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Abstract 

The Multi-Criteria Shortest Path (MCSP) problem gets more challenging to solve due 

to numerous contradictory criteria and multimodality in transport networks which 

complicates the problem inducing difficulties in decision-making. Several studies in the 

literature show that metaheuristics are often used to solve this sort of problem. In this 

paper, we propose a new approach based on the Optimization by Morphological Filters 

(OMF) algorithm applied for the first time to solve the multi-criteria shortest path problem 

in a multimodal transport network. To ameliorate and adapt the algorithm to the MCSP 

problem, two neighborhood calculation systems are proposed: Neighborhood in depth and 

Neighborhood in width. To test the approach, we propose a model of the multimodal 

transport road network of a real geographical area, by using a multivalued graph with 

three means of transportation. The comparison demonstrates that our technique 

outperforms several other proposed techniques including Non-dominated Sorting Genetic 

Algorithm (NSGA-II), with a six-fold improvement in processor execution time. 

 

Keywords: Multimodal transport network, Multi-criteria optimization, Shortest path, 

Optimization by Morphological Filters, Graphs modelization. 
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1. Introduction 

As traffic grows and road designs become more complex, managing and optimizing 

road networks becomes increasingly difficult. One of the most challenging problems is the 

Multi-Criteria Shortest Path (MCSP) problem, especially when optimizing contradictory 

criteria like time and cost or distance and safety. The problem becomes even more 

challenging in multimodal transport networks, where several means of transportation are 

involved. The MCSP is a known NP-hard [1] problem, and researchers often use 

metaheuristics to provide approximate solutions. However, most research has been done 

on small multimodal networks, and the multimodal aspect of real networks has often been 

ignored, as the case of Hedi et al [2] and Boussedjra et al [3]. While Sauvanet and Néron 

[4] tested methods on real networks, they too ignored the multimodal aspect. 

We propose a new model for solving the MCSP problem in multimodal transport road 

networks by considering distance, duration, cost, walking time and quality of the path as 

optimization criteria. The model is tested on the city of Oran in Algeria, which includes 

tram, buse, and taxis as modes of transportation. The proposed approach adapts a new 

metaheuristic called Optimization by Morphological Filters (OMF), we include two 

neighborhood calculation systems. The objective is to achieve a more thorough exploration 

of the search space and a faster search for the global optimum. 

 

2. LITERATURE REVIEW 

The review of the literature reveals a number of factors that are taken into 

consideration for modeling and solving the MCSP problem in multimodal transport 

networks. 

 

2.1. Single mean versus multi means of transportation 

Several studies have addressed the MCSP problem in transportation networks 

using various modeling and solving methods. Sauvanet and Néron [4] and Ravalet 

and Bussière [5] have solved the single mean MCSP issue using bicycles, while Hadj 

Khalifa et al [6] have used a person guidance system for foot travel. Ayed et al [7] 

address multimodal transport issues including rail, bus, and air. Boussedjra et al [3] 

try to solve Intermodal Shortest Path using three modes of transportation. Guiwu and 

Dong [8] addressed multi-objective optimization for multimodal transportation with 

roads, railways, and waterways, and Dib et al [9] focused on Railway, bus, tram, and 

pedestrian transportation. Zhou et al [10] proposed a multimodal transport network 

model including cars, buses, trains, bicycles, and pedestrians, and Zhang et al [11] 

studied a multimodal discrete network for optimizing car, bus, rail transit, and slow 

traffic modes such as walking and bike-sharing. 

 

2.2. Graph modeling 

Two different models for the multimodal MCSP problem have been proposed. The 

first involves modeling the graph in multi-layers, which complicates the modeling 

but allows for standard algorithm resolution. The second model deals with a single 

multivalued graph, making implementation more challenging. Boussedjra et al [3] 
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and Dib et al [9] modeled each mode of transportation as a separate layer in a 

multimodal graph, while Zhang et al [11] have developed a model based on two types 

of transport networks. Dotoli et al [12] proposed a decomposition of the graph using 

multi-agent systems. A transfer graph structure has been used by Ayed et al in [7], 

while Kamel and Slim [13] used a simple multivalued dynamic graph model that was 

later extended with additional parameters. 

 

2.3. Multi-criteria modeling 

Multi-criteria problems are NP-hard [1] and require well-adapted modeling and 

powerful resolution approaches. In contrast to single-criteria problems that can be 

easily solved by conventional algorithms like Dijkstra [14] or Bellman [15]. Some 

researchers use criteria aggregation to transform the problem into a single criterion 

problem. This strategy has been followed by Boussedjra et al [3], Zhou et al [10], 

Kamel and Slim [13], Beirigo and Dos Santos [16], Sur et al [17] and Mouilah and 

Belkadi [18]. While others attempt to resolve it through appropriate techniques. 

Savanet and Néron [4] proposed the BCA* algorithm, which uses the concept of 

Pareto front and the Tchebysheff metric [19] to compute non-dominated best 

compromise solutions. Sedeño-Noda and Raith [20] proposed a new Dijkstra-like 

method to solve the bi-objective case. Dib et al [9] developed a multi-criteria routing 

algorithm to solve an itinerary planning problem. Camargo-Perez et al [21] 

implemented the Analytic Hierarchy Technique to solve the passenger transfer node 

location problem for a public transportation system. 

 

2.4. Exact methods versus metaheuristics 

Exact approaches are not commonly used to solve the MCSP problems due to 

implementation difficulties for large graphs. However, some researchers have 

proposed extensions to exact methods, such as Best Compromise A* (BCA*) used by 

Sauvanet and Néron [4] and Multi-Objective A* (MOA*) used by Stewart and White 

[22]. Most researchers prefer using metaheuristics to solve the MCSP problem, such 

as genetic algorithms used by Kamel and Slim [13] and Wang et al [23], ant colony 

algorithms used by Mouilah and Belkadi [18], Non-dominated Sorting Genetic 

Algorithm (NSGA-II) [24] implemented by Beirigo and Dos Santos [16] and Chitra 

and Potti [25], simulated annealing used by Mu et al [26], and an adaptive and 

discrete real Bat algorithms was proposed by Sur and Shukla [27]. These techniques 

have been applied to solve various types of MCSP problems, including multi-criteria 

path optimization in a multimodal transport network, bi-objective travel planning 

problem, and shortest path problem with traffic restriction in a road network. 

 

In this paper, we investigate the MCSP problem in a multimodal transport network. 

The proposed model is built as a multivalued graph in which each edge holds data 

relating on the network and the means of transportation. Three means are considered: 

taxi, tram and Bus. For the resolution of the MCSP, an extension and an adaptation 

of a new metaheuristic known as Optimization by Morphological Filters (OMF) is 

given to determine a set of non-dominated solutions that represent the Pareto-optimal. 
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3. FORMULATION AND MODELING 

In this paper the MCSP problem is studied through the use of a single multivalued graph 

model: G = (A, B, X, M). A is the set of nodes, B is the set of edges, X is the set of criteria 

and M is the set of means of transportation, where there are three means of transportation 

(taxi, tram, and bus) to provide the user with a variety of options for getting around. Figure 

1 show an example of modelization. The path P from start node 4 to destination node 15 

is presented as follow: (4-8-12-11-10-9-14-15). Criterion of P are: DP=21, CP=190, TP=28, 

WP=11 and QP=74. 

 

 

Figure 1. Modeling transport network by a graph 

 

The considered criteria are: D, C, T, W which are to be minimized and Q to be 

maximized: 

➢ Distance (D): refers to the length of the path between start and destination nodes.  

➢ Cost (C):  indicates the global monetary costs related to the journey. That includes the cost 

of all means of transportation used during the travel. 

➢ Time (T):  reflects the journey time. It depends on the parameters associated with edges 

(speed limit, path type, built-up area, presence of congestion points, road surface 

condition, etc.) and on the walk time. 

➢ Walk time (W):  This criterion is affected by the number of times a mode is used as well 

as the waiting time associated with each mean of transportation. Walking time relative to 

each correspondence node is another parameter affecting this criterion. 

➢ Quality (Q):  This criterion is related to the road sections (presence of obstacles, condition 

of the road surface, type of road, etc.) and the comfort linked to the used means of 

transportation. 

For each edge connecting the nodes i and j, using mean k (for taxi k = 0, for tram k = 1 

and for Bus k = 2), Table 1 presents the model’s parameters estimated. 

 

Table 1. The Model’s parameters 

Notation Description 
Concerned 

Criterion 

𝒅𝒊𝒋 The distance D 

𝒄𝒊𝒋
𝒌  Cost using mean k 

C 𝒑𝒌 Pricing of taken mean k 

𝒇𝒌 Monetary travel cost of mean k (only for Taxi) 
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𝒕𝒊𝒋
𝒌  Travel time using mean k 

T 

𝝅𝒊𝒋 Congestion penalty, it affects the speed 𝑠𝑖𝑗 

𝒔𝒊𝒋 Limited speed 

∆𝒕𝒊𝒋
𝒌  Delay time using mean k 

𝒏𝒊𝒋
𝒌  Number of stops of mean k 

𝒂𝒌 Average time to stop of mean k 

𝒘𝒌 The duration of each mean's average wait 

W 
∆𝒘𝒙 

The average walking delay relative to each 

correspondence node x 

𝒒𝒊𝒋
𝒌  Overall quality using mean k 

Q 𝒓𝒊𝒋 Road condition 

𝒎𝒌 Comfort linked to mean k 

 

For each path P connecting starting node S and destination node E, the related 

parameters are presented in Table 2. 

 

Table 2. The path’s parameters  

Notation Description 

𝒆𝑷 Number of edges on P 

𝑵𝑷
𝒌  Number of times that mean k is taken on P 

𝑪𝑵𝑷 Set of correspondence nodes on path P 

𝑰𝑷 The specified criterion I of the path P 

 

The following formulas are used to calculate each criterion.  

 

➢ Distance 

𝐷𝑃 = ∑ 𝑑𝑖𝑗[𝑖,𝑗]∈𝑃  (1) 

 

➢ Cost 

𝐶𝑃 = ∑ 𝑁𝑃
𝑘 × 𝑝𝑘|𝑀|

𝑘=0 + ∑ 𝑐𝑖𝑗
𝑘

[𝑖,𝑗]∈𝑝  (2) 

 

𝑐𝑖𝑗
𝑘 = 𝑑𝑖𝑗 × 𝑓𝑘 (3) 

 

The monetary cost is proportional to the overall travel cost and number of times that a 

mean is taken that given by (2). The overall travel cost is affected by the distance and the 

travel cost of each mean of transportation as indicate formula (3). If the mean of 

transportation is tram (k=2) or bus (k=3), only the paid is taken into consideration. For 

this we have:  𝑓2 =  𝑓3 = 0. The cost of travel depends on the number of times a mean is 

taken on P (𝑁𝑃
𝑘) and overall travel cost (𝑐𝑖𝑗

𝑘 ), which includes distance (𝑑𝑖𝑗) and travel costs 

(𝑓𝑘). For Tram or bus only trip's ticket is considered. 
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➢ Time 

𝑇𝑃 = ∑ 𝑡𝑖𝑗
𝑘

[𝑖,𝑗]∈𝑃 + 𝑊𝑃 (4) 

 

𝑡𝑖𝑗
𝑘 =

𝑑𝑖𝑗

𝜋𝑖𝑗×𝑠𝑖𝑗
+  ∆𝑡𝑖𝑗

𝑘  (5) 

 

∆𝑡𝑖𝑗
𝑘 = 𝑛𝑖𝑗

𝑘 × 𝑎𝑘 (6) 

 

The time taken for travel depends on the total travel time (𝑡𝑖𝑗
𝑘 ) and walking time (𝑊𝑃) 

related to changing transport is given by (4). The travel time (𝑡𝑖𝑗
𝑘 ), wich affected by several 

parameters such as the speed (𝑠𝑖𝑗) and the delay time using transportation means (∆𝑡𝑖𝑗
𝑘 ) is 

given by formula (5). The speed (𝑠𝑖𝑗) can be reduced by the Congestion penalty (𝜋𝑖𝑗). The 

delay time using transportation means (∆𝑡𝑖𝑗
𝑘 ) is affected by number of stops (𝑛𝑖𝑗

𝑘 ) and 

average stop time (𝑎𝑘) as indicate in (6).  

 

➢ Walk 

𝑊𝑃 = ∑ 𝑁𝑃
𝑘 × 𝑎𝑡𝑡𝑘|𝑀|

𝑘=0 + ∑ ∆𝑤𝑥𝑥∈𝐶𝑁𝑃
 (7) 

 

Three parameters are considered to calculate the overall walking time (𝑊𝑃) given by 

(7). The first is the average walking delay (∆𝑤𝑥) linked to each correspondence’s node. 

The second is the average waiting time (𝑎𝑡𝑡𝑘) of the mean to be used at each 

correspondence. The third is the number of times that a trnportation mean is taken on P 

(𝑁𝑃
𝑘). 

 

➢ Quality 

𝑄𝑃 =
∑ 𝑞𝑖𝑗

𝑘
[𝑖𝑗]∈𝑃

𝑒𝑝
 (8) 

 

𝑞𝑖𝑗
𝑘 =  

𝑚𝑘+𝑟𝑖𝑗

2
 (9) 

 

The quality of the path (𝑄𝑃) presents the average of all the overall qualities of each edge 

on P as given by (8). Overall quality (𝑞𝑖𝑗
𝑘 ) is affected by the comfort of each mean of 

transportation (𝑚𝑘) and the road condition (𝑟𝑖𝑗) as presented in formula (9). 

 

4. PROPOSED APPROACH 

The resolution strategy, based on mathematical morphology [28] using morphological 

filters [29], seeks global optimization in multidimensional space. OMF was proposed by 

Khelifa and Belmadani [30] and later used by Zaoui and Belmadani to solve engineering 

optimization problems [31] and combined economic and emission dispatch problems of 

power systems without penalty [32]. OMF identifies the smallest combination of pixel 

values using erosion process and structural elements to achieve optimal solutions [30]. 
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4.1. General OMF 

The OMF algorithm positions a set number of filters (NF) in a search space and 

calculates neighbors for each filter (NN). If a neighbor improves the useful function, it 

becomes the new filter; otherwise, the current filter's size (FS) is reduced, and the 

neighbors are recalculated. The process is repeated until the sum of filter sizes is less than 

a value ε close to zero. 

4.2. Proposed adaptation of OMF to the problem of the MCSP (MCSP-OMF) 

The adaptation of OMF to the problem of the MCSP is described in this section. We 

propose number of iteration as the stopping criterion. Two neighborhood calculation 

systems are proposed: Neighborhood in depth and Neighborhood in width. The objective 

of our proposed MCSP-OMF is to find a set of Non-Dominated solutions that represent 

the Pareto front. The MCSP-OMF’s parameters are:  

➢ NF (Number of filters): each filter represents a path. 

➢ NN (Number of neighbors): neighbors are determined using a neighborhood calculation 

system on each filter. They represent paths that have the same starting and finishing nodes 

as the filter. 

➢ IT (Number of iterations): the stopping criterion. 

➢ Neighborhood in depth: the path represented by the filter is kept and the means of 

transportation on the edges are redefined to calculate the neighbors. 

➢ Neighborhood in width: new random paths are calculated with the same starting and 

finishing nodes. 

A probability R is defined to choose which neighborhood calculation system to use. It 

favors either the width (Algorithm 1) or depth (Algorithm 2) of the neighborhood. 

Algorithm 1 is also used to generate new filters. 

Algorithm 1. Random path generation (neighborhood in width) 

1:  input Graph G, starting node S and ending node E 

2:  initialize : path P = {S}, visited = {S} 

3:  repeat 

4:      initialize neighbor ← Ø, 𝑁𝑐𝑢𝑟𝑟 ← tail(P) 

5:      for each neighbor 𝑉𝑖 of 𝑁𝑐𝑢𝑟𝑟 do 

6:           if 𝑉𝑖 ∉ visited then 

7:                 add  𝑉𝑖 to neighbor 

8:           end if 

9:      end for 

10:    if neighbor ≠ Ø then 

11:          V ← random element from neighbor   

12:         add V to P 

13:         add V to visited 

14:    else 

15:         delete 𝑁𝑐𝑢𝑟𝑟 from P 

16:    end if 

17: until E ∈ P 

18: return P 
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Algorithm 2. Changing means of Transportation (neighborhood in depth) 

1:   input path P 

2:   for each edge e on P do 

3:       if  2 and 3 are available on e then 

4:           k ← random value in {1, 2, 3} 

5:       else  

6:               if 2 is available on e then 

7:                     k ← random value in {1, 2} 

8:               else 

9:                      if 3 is available on e then 

10:                            k ← random value in {1, 3} 

11:                    end if 

12:             end if 

13:     end if 

14: end for 

15: return P 

 

 

The adapted MCSP-OMF algorithm is given as follows: 

 

Algorithm 3. MCSP-OMF 

1: input Graph G, start node S, end node E 

2:  initialize NF, NN, R, IT, ND= ∅ // Set of Non-Dominated solutions 

3:  for i = 0 to NF do 

4:         Fi ← random path using Algorithm 1 (G,S,E) 

5:         Add Fi to ND 

6:  end for 

7:  repeat 

8:      for i = 0 to NF do 

9:           for j = 0 to NN do 

10:              if R< random value in [0,1] then 

11:              calculate neighbor Vij using Algorithm 1(G,S,E) // in width 

12:              else 

13:              calculate neighbor Vij using Algorithm 2(Fi) // in depth 

14:              end if 

15:              if (Vij Dominate Fi) then 

16:                  Fi ← Vij 

17:                  Remove Fi from ND 

18:              end if 

19:              if Vij ∉ ND then 

20:                  Add Vij to ND 

21:              end if 
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22:         end for 

23:    end for 

24:    IT ← IT - 1 

25: until IT = 0 

26: return ND 

 

As indicated before X is the set of criteria, with X =  {D, C, T, W , Q}. The dominance 

relationship is used to compare two solutions P1 and P2. We say that P1 dominate P2 if 

formula (10) is verified:  

 

∀𝐼 ∈ 𝑋 {
𝐼𝑃2 ≥ 𝐼𝑃1 𝑖𝑓𝐼 ≠ 𝑄
𝐼𝑃2 ≤ 𝐼𝑃1 𝑖𝑓𝐼 = 𝑄

∃𝐽 ∈ 𝑋 {
𝐽𝑃2 > 𝐽𝑃1 𝑖𝑓𝐽 ≠ 𝑄
𝐽𝑃2 < 𝐽𝑃1 𝑖𝑓𝐽 = 𝑄

 (10) 

 

Figures 2 to 5 illustrate an example of the optimization process. In Figure 2, the initial 

graph is presented, comprising 9 nodes, 12 arcs, the departure node S, and the destination 

node E. In Figure 3, the calculation of the filters and their neighbors is shown. The next 

step involves testing the dominance between the filter and its neighbors. If a neighbor 

dominates the filter, it becomes the new filter, as demonstrated in Figure 4. Finally, the 

resulting non-dominated paths, which represent the Pareto front, are shown in Figure 5. 

 

       
 

Figure 2. Initial graph 

 

          
 

Figure 3. Calculations of filter and neighbor 
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Figure 4. The movement of the filter 

 

 
 

Figure 5. Non-Dominated solutions 

 

Using a network of 9 nodes as an example, presented by the graph in Figure 2. The 

objective is to find the non-dominated paths between the departure node S and the arrival 

node E that build the Pareto front. We put P = [D, C, T, W, Q] to indicate the values of the 

criteria associated to the path P. For exemple if we have : Filtre(S-2-1-4-E) = [24, 242, 31, 

12, 75] and Neighbor(S-6-9-8-E) = [19, 215, 30, 10, 78] calculated in Figure 3, according 

to formula (10) Neighbor dominate Filter, so Filter is mouved to Neighbor as shown in 

Figure 4. When the stopping criterion is validated after a specific number of iterations, the 

algorithm returns the set of Non-Dominated solutions, for examples we obtain two 

solutions, as shown in Figure 5, {P1(S-6-9-8-E) = [19, 215, 30, 10, 78], P2(S-2-5-4-E) = 

[18, 225, 26, 9, 72]}. 

 

 

5. SIMULATION AND RESULTS 

The MCSP-OMF algorithm is compared with NSGA-II [24]. Figure 3 shows the 

geographical studied area that represents a section of the transport network of Oran, 

Algeria as shown in. OpenStreetMap and ArcGIS are used to create a geographical 

database and collect road network data. The study aimed to optimize multi-criteria 

transportation problems. Graph Stream, a Java library for dynamic graph analysis, was 

used to build a network model based on the data collected. The study aimed to export the 
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cartography of the studied area and perform multi-criteria optimization to improve 

transportation. 

 

  
 

Figure 6. Part of the geographical studied area (Oran, Algeria) 

 

The created graph has 2600 nodes and 10100 edges. The MCSP-OMF algorithm's 

parameters include NF, NN, IT, and probability R fixed at 0.7, while NSGA-II's 

parameters include population size, number of generations, mutation rate, and crossover 

rate, fixed at 0.1 and 0.9 respectively. The study aimed to compare the quality of the 

optimal solution found and the processor execution time (CPU) between the two 

algorithms, with a focus on non-dominated solutions. The distance between a solution 

produced on the Pareto front and the ideal point was measured. The ideal point is serving 

as a useful reference for the optimal solution's distance as indicated in Figure 4, it is 

determinated by formula (11). ND is the set of non-dominated solutions. 

 

𝐼𝐼𝑃 = {
𝑚𝑖𝑛(𝐼𝑃) 𝑖𝑓 𝐼 ≠ 𝑄

𝑚𝑎𝑥(𝐼𝑃) 𝑖𝑓 𝐼 = 𝑄
} 𝑃 ∈ 𝑁𝐷, 𝐼 ∈ 𝑋 (11) 

 

The best solution is the one with the smallest distance Dist(IP, P) between a solution P 

and the Ideal Point Dist(IP, P) that is given by the formula (12). 

 

𝐷𝑖𝑠𝑡(𝐼𝑃, 𝑃) = √∑ (𝐼𝐼𝑃 − 𝐼𝑃)2
𝐼∈𝑋  (12) 

 

 
Figure 6. Determination of the optimal solution on a Pareto front 
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The tests are performed to identify an optimal path between two nodes of the network. 

The ideal point is identified following a series of tests as follows: IP = [15, 20, 17, 1, 83]. 

The results of each test are provided after dozens of evaluations for each algorithm. 

 

 

 

Table 3. MCSP-OMF’s test results 

 

Table 4. NSGA-II’s test results 

Parameters 
NND 

Optimal Solution O 
Dist(IP,O) CPU (s) 

PS NG D C T W Q 

3 2 33 30 88 39 3 57 77,54 2,1 

5 3 83 23 77 29 3 67 60,97 7,6 

10 5 226 25 45 34 2 55 42,41 15,9 

15 7 496 24 45 24 2 64 33,42 37,3 

20 10 886 17 32 27 2 70 20,45 93,8 

 

Tables 3 and 4 show that MCSP-OMF provides better results in terms of CPU time. 

Even while NSGA-II provides a number of non-dominated solutions slightly greater than 

MCSP-OMF, both of them provide an optimal solution with nearly equal quality. The 

MCSP-OMF is based on the hybridization of local search which is ensured by the 

neighborhood in depth and a global one which is ensured by the neighborhood in width. 

This approach offers practically identical efficiency to that of NSGA-II with a significant 

time saving. Moreover, Table 4 show the influence of the parameters on the behavior of 

MCSP-OMF. It is clear that increasing NF, NN or IT brings us closer to the optimal 

solution but at the expense of significant execution processor time. 

 

8. CONCLUSION 

In this paper, a new model for the Multi-Modal Transport Network is proposed with the 

Multi-Criteria Shortest Path as an investigated topic. It should be emphasized that 

metaheuristics are used to solve this type of problem, since there are no other exact 

methods for doing so. The suggested algorithm adapts Optimization by Morphological 

Filters through with the aspect of the neighborhood in width and the neighborhood in 

depth. Therefore, the execution time to reach the optimum solution and exploring the 

search space has been improved. The performance of the proposed approach is 

investigated by comparing its results with those reported in a research work and according 

Parameters 
NND 

Optimal Solution O 
Dist(IP,O) CPU (s) 

NF NN IT D C T W Q 

1 2 5 24 26 82 39 4 54 72,79 0,4 

2 3 5 69 32 56 46 2 56 56,18 1,1 

2 5 7 138 26 44 39 2 55 44,34 2,4 

3 5 10 367 22 41 29 2 60 34,12 6,1 

4 5 15 791 16 40 17 1 79 20,42 16,2 
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to the preliminary experiments, we confirmed that the proposed approach offers similar 

results to NSGA-II with an important gain of CPU time. 
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