On Vertex strongly*-graph of some constructed graphs

S Yoga¹, A Suganthi Priya²

¹Department of Mathematics, Assistant Professor of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.

²PG Scholar, Department of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.

Abstract

A graph G(V, E) is said to be a vertex strongly*-graph if there exists a bijection $f: E \{1, 2, ..., q\}$, such that for every vertex $u \in V$, $\sum f(uv_i) + \prod f(uv_i)$ are distinct, where uv_i are the edges incident to the vertex u. In this paper, we will be proving that the comb graph $P_5 \odot K_1$ and the bi-star $B_{m,n}$ are vertex strongly*-graph.

Introduction

A graph G(V, E) is a set of vertices V and edges E, each vertex $e \in E$ has its end vertices in V. Any problem can be visualized using graphs, which helps find solutions. Graph labeling is one of the research areas in graph theory that has a lot of applications in data science, blockchain, cryptography, and many more engineering field. Graph labeling is introduced by Rosa [1]. A survey on graph labeling can be found in Gallian [5], which gives updated research work. There is a lot of research work available in edge labeling. One such work is the vertex strongly*-graph, which is introduced by Beaula and Baskar Babujee [2]. Baskar Babujee et. Al. [4] have proved that wheels, paths, crowns, fans, and umbrellas are vertex strongly*-graphs. In this paper, we will prove that the comb graph $P_5 \odot K_1$ and the bi-star $B_{m,n}$ are vertex strongly*-graphs.

Definition 1.1: Vertex strongly * -graph [2]

A graph G(V, E) is said to be a *vertex strongly*-graph* if there exists a bijection $f: E \{1, 2, ..., q\}$, such that for every vertex $u \in V$, $\sum f(uv_i) + \prod f(uv_i)$ are distinct, where uv_i are the edges incident to the vertex u.

Definition 1.2: Comb graph $P_n \odot K_1$ [3]

The comb graph $P_n \odot K_1$ is a graph obtained from the path P_n by adding a pendant vertex to each vertex of P_n . Figure 1. Comb graph $P_5 \odot K_1$ is an example of a comb graph.

Figure 1: Comb graph $P_5 \odot K_1$

Definition 1.3: Bi-star $B_{m,n}$ [6]

The *bi-star* $B_{m,n}$ is a graph obtained from K_2 by joining m pendant edges to one end of K_2 and n pendant edges to the other end of K_2 . Figure 2. Bi-star $B_{5,6}$ is an example of a bi-star.

Figure 2: Bi-star $B_{5,6}$

2. Main Results

Theorem 2.1

The comb graph $P_n \odot K_1$ is a vertex strongly*-graph.

Proof:

Let $V=\{a_1,a_2,\ldots,a_n,a_{n+1},\ldots,a_{2n}\}$ be the vertex set and, $E=\{(a_i,a_{i+1}),1\leq i\leq n-1\}\cup\{(a_i,a_{n+i}),\ 1\leq i\leq n\}$ be the edge set of the comb graph $P_n\odot K_1$.

Labeling the edges of the comb graph $P_n \odot K_1$ using a bijective function g defined as follows,

$$g: E \to \{1, 2, 3, \dots, 2n - 1\}$$
, such that $g(a_i, a_{i+1}) = i, 1 \le i \le n - 1$ $g(a_i, a_{n+i}) = n + i - 1, 1 \le i \le n$

The following Figure 3 is an example of the edge labeled comb graph $P_5 \odot K_1$

Figure 3: Edge labeled Comb graph $P_5 \odot K_1$

To prove that the comb graph $P_n \odot K_1$ is a vertex strongly*-graph, The vertex calculation for each vertex is given below,

$$f(a_1) = 2n + 1$$

$$f(a_n) = 3n - 2 + (n - 1)(2n - 1)$$

$$f(a_i) = n + 3i - 2 + i(i - 1)(n + i - 1), 2 \le i \le n$$

$$f(a_{n+i}) = 2(n + i - 1), 1 \le i \le n$$

To prove that the above calculations are distinct for each vertex.

Case (a): Consider $f(a_i)$ and $f(a_{n+i})$

$$f(a_{n+i}) = 2(n+i-1), 1 \le i \le n$$

$$f(a_{n+i+1}) = 2(n+i+1-1)$$

$$f(a_{n+i+1}) = 2(n+i-1)+2$$

$$f(a_{n+i+1}) = f(a_{n+i}) + 2$$

$$f(a_{n+i+1}) \neq f(a_{n+i})$$
 for $1 \leq i \leq n$

Therefore, the vertex calculation is distinct for each vertex.

The following Figure 5 is an example of the vertex calculated comb graph $P_5 \odot K_1$

Figure 5: vertex calculated comb graph $P_5 \odot K_1$

Hence the comb graph $P_n \odot K_1$ is a vertex strongly*-graph.

Theorem 2.2

The bi-star $B_{m,n}$ is a vertex strongly*-graph.

Proof:

Let
$$V = \{b_1, b_2, ..., b_m, b_{m+1}, ..., b_{m+n}, b_{m+n+1}, b_{m+n+2}\}$$
 be the vertex set and, $E = \{(b_{m+n+1}, b_i), (b_{m+n+2}, b_j), (b_{m+n+1}, b_{m+n+2}) \ 1 \le i \le m, 1 \le j \le n\}$ be the edge set of the bi-star $B_{m,n}$.

Labeling the edges of the bi-star $B_{m,n}$, using a bijective function g defined as follows,

$$g: E \to \{1, 2, 3, ..., m+n+1\}$$
, such that
$$g(b_{m+n+1}, b_i) = i+1, 1 \le i \le m$$

$$g(b_{m+n+2}, b_j) = m+j+1, 1 \le i \le n$$

$$g(b_{m+n+1}, b_{m+n+2}) = 1$$

The following Figure 6 is an example of the edge labeled bi-star $B_{5,6}$.

Figure 3: Edge labeled bi-star $B_{5,6}$

To prove that the bi-star $B_{m,n}$ is a vertex strongly*-graph,

The vertex calculation for each vertex is given below,

$$f(b_{m+n+1}) = m! + \frac{m(m+1)}{2}$$

$$f(b_{m+n+2}) = \frac{(m+n+1)!}{(m+1)!} + \frac{n(2m+n+3)}{2} + 1$$

$$f(b_i) = 2(i+1), 1 \le i \le m$$

$$f(b_{m+j}) = 2(m+j+1), 1 \le j \le n$$

As the numbers are in ascending order, the calculations are not equal for different vertices.

Therefore, the calculated values are distinct for each vertex.

Hence bi-star $B_{m,n}$ is a vertex strongly*-graph.

Conclusion:

This paper gives the results on vertex strongly*-graph on some constructed planar graphs. This work can be extended to different graph structures. This labeling has good applications in radio signal assignments, network analysis, cryptography, and other engineering-related fields.

References

- 1. A Rosa, On certain valuation of the vertices of a graph, Theory of graphs, Proceedings of the Symposium, Rome, Gordon and Breach, New York, 349-355, 1967.
- 2. J Baskar Babujee and C Beaula, On vertex strongly*-graph, Proceed. Internat. Conf. Math. and Comput. Sci., 25-26, July 2008.
- 3. A Fathima Banu, S Chelliah and M P Syed Ali Nisaya, Even vertex tetrahedral mean graphs, World Scientific News, Volume 156, 26-39, 2021
- 4. J Baskar Babujee, K Kannan and V Vishnupriya, Vertex Strongly *-graphs, Internat. J. Analyzing Components and Combin. Biology in Math., Volume 2, 19-25.
- 5. J A Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 2020.
- 6. V Modha, K K Kanani, On k-cordial labeling of some graphs, British Journal of Mathematics & Computer Science, 13(3), 1-7, 2016.