Design And Analysis of Car Workshop

Mrs. Deepa Sahu¹, Mohammed Kaunain Raza², Parth Pal³, Nageshwar Sahu⁴

¹Assistant Professor, Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh ^{2,3,4,}Students, Department of Civil Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh ¹<u>deepa.sahu@bitdurg.ac.in</u>, ²<u>mdkaunain02@gmail.com</u>, ³<u>parthopa12018@gmail.com</u>, ⁴161514n@gmail.com

Abstract

This paper discusses the structural analysis of a car workshop using STAADPro. The analysis included evaluating the bracing, tapered columns, beam, tension members, and joints of the structure. Special attention was paid to the critical parts of the building that were subjected to high loading conditions. The proposed structure was designed according to IS 800:2007, and the analysis of dead, live, and wind loads was carried out following IS 875:1987 (Part-I, Part-II, Part-III) standards. The building was exposed to three major loads, which were collateral load, wind load, live load, and self-weight i.e., dead load. The primary aim of the analysis was to optimize the steel usage in the structure for safe and economical construction. Some parts of the structure were redesigned to reduce weight, which was achieved through optimization of steel. The cross-section properties, particularly the tapered beam and column, were altered, affecting the overall economy and safety of the structure. The design and analysis incorporated practical knowledge, which is crucial in any project. The study also evaluated the cost variation and estimated the RCC and Steel workshop and the 3D model developed using AutoCAD software.

Keywords: STAAD Pro, Car Workshop, Structural Steel Design, Frame Design, Foundation Design, Three-Dimensional Modeling.

1. Introduction

In today's era, technology has significantly impacted architecture and has evolved from short stone and wood structures to steel structures. Structural steel has emerged as the most reliable building material, and as a result, many buildings and infrastructure are constructed using it. The development of structural steel as a building material has greatly influenced the current growth in industrialization due to its strength, durability, and ease of construction. Steel structures are utilized in various modern constructions, including massive industrial buildings. Car workshops are usually made of steel structures and can serve multiple purposes. IS 800:2007 is the regulation introduced for designing steel structures.

1. Objective

(A) This paper proposes to undertake a structural analysis of a car workshop using STAADPro software.

• The primary objectives of this analysis are to identify the various loads and load combinations acting on the structure.

•And to design the workshop in a manner that ensures safety and cost-effective construction.

(B)Another aspect of the research will focus on the cost and estimation comparison between RCC and Steel car workshops.

(C) Lastly, generate a 3D model of the workshop using AutoCAD software.

2. General

Industrial buildings typically consist of bays with frames that span in the width direction. Several frames are arranged at appropriate spacing to achieve the necessary length, and multiple bays may be constructed together as per the requirements.

The inclusion of bracings in these structures effectively minimizes differential deflection between frames caused by crane surges seen in industrial buildings. These braces also offer lateral support to small and tall building columns, enhancing the column's buckling strength. For Pre- Engineered Building (PEB) design, stability is provided in both the lateral and longitudinal directions. In the lateral direction, a Moment Resisting Frame is utilized, while a Braced Frame is employed in the longitudinal direction.

3. Loads and load combinations

•Dead load: This load includes the weight of the structure itself, like the roofing, purlins, bracings, G.I. sheets, and other accessories.

•As per the Indian Standard Code IS: 875 (Part 2) - 1987, the live load for roofs without access is 0.75 kN/m^2 . However, for every degree of roof slope above 10 degrees, there is

a reduction of 0.02 kN/m2 to be considered.

•Wind load: According to IS: 875 (Part 3) - 1987, wind load is calculated based on the basic wind speed for the location of the building, usually measured in m/s with a rating of 47m/s.

•Load combinations: To decide load combinations and to design members accordingly, the following codes are used:

1. IS 875-1987 for load calculation

2. IS 800:2007 for load calculation

2. Literature review

Numerous research papers analyzing the effectiveness of steel structures have been published by researchers.

One such study was conducted by A.D. Bhosale, Archit Pradip Hatkhambar, and Rupesh Vinayak Katkar in 2018, where they analyzed and designed a multi-storey building utilizing STAAD Pro V8i. Their analysis showed that STAAD Pro offered high accuracy and significant time savings in design. Dead load, live load, combination, and wind loads were all factored into the designing process.

In another study, Nauman Khurram et al. in 2018 examined the relationship between unbraced length ratio and flange local slenderness ratio in "Optimization of Flange and Web Slenderness for Pre-Engineered Steel Sections". The study revealed that while compact flanges were not always the most economical solution and strength could be reduced, a web slenderness ratio of 160 and above yielded good results for members with high bending effects.

Dinesh Kumar Gupta and Mirza Aamir Baig (2017) performed an analysis to

compare the Limit State Method (LSM) and Working Stress Method (WSM) for designing an industrial steel storage shed using STAAD Pro software. They concluded that the area of the section designed using LSM was approximately 12% less than that designed using WSM. Hence, they recommended using the LSM for structural design as it is more reliable and cost-effective than the WSM.

In another study, Paolo Cicconi et al. (2016) proposed a design methodology for

optimizing the weight of steel structures used in oil and gas power plant modules. By using a Finite Element Method (FEM) analysis methodology that involves varying several parameters to generate various steel section profiles and building systems, they achieved a mass reduction of 5-15%. A database of section profile groups that are suitable for buildings of various spans and dimensions was formulated.

3. Methodology

In the present study, the area and size of the proposed structure were determined based on the specifications of the Mahindra Car Workshop.

Sr. No.	Particulars	Description
1	Type Of Building	Steel Building
2	Type Of Structure	Single – Storey Car Workshop
3	Length	45m (c/c)
4	Width	18m (c/c)
5	Clear Height	7.0m
6	Brick Wall	3.0
7	Basic Wind Speed	47m/s
8	Roof Slope	1:10
9	Solar Panel Load	25 kg/sqm on roof

TABLE 1: DETAILS OF THE CAR WAREHOUSE:

4 - ANALYSIS OF STRUCTURE

4.1 Modelling of structure

Fig 1 shows the geometry of the structure

The design and analysis of a car workshop with a length of 18m, consisting of a tapered frame with a bay spacing of 7.5m, a span of 45m, and clear height of 7m with a roof slope of 1:10. The calculation of the dead load includes the self-weight of the structure, purlins, roof sheet, bracing, and other accessories. For nodal dead loads, the wind load was calculated according to IS 875 (Part 3)-1987 by considering a basic wind speed of 47m/s in Delhi. The calculation of wind load (F) on the roof truss was carried out by the static wind method using the formula

F=(Cpi-Cpe) * A * Pd

while wind pressure was calculated and tabulated. The critical wind pressure/loads were used for designing. Load combinations were adopted as (DL1.5) + (LL1.5) and (DL1.5) + (WL1.5), as per Clause 3.5.1 and 5.3.3 They have utilized ISMB200 for the tapered beam in the structure, while the columns are designed as a compression member which carries the roof structure loads.

4.2 Assigning of Loads

- Dead Load
- Live Load
- Wind Load
- Collateral Load

Fig. 4 computed wind load assigned

Fig. 5 computed collateral load assigned

5 – Properties assigned to the whole structure.

Fig. 3 computed Live Load assigned

VOLUME 22 : ISSUE 04 (April) - 2023

6 - STAAD PRO RESULTS

The analysis done from considering all the above parameters state that the structure is safe without any errors

Fig 2 showing steel design of the element

6.1 - Bending Moments Output

Fig 3 showing bending moment diagram of the structure

6.2 - Shear Forces Output

Fig 4 showing Shear Force diagram of the structure

6.3 - Displacements Outputs

Fig 5 showing Displacements of the structure

	WINL		AD CALCU	LATION SHEET						
LENGTH (L)	=	45	m	Basic Wind speed,Vb=	47	m/s				
WIDTH(W)	=	18	m	Terrian Category =	2					
HEIGHT(H)	=	7.5	m	Bay Spacing(sidewall) =	7.5	End =	6.0			
SLOPE =	1	10		Enclosed Condition	0.2	-0.2	<u> </u>			
		Calci	lation for wind	nressure '			-			
k1 =	1.00	Genera	l building As ne	er Table-1 of IS-875-Part-3						
k2 =	1.000	For Ter	rian category 2	as ner Table 2 Clause: 6.3	2.1-h					
k3 =	1.00	Unwin	d slone is less th	an 3 degree						
k4 =	1.00	for Nor	Cyclonic Regio	n						
V7 =	k1xk2xK3xK4X\/h =		r cyclonic negio	47 m/s						
12	wind pressure Pz = (6\/z^2	=	1325 4 N/m2 =	1 33	kN/m	2			
Kd =		(Direct	ionality factor)	1323.4 19112 -	1.55	KNYIIIZ	_			
Ka -	0.9).9 (Area Averaging factor)								
Kc =	0.5	(Comb	ination factor fo	r pressure & Suction)						
Desi	gn wind pressure Pd(not	be take	n less than 0.7Pz)	pressure & succiony		-				
	6 J		KdxKaxKcxPz =	0.97	kN/m	2				
				(2					
H/W =	0.42	7	h/w≤0.5		1		1			
L/W =	2.50	•	1.5 <l td="" w≤4<=""><td>A /. /</td><td>4</td><td>/</td><td></td></l>	A /. /	4	/				
				> 12 \ 23\ " <==	so 1	/)				
				/ V	14	3/				
					í /	/				
				D.	/					
					~					
CASE 1. WIN		(75PO)	(Ind load on	frame	1	1				
CASE-1- WIN			Cn=(Cno Cni)	Wind load on fran		-				
SURFACE	Cpe 0.70		Cp=(Cpe-Cpi)		2 64					
A	0.70	0.2	0.50	0.5x0.97x7.5=	3.64					
EF	-0.94	0.2	-1.14	-1.14x0.97x7.5=	-8.29					
GH	-0.40	0.2	-0.60	-0.6x0.97x7.5=	-4.57					
В	-0.25	0.2	-0.45	-0.45x0.9/x7.5=	-3.27					
C D	-0.60	0.2	-0.80	-0.8x0.9/x6=	-4.66					
0	-0.60	0.2	-0.80	-0.8x0.9/x6=	-4.00					
CASE-2- WIN	ID ACROSS THE RIDGE	(ZERO	DEGREE) Negati	ive Cpi		-				
SURFACE	Сре	Срі	Сре-Срі	Wind load on fran	ne					
A	0.70	-0.2	0.9	0.9x0.9/x/.5=	6.55					
EF	-0.94	-0.2	-0.74	-0./4x0.9/x/.5=	-5.38					
GH	-0.40	-0.2	-0.2	-0.2x0.9/x/.5=	-1.46					
В	-0.25	-0.2	-0.05	-0.05x0.9/x/.5=	-0.36	_				
C	-0.60	-0.2	-0.4	-0.4x0.9/x6=	-2.33					
D	-0.60	-0.2	-0.4	-0.4x0.97x6=	-2.33					
CASE 2 MINI				Cni						
			Cno Cni	Wind load on fran		-				
JUNIACE	0.50	0.2	0.7	0.7×0.07×7.5=	E 00					
A FC	-0.50	0.2	-0./	-0.7X0.97X7.3=	7.20	-				
EG	-0.80	0.2	-1	-1x0.9/x/.5=	-7.28					
EG	-0.80	0.2	-1	-1XU.9/X/.5=	-7.28					
в	-0.50	0.2	-0.7	-0./x0.9/x/.5=	-5.09					
C	0.70	0.2	0.5	0.5x0.97x6=	2.91					
D	-0.10	0.2	-0.3	-0.3x0.97x6=	-1.75					
CASE-4- WINI	D PARALLEL TO RIDGE(9	DEGRE	E) WITH Negative	e Cpi		4				
SURFACE	Сре	Срі	Сре-Срі	Wind load on fran	ne	1				
A	-0.50	-0.2	-0.3	-0.3x0.97x7.5=	-2.18					
EG	-0.80	-0.2	-0.6	-0.6x0.97x7.5=	-4.37					
EG	-0.80	-0.2	-0.6	-0.6x0.97x7.5=	-4.37					
В	-0.50	-0.2	-0.3	-0.3x0.97x7.5=	-2.18					
С	0.70	-0.2	0.9	0.9x0.97x6=	5.24					
D	-0.10	-0.2	0.1	0.1x0.97x6=	0.58					

7 - Wind Load Calculations

8 – Isolated Foundation Design

R	utting No.	Group ID			Foundation George	ŵγ		
				Longth	Web.		Thickne	90
	78	1		5.200 m	5.200 m		0.3051	n
	00	2		6.500 m	6.500 m		0.305 1	n
	85	3		5.200 m	5.200 m		0.305 (n
	67	4		6.500 m	6.500 m		0.305 r	n
	92	3		5.200 m	5.200 m		0.305 (n
	94	6		6.500 m	6.500 m		0.305 (n
	99	7		5.200 m	5.200 m		0.305 (n
	101	9		6.500 m	6.500 m		0.305	D
	106	9		5.200 m	5.200 m		0.305 r	D
	108	10	_	6.500 m	6.500 m	-	0.305	0
	112	11	-	5,000 m	5,000 m	_	0.365	
	115	11	_	3.200 m	3.200 m	_	0.363	
	115	12		6.500 m	6.500 m	_	0.365	n
	120	13		5.200 m	5.200 m		0.305 (n
	122	34		6.500 m	6.500 m		0.305	n
			· · · · ·			·		
ooting No.		Packing Roh	forom	ert .			Pedental Re	inforcement.
- 1	tottom Reinforcement[3	 Botton Reinforcement(M)) Te	p Reinforcement(M_)	Top Reinforcement	40%)	Main Sheel	Trans Sheet
78	06 @ 75 mm c/c	06 @ 25 mm c8:		6 d 75 mm c/c	96 @ 25 mm	cke	N/A	844
90	06.0 75 mm c/c	06 @ 75 mm cir		N @ 55 mm c/c	06 @ 65 mm	cle	M/A	NA
	Of the Theorem sile	25 @ 75 mm c/c	-	M db 70 mm ele	(M. (B. 75 mm))	a da	14/4	NIA
0.0	so g /s milige	and the second second	+ *	and a summary of the	ab g rammi	44	140	ngra.
87	06 (0 75 mm c/c	95 @ 75 mm c/c	_	86 @ 35 mm c/c	96 @ 65 mm (c/c	N/A	nya.
92	06 (0 75 mm c/c	06 @ 75 mm c/c		26 @ 75 mm c/c	06 @ 75 mm (c/c	N/A	N/A
94	06 @ 75 mm c/c	05 @ 75 mm ck	1	36 @ 55 mm c/c	06 @ 65 mm	(k	N/A	N/A
90	Of the Property	(66 d Name)		h d Z mm ckc	(h d 25 mm)	cke	N/A	NA
101	OK O Z march	06 @ 35 mm c/s	+	N & S me als	0.64	cle -	MAR .	N/A
101	and a remaining of	of a straige	+	A A A A A A A A A A A A A A A A A A A	and a state		10.14	1004
100	500 gt /5 mm c/c	una og 75 mm c/c	-	av grannic/c	10 g 75 mm	46	NA	n/A
108	06 @ 75 mm c/c	06 @ 75 mm c/c	1	26 @ 55 mm c/c	06 @ 65 mm	c/c	N/A	N/A
113	06 Ø 75 mm c/c	06 @ 75 mm c/c	1	36 @ 75 mm c/c	06 @ 75 mm	QK	N/A	N/A
115	06 0 75 mm r/r	06 @ 75 mm/k		40 mm 22 @ 26	06 @ 65 mm	che	N/A	NA
130	Chi di Tarran che	05 @ 75 mm ck	+	No 10 Some cle	(25 (2) 5 mm)	2		100
Column/Pedes			Footing Soll	Desi	Input \ Footing G gn Type : (<u>/alı</u> ieor	<u>ues</u> <u>mtery</u> ulate Di	mension
<u>۽</u> ا	i Length x Bread <u>ELEVA</u>	th Per Plan		oting Length	iess (Ht):: i - X (FI):: - 7 (Fw):	305. 100(100(.000 mm 0.000 m 0.000 m	n m m
				oung mour	2(14).	1000	0.000 111	
	i	· 		itricity along	X (Oxd) :	0.00	10 mm	
*	-			stricity slope	7 (Ozd) •	0 00	0 mm	
Pedental/ Golama Width			Footing Width	Colum	Column Di	ime Rect	nsions tangular	
-	Pedestal / Col	ımrî Length		Jumn Length	- X (PI) ·	0.64	10 m	
<i>x</i>	FootingL	ength X		namin Lengu	- A (PI) - 1	0.04	111 C	
OLUMN / PE ER PLAN	DESTAL DIMENSION	15	 T	- 1	Dowels Column	TO M/	ATCH VERT	ICAL T
6 m	m @ 75 mm-				Г ⁶ ти	n Q 7	5 mm	
-			-	1			1	-
				-		0 mm	CLR TYP.	
		ELEV	ATIO	1		- traff	and the set.	

PROFI	LE		LENGTH (METE)	WEIGHT (KN)
Tapered	MembNo:	1	32.09	32.540	
			TOTAL =	32.540	
					C
MEMBER	PROF	ILE	LENGTH	WEIGHT	
			(METE)	(KN)	
1	TAP	ERED	7.00	7.098	
2	TAP	ERED	7.00	7.098	
3	TAP	ERED	9.04	9.172	
4	TAP	ERED	9.04	9.172	

************ END OF DATA FROM INTERNAL STORAGE ************

220. FINISH

Earlier the weight of the one frame was 32.54 KN or 3254 KG

			a manufacture (a second)	and a contain datase	
PROFIL	LENG		LENGTH (METE)	WEIGHT (KN	
Tapered	MembNo:	1	14.00	12.088	
Tapered	MembNo:	3	5.74	4.939	
Tapered	MembNo:	5	12.35	9.487	
			TOTAL =	26.514	
	-				
MEMBER	PROF	ILE	LENGTH	WEIGHT	
MEMBER	PROF	ILE	LENGTH (METE)	WEIGHT (KN)	
MEMBER 1	PROF	ERED	LENGTH (METE) 7.00	WEIGHT (KN) 6.044	
MEMBER 1 2	PROF TAP TAP	ERED ERED	LENGTH (METE) 7.00 7.00	WEIGHT (KN) 6.044 6.044	
MEMBER 1 2 3	PROF TAP TAP TAP	ERED ERED ERED	LENGTH (METE) 7.00 7.00 2.87	WEIGHT (KN) 6.044 6.044 2.469	
MEMBER 1 2 3 4	PROF TAP TAP TAP TAP	ERED ERED ERED ERED	LENGTH (METE) 7.00 7.00 2.87 2.87	WEIGHT (KN) 6.044 6.044 2.469 2.469	
1 2 3 4 5	PROF TAP TAP TAP TAP TAP	ERED ERED ERED ERED ERED ERED	LENGTH (METE) 7.00 7.00 2.87 2.87 6.17	WEIGHT (KN) 6.044 6.044 2.469 2.469 4.744	

..... END OF DATA FROM INTERNAL STORAGE

Optimized final weight of the one frame is 26.514 KN or 2651 KG.

9 - RESULTS

The structural members were designed in compliance with IS code specifications, accounting for the loads on the structure. Through optimization, the weight of one frame was reduced from 32.54 KN or 3254 KG to 26.514 KN or 2651 KG.

10 – Cost and Estimation variability between Rcc and Steel Structures

10.1 – Estimation of Rcc Car Workshop

Total cost for Rcc Works – Rs. 2510232Total cost for Labour charges – Rs. 2556961Overall cost – Rs. 5067193

10.2 – Estimation of Steel Car Workshop

Total cost for Steel Works – Rs. 6079821Total cost for Labour charges – Rs. 2004883Overall cost – Rs. 8084704

RCC Building

	Item disciption	No.	L(ft)	B (ft)	H (ft)	Quantity (cuft)	Rate (Rs)	Cost (Rs)
1	Excavation for foundation	2	1 6	6	5	3780		
2	Prc at foundation	2	1 9	5	0.2	131.25		
	cement (bag)					35	325	11375
	sand (cuft)					63	50	3150
	aggregate (cuft)					126	68	8568
					0.7			
3	rooting rectangular portion cement (bag)	2	1 4	4	0.75	5 252	325	21125
	sand (cuft)					120.96	50	6048
	aggregate (cuft)					241.92	68	16450.56
	steel (kg)					35	70	2450
4	Column concrete upto plinth level	2	1 1	. 1		5 105		
	cement (bag)					25	325	8125
	sand (cutt)					46.32	50	2316
	steel (kg)					92.00	00	0315.04
	main					68.55	65	4455.75
	link (stirrups)					111.41	48	5347.68
5	Brick work upto plinth level					5832	5	29160
6	Earth filling		1 59.05	147.6		8715.78		
	8/15./8-3/80=4935					1005	40	10250
	transportation charges					4955	4 17	20578.95
	labour charges					4935	3	14805
	_							
7	Floor tiles		1 59.05	147.6		8715.78	51	444504.78
8	Plinth beam							
	cement (bag)					70	325	22750
	sand (curt)					120	50	6000
	aggregate (cuit) steel (kg)					240	60	10320
	seer (ng)					0/2.1		52328
9	Lintle beam							
	long wall		2 147.6	5 1	0.7	5 221.4		
	short wall		7 59.05	1	0.75	310.0125		
					total	531.41		
	cement (bag)					90	325	29250
	sand (cutt)					134	50	6700
	aggregate (curt)					255	60	17340
	steel (vB)					032.3	00	33338
10	Column concrete for super structure	2	1 1	1	14.5	306.18		
11	Brick work in super structure							
	long wall		2 147.6	5 1	14.5	4304.016		
	short wall		2 59.05	1	14.58	3 1721.898		
					total	6025.914		
	Deduction							
	door		3 IL 0 C	1	. 10	300		
	WINDOWS		• =	1	total	280		
	Deduction due to lintle concrete				totai	531.41		
	Deduction for column	1	4 1	1	14.58	3 204.12		
	Actual brick work =							
	6025.914-380-531.41-204.12=4910 cuft					66285	6	397710
	13.5 brick in 1 cuft							
12	Material for column	2	1 1	. 1	19.58	411.18		
	cement (bag)					107	325	34775
	sand (cuft)					197.28	50	9864
	aggregate (cutt)					394.56	68	26830.08
	steel (kg)					224.65	65	15252.25
	link (stirruns)					371.28	48	17821.44
	V 1 /							
13	Slab concrete		1 147.6	59.05	0.41	3573.4698		
	cement (bag)					535	325	173875
	sand (cuft)					1008	50	50400
	aggregate (cuft)					2018	68	137224
	steel (kg)					7062.66	65	459072.9
14	Dia stania museli							
14	horigontal wall		2 59.05		14 55	1721 898		
	vertical wall		2 147.6		14.58	4304.016		
			2.7.0		total	6025.914		
	Deduction							
	doors	1.	5 10		10	150		
	windows		4 5		2	2 40		
					total	190		
	total plastering work							
	cement (hag)					66	325	21450
	sand (cuft)					323.7	50	16185
15	Form work							
	column	2	1			739	17	12563
	beam					1356	14	18984
	slab					3573.4698	30	107204.094
	Mantan fan briek warde							
16	workar TOF DRICK WORK					157.98		
	cement (Dag)					208	325	67600
	Sono (Care)					1701.44	50	85072
							IOTAL	2510232
	Labour charges for :-							
1	excation for foundation					3780	10	37800
2	pcc at foundation					131.25	30	3937.5
3	footing rectangular portion					252	30	7560
4	column concrete upto plinth level					105	30	3150
4	brick work up to plith level					832	25	20800
5	earth filling					8715.78	8	69726.24
6	floor tiles					8598	50	429900
7	plinth beam					531.41	30	15942.3
8	ince peam brick work in super structure					531.41	30	15942.3
9	column					5575	25	139375
10	slab concrete					411.18	30	536320.47
12	plastering work					5835.914	155	87538.71
13	Plumbing,Electric and Wood					8715.8	120	1045896
14	Architect					8715.8	15	130737
							TOTAL	2556961
						OVERALL COST		5067193

STEEL STRUCTURE

no. Item disciption	No.	L(ft)	B (ft)	H (ft)	Quantity (cuft)	Rate (Rs)	Cost (Rs)
1Excavation for foundation	14	6	6	5	2520		
2Pcc at foundation	14	5	5	0.25	87.5		
cement (bag)					18	325	5850
sand (cuft)					32	50	1600
aggregate (cuft)					63	68	4284
3Footing rectangular portion	14	4	4	0.75	168		
cement (bag)					32	325	10400
sand (cuft)					60.5	50	3025
aggregate (cuft)					120.3	68	8180.4
steel (kg)					19	70	1330
4 Column concrete upto plinth level	14	1	1	5	70		
cement (bag)					13	325	4225
sand (cuft)					23	50	1150
aggregate (cuft)					45.5	68	3094
steel (kg)							
main					35	65	2275
link (stirrups)					55.5	48	2664
					55.5	10	2001
5 Brick work unto plinth level (bricks)					2916	6	17496
S brick work up to pinter lever (bricks)					2510	0	17450
6 Earth filling	1	50.05	147.6		0715 70		
o Lartin mining			147.0		8/13./8		
				071E 7			
				8-			
				2520=			
				6195.7			
				8			
excavation charges					6195.78	10	61957.8
transportation charges					6195.78	4.17	25836.403
labour charges					6195.78	8	49566.24
7Floor tiles (no. of tiles)	1	59.1	147.6		8723.16	51	444881.16
8Plinth beam							
cement (bag)					35	325	11375
sand (cuft)					60	50	3000
aggregate (cuft)					120	68	8160
steel (kg)					436	60	26160
9 Anchor bolt	112				112	50	5600
10Tapered column (tonn)	14				26.698	65000	1735370
	-						
11 Rafter (tonn)	14				30 768	75000	2307600
	14				30.708	73000	2307000
no. of bolts to joint rafter and column					112	50	5600
no. of bolts to joint raiter and column					112	50	1400
no. of bolts to joint rafter to rafter					28	50	1400
12Purline	108				6000	/5	450000
fastener					120	15	1800
13 Girts	168				7000	75	525000
fatener					180	15	2700
14 Braces	48				48	450	21600
15 Colour coated roof monitor	1010					150	151500
16 Roof insulator					3940	15	59100
17 Wall sheet					3420	33.93	116040.6
						TOTAL	6079821
Labour charges for :-							
1 excation for foundation					2520	10	25200
and at foundation					87.5	30	25200
3 footing rectangular portion					100	30	2025
A column concrete unto plinth lovel					108	30	3100
A brick work up to allah kend					70	30	2100
South filling					2060	25	51500
					8/15.78	8	09726.24
orioor tiles					8/15.78	50	435789
/ plith beam					309	30	9270
8 rafter and colum							40000
9 purline							90000
10 colour coated roof monitor							44000
11 wall sheet							53000
12 Plumbing, Electric and Wood					8715.8	120	1045896
13Architect					8715.8	15	130737
						TOTAL	2004883
					OVERALL COST		
							8084704

11 – Building 3D Model using AutoCAD Software

11.1 – 2D Layout and Views

MAHINDRA CAR WORKSHOP

3D View of Workshop (Inside)

12 – Conclusion

- 1) The initial cost of steel structure is costly then RCC, but the resale value of steel is more then RCC.
- 2) Steel structure takes less time with respect to RCC but it required skilled Labour.
- 3) By using STAAD pro, we get the optimum value and quantity of material by which the cost of structure get minimum then the actual cost of structure.
- 4) Using foundation design, isolated footing is more economical and durable footing for workshop.

13. References

1. Journal Article

- 1. A.D. Bhosale, Archit Pradip Hatkhambkar, Rupesh Vinayak Katkar, Shubham Balasaheb Babar, Sunny Pramod Gorivale (2018), "Analysis and Design of Multi- Storey Building by using STAAD-Pro V8i".
- 2. Nauman Khurram et al. (2018) in "Optimization of Flange and Web Slenderness for Pre-Engineered Steel Sections".
- 3. Dinesh Kumar Gupta and Mirza Aamir Baig (2017) Design of Industrial Steel Building by Limit State Method International Journal of Advance Research, Ideas and Innovations IN technology.
- 4. Paolo Cicconi, et al. (2016) in "A design methodology to support the optimization of steel structures".
- 5. Prof. S.S. Patil, L.A. Pasnur (2018) "Comparative Study of Steel Structures Design Using IS 800:1984 & IS 800:2007".
- 6. Prof. Ravindra Bhimrao Kulkarni and Rohan Shrikant Jirage (2017) "Comparative Study of Steel Angles as Tension Members Designed by Working Stress Method and Limit State Method".
- 7. Shaiv Parikh (2018)," Design of Steel Compression Members" (According to IS: 800).

2. Book

- 1. Design of Steel Structures S.K. Duggal. 3rd Edition 2017 Mc Graw Hill Publications.
- 2. Dr. B.C. Punmia, Dr. Ashok Kumar Jain, Dr. Arun Kumar Jain, The book of" Design of steel structures", Second edition, Lakshmi Publications(P)Ltd,113, Golden house Darya Ganj, New Delhi, March 2009.