were estimated by the YOLO model. A total of 1008 images of
two different species, namely Trialeurodes vaporariorum (Whitefly), and Macrolophus
pygmaeus (Table 1) were cropped from the whole sticky trap. The proposed approach utilized
the Python programming and scripting language, along with the OpenCV image processing
module, Google Colab cloud and GPU service, and the Jupyter Notebook. Image enhancement
techniques, including sharpening, brightness, and contrast adjustments, were employed during
the preprocessing stage to optimize the image quality as needed.

Table 1 The number of images of each species used for identification

Sno Species Number of images | Number of images after augmentation
1. Trialeurodes vaporariorum | 300 600
(Whitefly)
2. Macrolophus pygmaeus 204 408
Total 604 1008

2.4 Image segmentation and processing
There are several segmentation techniques that are widely used, including thresholding, edge

detection, region-based methods, and histogram-based methods. For instance, edge detection
is utilized to locate the boundary between an insect image and its background by detecting the
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edges within the image (Thenmozhi et al.,, 2017). The dataset underwent preprocessing
techniques, including resizing and augmentation such as flipping, rotation, cropping, brightness
and saturation adjustments, and noise removal. 50 percent of the dataset was horizontally
flipped, while rotation was conducted at angles ranging from +45 degrees.

2.5 Feature extraction and Principal Component Analysis

The images were converted to binary, contours were identified, edges were detected using an
algorithm and a mask was obtained. Feature extraction is implicated with mathematical tools
for quantitatively defining an object. This work uses several features to create a feature space
in order to gather a broad range of feature information. In this study, three sets of features were
used to describe the insect's species: shape, color, and texture (Table 2). Numerous techniques
exist for describing the texture of an image, with the Gray-level co-occurrence matrix (GLCM)
features being among the most frequently employed texture features. The objective of this step
was to convert the image into a list of numbers through which we can identify a particular
insect. The 37 features were converted into major 2 components which are then fed into the
machine learning algorithms.

Table 2 The features calculated

Sno Feature category Features
1 Shape Area, Minor axis, Extent, Major axis, Perimeter, Eccentricity, Form
Factor, Solidity, Aspect ratio, Average color
Color Average color
Texture Contrast, Dissimilarity, Homogeneity, Energy, Correlation, ASM

2.6 Machine learning algorithms

Based on the extracted features, we used various Machine Learning algorithms namely SVM,
Naive Bayes Theorem, Decision tree, and Random forest to classify the detection results of
YOLO into 2 classes. The classification performance of each algorithm was calculated using
the Confusion matrix. Additionally, an unsupervised machine learning algorithm, K-means
Clustering, was also performed.

3. Results and discussion

3.1 Insect identification and counting

A total of 284 sticky trap images were obtained from the online GitHub dataset. The images
were divided into training, validation, and testing datasets. The YOLO v5 version object
detector was adopted to detect and count the insects on a sticky trap using the Roboflow and

Google Colab notebook. Various training graphs are shown in Figure 2. The results of
identification where solid rectangles are used to mark the detected insect are shown in Figure
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3. The performance metrics were as follows: the calculated precision was 83.8%, the mean
average precision (mAP) was 86.8% and the recall was 84.5%. A total of 8,114 annotations
were detected with an average of 28 insects per image. Average image size was 17.92 mp. This
model was also be used to detect the number of insects and can provide a graph of changes in
the number of insects w.r.t the number of days . Figure 4 demonstrates the output of the graph
if four sticky trap images were uploaded in the code. Further, this model can be used to detect
insects in an image that has never been encountered before. The images were then preprocessed
to enhance the picture quality. As a result, the YOLO deep learning network demonstrates
improved detection accuracy and better resistance to interference.
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Figure 2 Training graphs

Figure 3 YOLO prediction results
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Figure 4 Graph showing an increase in the number of insects per day
3.2 YOLO insect classification
Roboflow was further also used for detecting the class of the object detected. Figure 5a shows
the detection of Macrolophus pygmaeus detection and Figure 5b depicts the whitefly

detection. The coordinates of the bounding box detected along with some other details such
as confidence percentage and class are shown on the right side of the figure.
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Figure 5 YOLO classification results (a) Macrolophus pygmaeus (b) Trialeurodes
vaporariorum (Whitefly)
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3.3 Image segmentation

Image segmentation is the process of transforming an image into multiple sections consisting
of pixels that are identified by a label or a mask. Figure 6 depicts the results of various
methods used for creating a mask of the image.

Original Binary ~ Contour Edge detection Mask

Figure 6 Image conversions
3.4 Feature extraction

For the purpose of feature extraction, the individual image of the insect was converted to
binary, then edge detection using sobel techniques was done and finally, a mask of the image
was obtained because of which the insect can be differentiated from the background. These
conversions are shown in Figure 7. A total of 27 features were calculated and the values were
stored in an excel sheet, a snippet of which is shown in Figure 5a and Figure 5b. As all these
features are not possible to input in the Machine learning algorithms, Principal Component
Analysis was done that converted the thirty-seven features to the most contributing two
components. Now, these two components were fed to Machine learning algorithms. The
complete list of features and values are available in Table S1 (Supplementary materials)
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Figure 7 (a) shape and color features and (b) texture features

3.5 Machine learning algorithms evaluation metrics
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For the Support Vector Machine and other algorithms, The red points, and the yellow area
represent the species of Macrolophus pygmaeus. Similarly, the green points and the white area
represent the species of whitefly. The accuracy came out to be 94.4%. Similarly, accuracy using
Naive Bayes theorem, Decision Trees and Random Forest came out to be 94.04%, 94.4%, and
93.84% respectively. The results show that the Support Vector Machine algorithm showed the
best results. Additionally using K means clustering, the two clusters of insects were obtained
on a graph where both the species were plotted in blue and red points respectively. For the
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purpose of visualization, various graphs corresponding to all the algorithms are shown in
Figure 9. The summary of results is shown in table 3.

The SVM is a non-parametric binary classifier that identifies the best hyperplane between two
classes to distinguish them in new feature space with a high number of dimensions while
considering solely the training samples that are located on the margins of the class distributions,
which are referred to as support vectors (Moughal et al., 2013). When provided with an image
that is represented by a collection of extracted features, and a set of predefined classes or groups
of such features with known labels, NB employs a search method to identify the class to which
the query features have the lowest total distance (Timofte et al., 2013).

The Decision Tree (DT) is one of the most widely recognized and oldest machine learning
algorithms. It constructs a tree-like structure to model the decision-making logic, such as tests
and corresponding outcomes, which is used to classify data items (Uddin et al., 2019). A
Random Forest (RF) is a type of ensemble classifier that is composed of multiple decision trees,
similar to how a forest is comprised of numerous trees (Uddin et al., 2019).

The key benefit of the YOLOVS5 structure is that it enables objects to be located and classified
in a single pass through the network. This feature allows for rapid frame-by-frame processing,
making it feasible to perform real-time video analysis. To detect objects, the evaluation relied
on three measures: precision, recall and mean average precision (mAP). Precision was
calculated as the ratio of correctly identified objects to the total number of identified objects
(error of commission), while recall was computed as the ratio of correctly identified objects to
the total number of objects in the dataset (error of omission) (Sharma et al., 2022).(Figure 8)

Positive Negative
v - Sensitivity = TP Specificity = N
=gl True positive (TP+FN) (TN+FP)
N
0 (TP)
o
s : Precision = P Accuracy = TP+ TN
& True negative (TP+FP) (TP+TN+FP+FN)
Y (TN)

Figure 8 Evaluation metrics
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Figure 9 Visualization Plots of (a) Support Vector Machines (b) Naive Bayes theorem
(c) Decision Trees, (d) Random Forest () K means clustering
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Table 3 Metrics of all four Machine learning algorithms
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Sno Machine Confusion Accuracy Precision Sensitivity Specificity Misclassification
learning matrix
algorithm
1 Support [[145 4] 94.4% 97.31%  93.54% 95.87% 5.5%
Vector
Machine [1093]]
(SVM)
2 Decision [[146 3] 94.4% 97.98% 92.99% 96.84% 5.5%
Tress
[1192]]
3 Random [[278 10] 93.84% 96.52% 92.97% 95.12% 6.1%
Forest
[ 21 195]]
4 Naive Bayes [[145 4] 94.04% 97.31% 92.94% 95.83% 5.9%
Theorem
[1192]]

4. Conclusion

This research presents a novel vision-based statistical and recognition system for insects that
employs a YOLO deep learning network to detect and count insects, as well as an SVM and
other Machine learning algorithms for classification. The system is designed to be implemented
on a Google colab and Jupyter Notebook, and its effectiveness is verified using two different
species of insects. The proposed system can detect and identify pests using a universal
architecture, which can be easily modified to accommodate different insect categories. By
combining the classification and fine-counting information of pests with meteorological and
geographical data, the proposed system can provide real-time monitoring and forecasting of
pest outbreaks, thereby enabling the prediction of suitable prevention and control measures for
agricultural workers. This integrated service platform has significant potential for use in the

field of agriculture.
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