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Abstract: -  

Metformin belongs to the biguanide chemical family, which is largely used in the therapy of 

type 2 diabetes (T2D). Surprisingly, metformin's therapeutic potential goes beyond its 

prescribed anti-diabetic use. Nowadays Neurological diseases are very common for all age 

people. The medications and the treatments that we use to cure these diseases are also 

expensive and have side effects also. So It has been claimed that metformin medication has 

good effects on several neurological illnesses such as Parkinson's, Alzheimer's, schizophrenia, 

depression, and so on. Metformin can be a very good alternative medication for these diseases. 

This review examines how this medication can aid in neuroprotection for several neurological 

disorders. Furthermore, we investigate metformin's modes of action to better understand its 

neurological activity. There are pieces of information on metformin’s neurological activity and 

its relationship with patients who is taking metformin for years. Here also explained how 

metformin delays neurological disorders in diabetic patients. 
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1. Introduction:  

Aging is becoming a global concern, followed by a rise in aging-related neurodegenerative 

disorders (NDs). Dementia(mental illness), Alzheimer’s disease (AD), Parkinson’s disease 

(PD), epilepsy, depression, and moderate cognitive disorders are all examples of degenerative 

illnesses of the central nervous system (CNS)[1]. Regrettably, there is no known disease-

specific treatment for these conditions, which are defined by the slow degeneration or demise 

of neurons, and they come at a high societal and financial cost[2]. 

                    

 

  The algorithm of different neurodegenerative diseases worldwide in 2023 

New drugs for NDs are now in clinical testing, however, the failure-to-success ratio is 

dishearteningly 100:1.Worldwide, it is predicted that 5 crore individuals suffer from 

neurodegenerative disorders, and by 2050, this number will rise to 11.5 crores.[3]  

Only a small number of medications have been authorized by the Food and Drug 

Administration (FDA) as first-line treatments for ischemic stroke and non-diabetic neuropathy 

(ND), with a mere 3% chance that CNS therapies will be introduced after entering phase-I 

clinical trials. Therefore, the creation of efficient treatments is essential, but this can only 

happen after the underlying causes of each illness are thoroughly understood. Additionally, the 

repurposing of medications that have shown notable outcomes in pre-clinical research might 

hasten the creation of efficient treatments. 

Dopamine may mediate both cerebral and peripheral insulin sensitivity, pointing to a 

connection between ND and glucose metabolism. The function of metformin, a common oral 

biguanide that is the medicine of choice to treat type 2 diabetes (T2DM), in dementia and 

Parkinson's disease is extremely complicated, both in animal studies and clinical studies[4]. 

Considering how time-consuming ND is, there are currently very few randomized control trials 

(RCTs) of metformin in clinical studies of the degenerative neurological system. Assessing 

risk changes over such a short time is insufficient[5]. 

We conducted a meta-analytic review using a meta-analysis of the existing observational 

clinical trials investigating the influence of metformin on the emergence of ND to better 
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comprehend this query[6]. In several neurodegenerative disorders, metformin has recently been 

shown to offer neuroprotective qualities. In this work, we examine the neuroprotective 

potential of metformin based on collecting information from preclinical and clinical 

investigations blood-brain barrier is undoubtedly crossed by metformin, which has been 

associated with neuropathological changes in several preclinical studies that are suggestive of 

improved cognitive function[7]. 

 

2. Metformin in the Nervous System 

2.1 Parkinson’s Disease (PD) 

 Parkinson's disease (PD), a dreadful neurological illness, is characterized by Lewy pathology 

along with the slow demise of dopaminergic neurons in the substantia nigra pars compacta 

(SNpc) [8].  

PD, which is now a global health burden because of the aging population, is a worry. Despite 

the enormous gains that PD research has made recently, the gold standard medication only 

significantly slows the disease's progression by reducing symptoms[9] [10]. Therefore, there is 

an urgent need to research novel disease-modifying therapeutic strategies. 

It has been demonstrated that metformin inhibits the phosphorylation and accumulation of -

synuclein (SNCA), reduces oxidative stress, controls respiration predominantly by stimulating 

AMP-activated protein kinase (AMPK), and guards against neurodegeneration and aggravation 

disorders[11]. 

Overall, metformin's neuroprotective benefits in PD parthenogenesis present a novel 

prospective therapeutic method that has the potential to overcome the limitations of current PD 

treatment[12] [13]. 

Metformin(MT) is well-accepted and has no negative effects on weight or blood sugar 

levels[14].In addition to increasing insulin sensitivity, it decreases hepatic glucose synthesis 

and intestinal glucose absorption, all of which help treat hyperglycemia [15] [16]. AMP-

activated protein kinase is activated to facilitate some of these activities (AMPK). In reaction 

to oxidative stress or hypoxia, AMPK regulates, among other things, cell survival.[17] 

A recent study found that AGEs prevent the death of human neural stem cells (hNSCs) by 

blocking AMPK and its downstream pathways.[18] Human brain stem cells were protected by 

metformin's elevated AMPK activation. Given the critical role of -synuclein in the etiology of 

Parkinson's disease, there is fascinating evidence that metformin may mitigate some of the 

negative consequences of -synuclein in PD patients[19]. Furthermore, AMPK increases 

PGC1a, which increases mitochondrial activity. As expected, this increases mitochondrial 

function[20]. 

Metformin's antioxidant benefits were proven in a mouse study of catalepsy brought on by 

haloperidol[21]. Following haloperidol's induction of catalepsy, lower levels of glutathione, 

catalase, and superoxide dismutase (SOD) activity were found. These all have well-established 

antioxidant properties. However, metformin therapy markedly boosted SOD activity, 

glutathione, and catalase levels[22]. There was also a decrease in catalepsy, which the authors 

speculated was caused, at least in part, by the medication's ability to lower oxidative stress. It 

was examined in real time[23]. In this mouse model, decreased plasma oxidative stress 

following metformin therapy was linked to better mitochondrial dysfunction and defense 
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against mitochondrial swelling[24]. Oxidative stress in the brain was also eliminated. The 

mitochondrial permeability transition pore (mPTP), when it opens, can cause mitochondria to 

inflate[25]. ROS are known to trigger the mPTP. The authors proposed that the decrease in 

ROS during metformin therapy inhibits MPTP from opening, lowering mitochondrial swelling 

and providing a neuroprotective effect[26]. 

 Additionally, it was demonstrated that following metformin therapy, learning and memory 

deficiencies brought on by a high-fat diet may be corrected[27]. The adverse effects and 

interactions of metformin may limit its use in the future[28].  

 Overall, the evidence suggests that metformin has neuroprotective effects that may help treat 

a range of neurodegenerative diseases[29]. Although there are numerous pathogenic pathways 

(some of which are listed above) that may be involved in the development of PD and are altered 

by metformin treatment, the exact reason why metformin medication reduces the risk of PD in 

diabetics is yet unknown[30]. Figure 1 shows the different pathways of the mechanism of 

action of metformin related to neuroprotection for NDD.  

                                                       

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1    Mechanisms of metformin related to neuroprotection for NDD.[31] 

 

2.2 Alzheimer’s Disease (AD) 

As far as dementia goes, Alzheimer's disease is the most prevalent. The condition is gradual, 

starting with minor memory loss and potentially progressing to the loss of communication and 

environmental awareness. The brain regions that are responsible for cognition, memory, and 

language are affected by Alzheimer's disease. 

A disturbance in the electron transport chain (ETC) enzymes pyruvate dehydrogenase complex 

and cytochrome c, for example, causes a decrease in the number of mitochondria and a change 

in their function in AD brains[32]. Due to the role that mitochondria play in AD, it has been 

suggested that mitochondrial dysfunction happens before an accumulation of AD and may be 
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the cause of the damaging cascade in this illness[33]. Insufficient mitochondrial bioenergetics 

causes amyloid-protein precursor (APP) to be pushed towards amyloidogenic pathways, 

according to extensive in vivo and in vitro research[34]. 

This idea, however, was contested, and it was proposed that mitochondrial failure happens after 

amyloid aggregation and that A toxicity is predominantly mediated via the mitochondrial 

respiratory chain. It's interesting to note that there has been evidence of enhanced interaction 

between mitochondria and protein aggregates related to AD[35]. For instance, it has been 

discovered that APP and A fragments are trapped on the mitochondrial outer membrane, 

blocking the permeability transition pore (mPTP), steering to the build-up of dangerous 

oxidizing agents and cell death, and impairing cognitive function[36] [37]. 

The disruption of microtubules, which are in charge of the motion of mitochondria inside the 

cell, by tau protein has also been found to impair mitochondrial dynamics[38]. The significance 

of mitochondrial abnormalities in Alzheimer's disease is growing, and some have suggested 

that targeted drugs that specifically target these organelles could be a useful therapeutic 

approach for improving the cognitive, behavioral, and biochemical changes linked to the 

disease's progression [39] [38].  

There's no cure for Alzheimer's, but there are treatments that may change disease progression, 

and drug and non-drug options that may help treat symptoms. Understanding available options 

can help individuals living with the disease and their caregivers cope with symptoms and 

improve quatheir lity of life. 

From a molecular perspective, our findings suggest that metformin may be able to reverse the 

physio-pathological defects linked to AD[40].  

A biguanide called metformin inhibits hepatic gluconeogenesis while promoting peripheral 

insulin sensitivity[41]. Although the exact mechanism of action is still unclear, it has been 

shown that metformin's antihyperglycemic effects are mostly caused by the inhibition of 

hepatic glucose production[42]. Other routes of action include increased glucose uptake from 

the blood into tissues, reduced glucose production in the liver, and reduced insulin demands 

for glucose disposal [43]. 

Scientists believe that metformin's neuroprotective benefits in Alzheimer's disease are 

generated by the activation of AMPK-dependent mechanisms in human brain stem cells, albeit 

the specific mechanism is unclear [44] [30]. Metformin has also been shown to significantly 

reduce beta-secretase 1 (BACE1) protein production and functionality in both in vivo and cell 

culture models. BACE1 is a protein that is required for the cleavage of amyloid precursor 

protein as well as the synthesis of -amyloid (A). Production is regulated by reducing BACE1 

cleavage products [45]. 

Cheng et al. observed that individuals with T2D who took metformin or sulfonylureas for a 

lengthy period had a much lower risk of developing dementia.[46] 

 

2.3 Depressive Disorders 

Major depressive disorder (MDD) is defined by the American Psychiatric Association as either 

an irritable mood, a decrease in interest/pleasure, or both. Changes in the neurotransmitter 

system, as well as deregulation of the immunological and endocrine systems, have all been 

proposed as probable processes by which depression arises[47]. However, these views have 

been dismissed because traditional antidepressant therapies are only successful in 50% of 
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patients[48]. As a result, it is now widely understood that the etiology of depression is diverse, 

with genetic and environmental variables interacting to contribute to the pathophysiology of 

depressive illnesses[49]. Surprisingly, metabolic dysfunction appears to be a major initiator of 

depression[50]. 

Recent research has significantly broadened the area to regard metabolic disturbance as the 

primary mediator of depression. Clinical evidence has shown a tight relationship between 

emotions and metabolic disorders, particularly insulin sensitivity, resulting in depression being 

categorized as metabolic syndrome type II[51]. This notion has lately received a lot of 

attention, thanks to a flurry of research emphasizing the favorable implications of insulin in 

emotions and affection via the hypothalamic pituitary adrenal (HPA) axis, neurogenesis, 

synaptic plasticity, and neurotrophic properties [52]. Furthermore, in depressed brain regions, 

insulin receptors and their activity are reduced, indicating another hallmark of brain insulin 

resistance in such disorders. Other findings include the fact that intracerebral injections of STZ 

in mice resulted in depressive-like signs, which were reversed by insulin therapy, highlighting 

the function of insulin in the creation of depression[53]. Disparities in brain glucose 

metabolism have also been connected to the pathophysiology of depression, with a reduction 

in GLUT transporters in the hippocampus, PFC, and amygdala after the presence of depressive 

symptoms[54]. Another study has discovered that depressed rodents have altered glucose 

metabolism, which is accompanied by an increase in the glycolysis enzyme 

phosphofructokinase and a decrease in the Krebs cycle enzyme pyruvate dehydrogenase [55]. 

Apart from insulin resistance and altered glucose metabolism, the role of mitochondrial 

bioenergetics in the genesis of depression has received considerable attention [56]. In reality, 

mitochondria play an important part in cellular activities that, when disrupted, result in 

disrupted ATP generation, calcium build-up, ROS overproduction, and uncontrolled cell 

death[57]. Clinical investigations show a strong relationship between mitochondrial 

dysfunction and depression. In rodent investigations, depressive-like symptoms were 

connected to mitochondrial dysfunction, as demonstrated by lower stage 3 (ST3) oxygen 

utilization levels in the cortices, hippocampi, and hypothalamus regions of CMS-sensitive 

mice, as well as altered mitochondrial membrane potential[58]. 

Overall, these findings point to the relevance of resolving metabolic disturbances as a 

prospective therapeutic strategy for neurological illnesses like depression. In this regard, the 

use of specific anti-diabetic medications may be advantageous due to their efficacy in lowering 

metabolic changes comparable to those caused by diabetes[59]. The following part will go into 

the efficacy of metformin, commonly known as an insulin sensitizer, in addressing metabolic 

damage in depression [19]. 

Despite significant progress in the field, no effective therapies for depression are presently 

available. First-line treatments for depression include selective serotonin reuptake inhibitors 

(SSRIs) and serotonin and norepinephrine uptake inhibitors (SNRIs) [60]. Tricyclic 

antidepressants (TCAs) and monoamine oxidase inhibitors are two further antidepressant 

groups (MAOIs). However, these antidepressant drugs have several disadvantages [61]. 

Monoaminergic medicines, for example, may take weeks or even months to be effective. 

Preclinical and clinical data indicate that glutamatergic drugs have a more rapid and long-

lasting antidepressant impact; yet, these therapies are ineffective, with considerable resistance 

rates in almost 20- 30% of depression patients [60,62]. Long-term antidepressant treatment, on 
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the other hand, is known to cause metabolic abnormalities such as increased body weight, 

hyperglycemia, elevated fasting glucose, hyperinsulinemia, insulin resistance, and 

dyslipidemia [63]. As a result, there is an urgent need to develop new drugs or treatment 

methods for depression. Because brain diseases and diabetes mellitus have overlapping 

molecular targets, a new line of research was begun to evaluate the influence of glucose-

lowering medications, which are routinely used in T2D therapy, on mental health 

outcomes[59,64]. 

Guo et al. discovered that giving depressed T2D patients metformin for 24 weeks progresses 

cognitive performance and glucose metabolism while decreasing the severity of depressive 

symptoms [64,65]. According to these findings, Chen et al. discovered that being overweight 

and having limited physical capacity were depression risk factors in elderly diabetes patients. 

Surprisingly, metformin was shown to have antidepressant properties in these people[66]. 

Metformin causes a molecular antidepressant chain reaction. Stress activation and a rise in 

glucocorticoids (GCs) govern the action of the HPA axis in physiological conditions via a 

negative-feedback loop involving the glucocorticoid receptor (GR) in the brain.[67]. Stress, on 

the other hand, causes a reduction in GR function, the loss of negative response, and a 

sequential shift in the HPA axis function [68]. Furthermore, activating the HPA axis rises 

glucocorticoid release, which decreases serotonin synthesis. Diabetes-related inflammation and 

oxidative damage in the brain can cause a comparable decrease in central serotonin 

availability[69]. 

 

2.4 Schizophrenia 

Schizophrenia is a persistent, severe mental illness that has an impact on a person's 

relationships with others as well as their thinking, acting, and emotional expression. Despite 

not being as prevalent as other severe mental disorders, schizophrenia can be the most 

persistent and incapacitating.  

Schizophrenia patients have an extraordinarily elevated percentage of metabolic comorbidities, 

such as obesity, dyslipidemia, as well as type 2 diabetes, all of which impart to the elevated 

mortality and morbidity rates seen in this patient population [70]. Type 2 diabetes is three to 

nine times more common in the schizophrenic community than in the overall population, and 

individuals with schizophrenia die from cardiovascular disease 15-20 years sooner on 

average[71]. This high comorbidity is caused by both endogenous (genetic) and external causes 

(i.e., lifestyle factors, a lack of opportunity for medical treatment, and drugs). Among these 

qualities are antipsychotic medicines, which constitute the cornerstone of schizophrenia 

therapy [72]. Young patients in the early phases of the disease are more susceptible to 

antipsychotic-influenced metabolic dysfunction, as demonstrated by rates of glucose 

intolerance (55%), or flawed fasting glucose (21%), discovered as early as the first year of 

therapy [73]. Relatively young age along with a deficit of prior antipsychotic medication 

exposure are also risk factors for antipsychotic-influenced metabolic adverse outcomes. 

Moreover, metabolic disruption, alongside glucose dysregulation, takes place immediately 

following antipsychotic administration[74]. These metabolic issues have far-reaching negative 

consequences for cognitive function, medication adherence, ego, and comfort in life[75]. 

There are relatively few weight reduction therapies for people with schizophrenia that have 

been authorized by the U.S. Food and Drug Administration (FDA). Given the possibility of 
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exacerbating psychosis, sympathomimetic drugs including diethylpropion, phentermine, and a 

recently authorized combination of phentermine and topiramate are generally contraindicated. 

Orlistat, a pancreatic lipase inhibitor, failed to significantly reduce weight in overweight people 

with schizophrenia throughout the course of a 16-week trial. Other weight reduction 

medications, such as the recently licenced 5-HT2c agonist lorcaserin and a naltrexone and 

bupropion combination that is presently in development, have not been studied for their safety 

and effectiveness in treating schizophrenia. 

Metformin has already been shown to enhance insulin sensitivity (as studied by HOMA-IR) 

and weight loss in patients having schizophrenia. Metformin enhanced HOMA-IR in this 

experiment, although the weight loss effects were insignificant [76]. Individuals in this 

experiment demonstrated overt glucose dysregulation, which is a demographic that is 

frequently excluded from research investigating weight-loss therapy in schizophrenia [77]. 

Meta-analysis of metformin studies in schizophrenia indicated that it was more beneficial 

earlier in the disease; maybe the weight loss results are diminished after patients show 

symptoms of prediabetes/diabetes[78]. The disparity between metformin's effectiveness on 

insulin sensitivity measurements evaluated by fasting and post-glucose load is significant [79]. 

Metformin increased fasting blood glucose levels and HOMA-IR but not the insulin sensitivity 

index generated from the OGTT (i.e. Matsuda index)[76,80]. Small specimen size makes it 

difficult to draw firm conclusions, yet there are various aspects worth discussing. Matsuda is a 

whole-body measure of insulin sensitivity that is impacted by both hepatic and skeletal glucose 

distribution, whereas HOMA-IR is frequently used to assess hepatic insulin resistance[81]. 

Metformin's main impact is thought to be reduced hepatic glucose production, with 

comprehensive lowerings in insulin resistance owing mostly to hepatic effects [82]. 

According to research, Metformin shows a reduction of hepatic glucose synthesis by affecting 

AMPK (AMP-activated protein kinase), a critical regulator of energy balance in the liver and 

the duodenum. It is also capable of crossing the blood-brain barrier including affecting the 

hypothalamus[83]. Metformin was found in diabetic rats' cerebral fluid following oral dosage, 

and it lowered food intake by lowering the production of orexigenic peptides. It also enhanced 

liver function in obese agouti mice by restoring intrahypothalamic levels of leptin and insulin, 

along with AMPK activation[84]. Surprisingly, olanzapine caused total-body insulin resistance 

in rats, whereas metformin corrected hepatic but not peripheral insulin resistance [85]. This 

presents a fascinating hypothesis that, in the setting of antipsychotic-induced dysglycemia, 

metformin differentially works on hepatic and non-hepatic targets to lower hepatic tolerance 

but not enhance insulin sensitivity in other critical targets like skeletal muscle or adipose 

tissue[15]. 

 

2.5 Multiple sclerosis 

Multiple sclerosis (MS) is a severe demyelinating sickness characterized by axon remyelination 

that is delayed, building the condition prone to permanent degeneration. This supports the 

notion of gradual neurologic degeneration in the latter stages of MS, which can last for 

decades[86]. Remyelination slows with age due to the delayed differentiation of 

oligodendrocyte progenitor cells (OPCs) into oligodendrocytes, the CNS's myelin-forming 

cells [87]. Indeed, research has shown that the regulatory mechanisms that govern OPC 

differentiation are non-functional in the aged brain [88,89]. An additional study found that 
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undifferentiated OPCs are present in chronically demyelinated MS lesions and that the quantity 

of OPCs in white matter lesions of old mice rises [90]. These OPCs failed to contribute to 

remyelination, indicating that remyelination requires OPC development into oligodendrocytes. 

It has also been shown that feeding the aged brain with pro-differentiating chemicals can 

enhance remyelination [91,92]. In contrast, aged OPCs progressively differentiate and become 

susceptible to pro-differentiation signals. Cellular aging indicators such as mitochondrial 

failure, unfolded protein response, autophagy, NF-kB, and p-38 MAPK signaling are 

associated with functional capacity decline.  

How Metformin can be a help for Multiple sclerosis? 

Metformin, when employed as a pharmaceutical method to target endogenous OPCs, enhanced 

myelin nation via an AMPK-dependent mechanism, resulting in improved mitochondrial 

activity, which is essential for OPC differentiation[93,94]. Metformin also lowered oxidative 

stress by activating antioxidative defenses in cytokine-exposed oligodendrocytes via AMPK 

activation[95]. Metformin may be able to ameliorate neurologic impairments in MS and other 

neurodegenerative diseases [96]. 

 

2.6 Neurogenesis 

Neurogenesis is the process by which new neurons are formed in the brain. Neurogenesis is 

crucial when an embryo is developing but also continues in certain brain regions after birth and 

throughout our lifespan. 

Following ischemic damage, there is a rise in neuron production and subsequent neuroblast 

migration to the injured region of the brain as part of the endogenous healing system [97]. As 

a result, drugs that promote post-ischemic neurogenesis might be a feasible treatment option 

for ischemic stroke. The study looked at metformin's long-term neuroprotective advantages 

after hypoxic-ischemic injury and reported that it reduced neuronal degeneration in the CA1 

region of the hippocampus. [98]. The hippocampus's CA1 region is especially prone to HI 

injury. Similarly, metformin treatment reduced pro-apoptosis protein BAX expression while 

increasing anti-apoptosis protein cleaved caspase 3 expressions in the cortex and 

hippocampus[99,100]. Another study found that metformin boosted neuroblast proliferation 

and differentiation in the hippocampus [101].  

Metformin has been shown to increase neurogenesis regulation and may help repair cerebral 

ischemia damage. An I/R event can also stimulate astrocytes, resulting in enhanced glial 

fibrillary acidic protein production (GFAP). As a result, glial scars form in the brain, limiting 

neuron regeneration and delaying recovery following an ischemic episode[102,103]. 

Furthermore, metformin treatment following I/R injury reduces GFAP+ cells, indicating 

neuron regeneration and hence functional recovery[104].  
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                         Fig2: Potential mechanisms of metformin regulation in CNS 

 

3. Conclusion  

As we can see metformin mainly help in treating neurodegenerative disease for those patients 

who are mainly taking metformin for treating diabetes for a long time. As we conclude that we 

can treat the disorders by using metformin. At least we can go for more research and 

combinations. Metformin is having well-known side effects and the formulation will be cost-

friendly and no NDA and clinical- trial needed. Metformin can be a very good alternative for 

neurodegenerative disease.  
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