On Vertex strongly*-graph of some constructed graphs

S Yoga ${ }^{1}$, A Suganthi Priya ${ }^{2}$
${ }^{1}$ Department of Mathematics, Assistant Professor of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.
${ }^{2}$ PG Scholar, Department of Mathematics, Sakthi College of Arts and Science for Women Oddanchatram, Palani Main Road, Dindigul-624 624.

Abstract

A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a vertex strongly*-graph if there exists a bijection $f: E\{1,2, \ldots . q\}$, such that for every vertex $u \in V, \Sigma \quad f\left(u v_{i}\right)+\Pi \quad f\left(u v_{i}\right)$ are distinct, where $u v_{i}$ are the edges incident to the vertex u. In this paper, we will be proving that the comb graph $P_{5} \odot K_{1}$ and the bi-star $B_{m, n}$ are vertex strongly*-graph.

Introduction

A graph $G(V, E)$ is a set of vertices V and edges E, each vertex $e \epsilon E$ has its end vertices in V. Any problem can be visualized using graphs, which helps find solutions. Graph labeling is one of the research areas in graph theory that has a lot of applications in data science, blockchain, cryptography, and many more engineering field. Graph labeling is introduced by Rosa [1]. A survey on graph labeling can be found in Gallian [5], which gives updated research work. There is a lot of research work available in edge labeling. One such work is the vertex strongly*-graph, which is introduced by Beaula and Baskar Babujee [2]. Baskar Babujee et. Al. [4] have proved that wheels, paths, crowns, fans, and umbrellas are vertex strongly*-graphs. In this paper, we will prove that the comb graph $P_{5} \odot K_{1}$ and the bi-star $B_{m, n}$ are vertex strongly*-graphs.

Definition 1.1: Vertex strongly *-graph [2]

A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be a vertex strongly*-graph if there exists a bijection $f: E\{1,2, \ldots . q\}$, such that for every vertex $u \in V, \Sigma f\left(u v_{i}\right)+\Pi \quad f\left(u v_{i}\right)$ are distinct, where $u v_{i}$ are the edges incident to the vertex u.

Definition 1.2: Comb graph $P_{n} \odot K_{1}$ [3]
The comb graph $P_{n} \odot K_{1}$ is a graph obtained from the path P_{n} by adding a pendant vertex to each vertex of P_{n}. Figure 1. Comb graph $P_{5} \odot K_{1}$ is an example of a comb graph.

Figure 1: Comb graph $P_{5} \odot K_{1}$

Definition 1.3: Bi-star $B_{m, n}$ [6]

The bi-star $B_{m, n}$ is a graph obtained from K_{2} by joining m pendant edges to one end of K_{2} and n pendant edges to the other end of K_{2}. Figure 2. Bi-star $B_{5,6}$ is an example of a bi-star.

Figure 2: Bi-star $B_{5,6}$

2. Main Results

Theorem 2.1

The comb graph $P_{n} \odot K_{1}$ is a vertex strongly*-graph.

Proof:

Let $V=\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots, a_{2 n}\right\}$ be the vertex set and, $E=\left\{\left(a_{i}, a_{i+1}\right), 1 \leq i \leq n-1\right\} \cup\left\{\left(a_{i}, a_{n+i}\right), 1 \leq i \leq n\right\}$ be the edge set of the comb graph $P_{n} \odot K_{1}$.

Labeling the edges of the comb graph $P_{n} \odot K_{1}$ using a bijective function g defined as follows, $g: E \rightarrow\{1,2,3, \ldots, 2 n-1\}$, such that
$g\left(a_{i}, a_{i+1}\right)=i, 1 \leq i \leq n-1$
$g\left(a_{i}, a_{n+i}\right)=n+i-1,1 \leq i \leq n$

The following Figure 3 is an example of the edge labeled comb graph $P_{5} \odot K_{1}$

Figure 3: Edge labeled Comb graph $P_{5} \odot K_{1}$
To prove that the comb graph $P_{n} \odot K_{1}$ is a vertex strongly*-graph,
The vertex calculation for each vertex is given below,
$f\left(a_{1}\right)=2 n+1$
$f\left(a_{n}\right)=3 n-2+(n-1)(2 n-1)$
$f\left(a_{i}\right)=n+3 i-2+i(i-1)(n+i-1), 2 \leq i \leq n$
$f\left(a_{n+i}\right)=2(n+i-1), 1 \leq i \leq n$

To prove that the above calculations are distinct for each vertex.
Case (a): Consider $f\left(a_{i}\right)$ and $f\left(a_{n+i}\right)$
$f\left(a_{n+i}\right)=2(n+i-1), 1 \leq i \leq n$

$$
f\left(a_{n+i+1}\right)=2(n+i+1-1)
$$

$f\left(a_{n+i+1}\right)=2(n+i-1)+2$

$$
f\left(a_{n+i+1}\right)=f\left(a_{n+i}\right)+2
$$

$f\left(a_{n+i+1}\right) \neq f\left(a_{n+i}\right)$ for $1 \leq i \leq n$
Therefore, the vertex calculation is distinct for each vertex.
The following Figure 5 is an example of the vertex calculated comb graph $P_{5} \odot K_{1}$

Figure 5: vertex calculated comb graph $P_{5} \odot K_{1}$
Hence the comb graph $P_{n} \odot K_{1}$ is a vertex strongly*-graph.

Theorem 2.2

The bi-star $B_{m, n}$ is a vertex strongly*-graph.

Proof:

Let $V=\left\{b_{1}, b_{2}, \ldots, b_{m}, b_{m+1}, \ldots, b_{m+n}, b_{m+n+1}, b_{m+n+2}\right\}$ be the vertex set and, $E=\left\{\left(b_{m+n+1}, b_{i}\right),\left(b_{m+n+2}, b_{j}\right),\left(b_{m+n+1}, b_{m+n+2}\right) 1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the edge set of the bi-star $B_{m, n}$.

Labeling the edges of the bi-star $B_{m, n}$, using a bijective function g defined as follows,
$g: E \rightarrow\{1,2,3, \ldots, m+n+1\}$, such that
$g\left(b_{m+n+1}, b_{i}\right)=i+1,1 \leq i \leq m$
$g\left(b_{m+n+2}, b_{j}\right)=m+j+1,1 \leq i \leq n$

$$
g\left(b_{m+n+1}, b_{m+n+2}\right)=1
$$

The following Figure 6 is an example of the edge labeled bi-star $B_{5,6}$.

Figure 3: Edge labeled bi-star $B_{5,6}$

To prove that the bi-star $B_{m, n}$ is a vertex strongly*-graph,
The vertex calculation for each vertex is given below,
$f\left(b_{m+n+1}\right)=m!+\frac{m(m+1)}{2}$

$$
f\left(b_{m+n+2}\right)=\frac{(m+n+1)!}{(m+1)!}+\frac{n(2 m+n+3)}{2}+1
$$

$f\left(b_{i}\right)=2(i+1), 1 \leq i \leq m$
$f\left(b_{m+j}\right)=2(m+j+1), 1 \leq j \leq n$

As the numbers are in ascending order, the calculations are not equal for different vertices.
Therefore, the calculated values are distinct for each vertex.
Hence bi-star $B_{m, n}$ is a vertex strongly*-graph.

Conclusion:

This paper gives the results on vertex strongly*-graph on some constructed planar graphs. This work can be extended to different graph structures. This labeling has good applications in radio signal assignments, network analysis, cryptography, and other engineering-related fields.

References

1. A Rosa, On certain valuation of the vertices of a graph, Theory of graphs, Proceedings of the Symposium, Rome, Gordon and Breach, New York, 349-355, 1967.
2. J Baskar Babujee and C Beaula, On vertex strongly*-graph, Proceed. Internat. Conf. Math. and Comput. Sci., 25-26, July 2008.
3. A Fathima Banu, S Chelliah and M P Syed Ali Nisaya, Even vertex tetrahedral mean graphs, World Scientific News, Volume 156, 26-39, 2021
4. J Baskar Babujee, K Kannan and V Vishnupriya, Vertex Strongly *-graphs, Internat. J. Analyzing Components and Combin. Biology in Math., Volume 2, 19-25.
5. J A Gallian, A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 2020.
6. V Modha, K K Kanani, On k-cordial labeling of some graphs, British Journal of Mathematics \& Computer Science, 13(3), 1-7, 2016.
