

Permission-Based Malware Detection in Android Using

Machine Learning

Nishant Rawat

Computer Science & Engineering, Sharda School of Engineering & Technology,

Sharda University, Greater Noida, Uttar Pradesh, India,

nishantrawat575@gmail.com

Amrita

Computer Science & Engineering, Sharda School of Engineering & Technology,

Sharda University, Greater Noida, Uttar Pradesh, India.

amrita@sharda.ac.in

Avjeet Singh

Computer Science & Engineering, Sharda School of Engineering & Technology,

Sharda University, Greater Noida, Uttar Pradesh, India

avijeet.mnnit.cs@gmail.com

Abstract
Mobile devices are increasingly vulnerable to malicious programs or apps that threaten

the privacy of users' data. Malicious apps are more intrusive than necessary, as they

require fewer overall permissions to operate. The open-source nature of the Android

platform, its acceptance of third-party app stores, and the range of app vetting make it

more susceptible to attacks. To address this issue, a malware detection system has been

developed that analyzes an app's permission requests and categorizes it as either benign

or malware. The system uses a multi-level-based approach that involves collecting a

dataset of 10,000 apps and identifying various aspects such as permission, small size, and

permission rates. The apps are then classified as malware or benign using machine

learning algorithms. The proposed technique achieved higher accuracy in detecting

malware compared to existing methods, with accuracies of 91.54 % for Support Vector

Machine, 92.04 % for Random Forest, and 91.11 % for Naive Bayes models. The proposed

model showed a great balance between detecting malware and benign applications. The

methodology also shows promise as a low-cost alternative to existing methods for

detecting malware in Android apps, especially those that have been repackaged.

Keywords: Android, Malware Detection, Machine Learning

1. Introduction
Android has quickly become the dominant smartphone OS, with a current market share

of around 70.97%. Based on these numbers, it's clear that Android is dominating the

smartphone app industry. The availability of robust apps for a diverse user base is

Android's strongest selling point. Regrettably, many cybercriminals throughout the world

have taken notice due to the Apps' widespread use and accessibility. About 97% of mobile

malware, according to reports, targets Android handsets. Around, 1.45 million new

Android malware Apps were discovered in the second quarter of 2021, indicating that new

malware is being developed every few seconds [1]. Several of these apps are launched

with many versions with the express purpose of evading detection and reaching the largest

possible audience. Academia and business have given serious thought to the problem of

harmful apps on mobile devices. In response to these growing worries, researchers and

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1505

mailto:amrita@sharda.ac.in
mailto:avijeet.mnnit.cs@gmail.com

analysts from across the globe have devised and used a wide range of strategies for the

creation of effective android malware detection technologies [2]. Both dynamic and static

analysis is used to identify malicious APKs. The dynamic part of the analysis compares

the behavior of the program while it runs against predetermined test scenarios. Static

analysis, on the other hand, involves looking for security flaws in the meta. The dynamic

technique is a reliable detection method; nevertheless, it is computationally expensive due

to its emphasis on in-depth application analysis. In addition, unlike the static method, the

analysis is done after the APKs have already been run [3][4]. This is why it is generally

agreed that static analysis is superior for quickly gaining an overview of the APKs based

on their predicted behavior. With an exhaustive range of approaches and methods, the

static analysis attempts to identify the behavior of software in its runtime state before it is

executed.

The goal in a secure environment is to identify and remove obviously harmful or

repackaged applications before they can be installed and used. Using an authoritative

estimate of the app's likely runtime behavior, static analysis may identify an app as

malicious. When it comes to protecting user data or preventing apps from gaining access

to private data, Android often uses the permission-based security approach [5]. To get

unauthorized access to sensitive information, hackers often target Android apps by abusing

the permissions they have been granted. As a result, without being given explicit

permission, it is next to impossible to conduct a plan of action, making permission

screening a crucial step for malware identification. In order to utilize an Android app, users

must first agree to provide the app access to certain parts of the user’s device. Certain

undesirable actions may be reflected by a combination of many permits [6]. When an app

requests network authorization in addition to SMS access permission, for instance, it may

collect the users' SMS information and then broadcast it over the Internet. This indicates

that permissions are one of the most popular and useful permanent features in Android.

Cloud computing has also been used in the recent evaluation of a detection method.

SWORD [7] is a semantic analysis-based method for discovering evasion-aware malicious

apps by using the Asymptotic Equipartition Property (AEP).

The primary focus of this research is on the permission-based detection of malware. The

suggested method's goal is to enhance malware detection APKs' functionality while

simultaneously decreasing the number of permissions used for categorization.

Nevertheless, the top classifiers currently in use, such as Random Forest and Naive Bayes,

were discovered and improved upon using the suggested Permission-based Malicious

Applications detection technique. The proposed research aims to determine the smallest

set of permissions necessary to accomplish the desired categorization accuracy, in

comparison to current approaches. The proposed approach begins with decompiling

Applications using AndroGuard to extract permissions. In addition, programs from

VirusShare and the Official Play Store are used to compile a dataset from which the

permissions may be retrieved. After the permissions are retrieved, they are coupled with

other features, such as the permission rates and the App size metrics, before being filtered

using the feature significance approach. When the authorization feature set has been

generated, many machine learning models are used to identify dangerous apps. These are

some of the ways in which the suggested strategy helps:

• Created a lightweight malware detection algorithm.

• Compiled a dataset of about 10,000 malware and benign APKs.

• We have optimized the permission feature set (77%) in comparison to current

methods.

• Upped detection precision to 97% utilizing common ML methods, including support

vector machine (SVM), random forest, and Naïve Bayes (NB)-based classifiers.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1506

2. Literature Survey

The literature review section of our work examines various papers that have been

published on the topic of malware detection using static analysis. One such paper by

Suarez-Tangil et al. [9] proposes an Android malware detection method that utilizes

explicit and implicit intentions. By using intentions alone for categorization, the system

achieves an accuracy of 91%, while combining intent and permission of the program

results in 95% accuracy. This study suggests that intent, in addition to permissions, can be

used to identify malware.

Mary et al. [10] proposed a method for identifying repackaged Android apps by

comparing the permission lists of the original and repackaged apps. The Random Forest

classifier was found to have the highest accuracy at 88.53%. Hr Sandeep's [11] study

utilized an Exploratory Data Analysis technique with deep learning methods to detect

malicious apps based on their permissions. The proposed framework achieved a 94.6%

success rate in identifying malware when using RF as a classifier. Srisa-An et al. [12]

presented a permission-based approach that selected the most relevant permissions from

the android manifest file to detect malware. Their multi-level data pruning method

achieved a classification accuracy of over 90% using only 22 permissions. Fukuda et al.

[13] proposed a method called Multilevel Permission Extraction (MPE), which first

extracts and identifies the permissions of the android application and then uses that

information to determine if the app is malicious. Their method achieved a 97.88%

detection rate of malware.

Ibrahim et al. [14] proposed a system called APKauditor, it makes use of permissions

to distinguish between safe and malicious apps. The system consists of a database, which

stores the permissions or signature of the database, an android app, which is utilized by

the end user, and a central server, which acts as a go-between between the android app and

the database. The end-user program simply connects to the server where the analysis is

stored and retrieves the results. They run 8762 programs through their system and catch

malware 88% of the time.

According to the study by Cheng et al. [15], a framework was presented to calculate the

application permission rate depending on the feature set by using system events, sensitive

APIs, and authorization from the application. Cheng's methodology is efficient in terms of

both time and money, correctly detecting malware 88.6 percent of the time. The

classification model used to distinguish between safe and harmful files is constructed using

the Rotation Forest method. They only utilize a small dataset, but by experimenting with

various machine learning classifiers, they may increase their accuracy. Similarly, Lui et

al. [16], proposed a system that decompiles android apps to get at their dex byte code,

which is then transformed to java source code to get at their API calls, this approach

involves many steps. Malware often asks for more permission than is really necessary, so

they realize the manifest file of the Android program may appear like a rough

approximation. When they combine Random Forest, SVM, and ANN, their detection

accuracy rises to 94.98%.

In Mao et al. [17], singular value decomposition is used for clustering, the K-means

algorithm is used to construct a classification model, and the KNN algorithm is used to

categorize malware. The solution utilizes permissions in addition to intent and API

requests to ensure a 97.87% success rate. Nevertheless, the approach is limited to a dataset

of just 1738 android apps. Mansour et al. [18] presented a system known as DroidSeive.

The system classifies malware based on a variety of characteristics, including API calls,

code structure, permissions, etc. The framework is able to identify malicious software and

then provide classification to the family to which that software belongs. The system

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1507

employs over a hundred thousand Android apps, with which it detects malware with

99.44% accuracy, classifies it with 99.265 accuracies, and experiences no false positives.

The PUMA (Permission Use to Detect Malware on Android) approach, suggested by

Carlos et al. [19], makes use of permission in order to identify malicious apps. Using a

classifier such as RandomForest, RandomTree, NaiveBayes, etc. on 4031 samples of

android applications, they achieve a detection accuracy of 86.41%. For static analysis,

Ming-Yang Su et al. [20] suggested a framework to extract native permissions and intent

priority in addition to permission and sensitive functions. It launches the programme in a

safe environment called a "sandpit," where its actions may be monitored and recorded.

Naive Bayes, SVM, KNN, logistic regression, and other classifiers are used to correctly

categories malware, allowing the system to identify malicious software with a 93% success

rate. Weng et al. [21] suggested a tool they called Waffle Detector, which requires nothing

in the way of human involvement. They've used permissions and API requests that need

special handling to obtain an accuracy of 97.14%.

Daiki et al. [22] utilized the Androidmanifest.xml file for analysis and extracted six

pieces of data, including authorization, intent filter (action), and process name. By

evaluating the manifest file of the program cost-effectively, they achieved a 90% accuracy

rate in identifying new viruses using a database of 365 Android applications. Many of the

methods discussed above use permission-based feature sets to differentiate between benign

and malicious APKs due to their high speed and nearly perfect detection accuracy.

However, basic permissions are often not utilized to their full potential, and the number of

inefficient authorization characteristics may increase computational complexity. To

address these issues, a more efficient and faster detection method is needed. In the

following section, we will explore the proposed solution to address the limitations of

current approaches.

3. Related Background

3.1 Feature Selection Method

Eliminating unnecessary or irrelevant characteristics from a dataset is a frequent use

case for feature selection, which is then used to determine the ideal feature subset to boost

the system's performance. It also aids in resolving "the curse of dimensionality." For

selecting features, we can use either a filter, a wrapper, or a hybrid. The performance of

chosen features is evaluated by an external classifier in the filter technique. The wrapper

method "wraps around" the existing classifier in order to evaluate an abridged collection

of characteristics [23]. The computational overhead of this approach is higher than that of

the filter method. In order to maximize efficiency with a given classifier, the hybrid

strategy combines filtering and wrapping.

3.2 Classification Method

In this study, we use 3 different classifiers for the detection of malware. When these

malwares were put through their paces, the primary objective was to evaluate how well

they identify malware applications when combined with data preparation and feature

selection strategies. These ML classifiers are as follows:

3.2.1 SVM

 SVM is one of the most commonly and widely used classifiers of Machine Learning.

This classifier's major goal is to build a judgement boundary or ideal line for classifying

n-dimensional space so that subsequent data points may be rapidly allocated. Hyperplanes

are optimum decision boundaries [24].

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1508

3.2.2 Random Forest

 The random forest algorithm is an ensemble approach comprised of many decision

trees and bagging processes. Each decision tree is trained on a subset of the whole dataset

using bagging. Every tree is classified and the categorization is completed by majority

voting on the finding of the decision trees. The most important parameters are max Depth,

which says how deep the tree can grow and estimators, which define the number of trees

in the forest [25] [26]. In our research, the number of trees in the forest was 100.

3.2.3 Naïve Bayes

 It is a classifier based on the Bayes theorem. It’s mainly used to solve classification

problems. It is one of the probabilistic classifiers which uses probability to predict the class

of the new sample [27].

4. Proposed Methodology

In this section of the paper, we discuss our proposed methodology. Our proposed

framework outweighs all the above-mentioned paper in every aspect such as accuracy,

runtime, etc. It enhances the performance of malware detection. Above mentioned paper’s

drawbacks were tackled by our proposed framework. In the proposed framework of

malware detector, the system extracts only that permission set from the permission list of

the android which is relevant and significant in the detection of the malware rather than

dissecting the whole application. Our proposed system mainly focuses on those

permissions combinations which were commonly found in malware rather than including

all the permissions in the manifest file.

The proposed framework design was divided into steps: -

4.1 Creating Dataset

This is the first step in designing the framework. In this part of designing, we first collect

the collection of malwares as well as benign applications from the internet. For the benign

application, we could go to the official play store and collect the different categories of

benign applications for our system database. For the malware application sample, we could

use third-party websites like virus share, Virus Total, etc. These websites contain

thousands of malwares that are already on the internet and get detected. After the collection

of both types of samples, we create our dataset by considering a 50:50 ratio of both types

of samples in the database. By doing this our dataset should be balanced and give less false

positive rate. After successfully creating a balanced dataset our first step is completed.

Sample Size Malware Benign

No. of samples used 5000 5000

 Table 1- No. of Data samples

 Figure 1 Ratio of Benign Samples to Malware Samples in the dataset.

50%50%

No. of samples

Benign Samples

Malware Samples

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1509

4.2 Extracting Permissions

This is the next step in designing the framework which consists of extracting

permissions from the collected applications dataset. All the permissions of an android APK

are written in the android.manifest.xml file. These permission help us to do static analysis

of the applications. In this file, all the permission requested by the application were written.

By using software called AndroGuard [28] we can decompile the android application one

by one and extract their permissions from their manifest.xml file. After extraction of

permissions from the android.xml file of each APK in the dataset we create a feature for

each APK in the dataset we create a feature set. This feature set contains the extracted

permission of the applications.

4.3 Data Preprocessing on The Feature Dataset

In this step of the framework, we apply data preprocessing techniques on the feature

dataset to reduce its size of the feature dataset. This step is the most important step among

the other steps of designing the framework. In this step, we select only the most significant

permission which helps the system in the classification of malware and benign application

[10]. By applying techniques to fill the missing spaces, and removing duplicate permission

in the feature dataset, we complete the feature dataset first. Then after we select the most

significant permission out of others which helps the system in faster classification of

malware and benign application. Selecting the most effective permissions out of the

extracted permissions is given in the next part.

4.3.1 Finding the Effective Permissions for the Model

We exclude the less important permissions from consideration when choosing the

minimal set of permissions to use for detection. We did this by using the feature

significance attribute with several permutations of Google's risky permission list [10]. An

indicator of feature relevance may be used to create less complex and quicker prediction

models with fewer parameters. To get the necessary authorizations, we use a Random

Forest-based feature significance approach (Table 2) [29][30]. We have chosen a cutoff

value of 0.1 to filter out the least important permissions so that we may focus on the most

consequential ones. Table 3 displays the results of our studies with several feature sets,

which allow us to choose the permissions list that will have the most impact.

4.4 Applying Machine Learning Classifiers for classification

In this final step in designing the framework, we use a supervised ML algorithm for the

classification of malware and benign application with a low false positive rate. For that

first, we divide the sample set into 2 parts one is training data and the other one is test data.

With the help of the training data we train our machine learning model and we use test

data to check our model accuracy. The dataset used in the system to train and the test

consists of 10,000 samples of applications both benign and malware both. In the traditional

spilt model can overfit so to overcome that we use 10-fold cross-validation.

4. Experimental Result

The approach we have suggested distinguishes the malware application from the benign

application based on their permissions. In order to demonstrate our work is successful

we carried out many tests under the below-mentioned environment and the below-

mentioned performance metrics we use to evaluate the performance of our system.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1510

S. No. Permissions Feature

Importance

1. READ_PHONE_STATE 0.31764

2. Smali Size 0.23495

3. Permission Rate 0.21749

4. WRITE_EXTERNAL_STORAGE 0.06948

5. ACCESS_COARSE_LOCATION 0.05323

6. READ_EXTERNAL_STORAGE 0.01588

7. GET_ACCOUNTS 0.00953

8. READ_CONTACTS 0.00650

9. ACCESS_NOTIFICATION_POLICY 0.00337

10. WRITE_CONTACTS 0.00265

11. READ_CALL_LOG 0.00200

12. INSTALL_PACKAGES 0.00151

13. BODY_SENSORS 0.00080

14. WRITE_CALL_LOG 0.00069

15. READ_HISTORY_BOOKMARKS 0.00002

Table 2 List of different dangerous permissions with their importance

Type S.

No.

Permission

Permissions 1. android.permission. ACCESS_COARSE_LOCATION

2. android.permission.READ_PHONE_STATE

3. android.permission.WRITE_EXTERNAL_STORAGE

Matrices 1. Smali Size

2. Permission Rate

Table 3 Effective permissions for classification

4.1 Experiment Environment

While conducting the experiment, we make use of a computer that has a CPU of intel

core i5 processor, 8 GB of RAM, and windows 11 as the primary operating system.

4.2 Evaluation Metrics

To measure how well our proposed system detects malware we evaluate it on some

metrics which are as follows,

• Accuracy- To calculate the accuracy we use,

 (1)

• Sensitivity- To calculate how well our system detects the positive(malware)

instances.

 (2)

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1511

• Precision- To calculate precision we use,

 (3)

• F-1 Score- For f-1 score we use,

 (4)

4.3 Results and Discussions

 In this section, we see the results of different classifiers on our model and based on that

we evaluate the performance of the proposed system. However, many works have been

done for malware detection. That’s why in our work we did classification two times. For

the first classification, we divide the dataset into two separate datasets. One is called the

training set and another one is called the test dataset and the ratio of splitting the main

dataset is 75:25. We compare the accuracy we got during the first classification with the

already published systems.

Ref No. Classifier Features Accuracy

[1] Bayesian Intent & Permission 95.5%

[2] KNN, SVM, RF Permission 92.94%

[3] RF Permissions 94.65%

[4] SVM Permissions >90%

[5] SVM, RF Permission 97%

Our SVM, RF, NB Permission 97.3%

Table 4 Comparatively analysis of accuracy

 Figure 2 Comparing the accuracy of other work with our proposed model

Now, we perform the second classification based on the 10-fold cross Validation

technique. The reason why we choose 10-fold cross-validation is that, in the conventional

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

[1] [2] [3] [4] [5] [6]

A
cc

u
ra

cy

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1512

dataset split sometime the model undergoes overfitting which affects the system accuracy.

Table 5 and Figure 3 shows the result of the different classifier using 10-fold cross-

validation.

Figure 3 Comparison of different ML methods

As we can see in the result the random forest algorithm gets the best accuracy which is

92.04%. The ROC curve is a likelihood plot that illustrates how well a classification model

performs at various thresholds. Based on the result of 10-fold cross-validation, we draw a

ROC curve for each fold. We show different ROC curves for different ML classifiers

Table 5 ML classifier evaluation using 10-fold Cross-validation technique

90.6

90.8

91

91.2

91.4

91.6

91.8

92

92.2

KNN Random Forest Naïve Bayes

Accuracy Precision Recall F-1 Score

Classifiers Precision Accuracy F-1

Score

Recall TPR FPR

SVM 91.59 91.54 91.53 91.53 0.89 0.051

Random

Forest

92.04 92.04 92.03 92.03 0.963 0.018

Naïve Bayes 91.12 91.11 91.09 91.09 0.846 0.075

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1513

(a)

(b)

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1514

(c)

Figure 4 (a), (b), (c) comparison of ROC curves of SVM, Random Forest and Naïve Bayes.

The AUC is a statistic that is used to summarize the ROC curve. This measure is used to

determine how well a binary classifier can differentiate between different classes. When

AUC is equal to one, the classifier is able to make an accurate distinction between all of

the positive and negative class values. If the AUC has been 0, then all negatives were

positives and all positives were negatives when making its predictions. When 0.5<AUC<1,

there is a strong likelihood that the classifier can distinguish positive class values from

negative class values. Whenever the AUC is higher, it shows that the model is more

capable of distinguishing between the positive and negative classes.

• Discussion

Improving the dataset-gathering method or the chosen characteristics may help malware

detection systems meet the need for a higher performance measure. The suggested strategy

relies heavily on the careful selection of crucial permissions, which the research has shown

to be a critical factor in ensuring excellent performance. Making permissions is the primary

topic of our research since an App has to get user approval to do the essential operations.

The relevance of the suggested technique lies in the meticulous selection of the dataset

samples, which is the other part of assessment performance that it focuses on. Moreover,

10,000 APKs are used to train and verify the proposed technique. These APKs were

obtained from legitimate Google Play Store and VirusShare sources. In order to develop a

low-cost malware detection solution, it is important to determine the minimum amount of

feature sets that will allow the classifier to achieve high detection accuracies.

5. Conclusion
The prevalence of mobile malware has become a major security concern in the mobile

ecosystem, and using machine learning algorithms to address these concerns requires a

more precise selection of features. In this study, we conducted a statistical analysis of the

Android ecosystem and found that a higher degree of accuracy can be achieved by

reducing the number of permissions while maintaining high efficiency and effectiveness.

We tested Random Forest, Support Vector Machine, and Naive Bayes classifiers on the

same dataset, and our experimental results showed that all classifiers achieved an accuracy

of 91% or higher when using the proposed permission dataset. We also found that a smaller

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1515

set of major permissions was sufficient for achieving an adequate level of detection

accuracy. In the future, expanding the dataset and testing the proposed method with more

supervised and unsupervised machine learning classifiers may lead to improved detection

accuracies.

References

[1] Chebyshev,.Victor. “It threat evolution in Q2 2021. mobile statistics, Securelist English

Global securelistcom”. Available at: https://securelist.com/it-threat-evolution-q2-2021-

mobile-statistics/103636/.

[2] Fidelis Threat Intelligence Report - february/march 2021 Fidelis Cybersecurity. Available

at: https://fidelissecurity.com/resource/report/fidelis-threat-intelligence-report-february-

march-2021.

[3] Sihag, V.; Vardhan, M.; Singh, P. “A survey of android application and malware

hardening”. Comput. Sci. Rev. 2021, 39, 100365.

[4] Zhang, W.; Luktarhan, N.; Ding, C.; Lu, B., “Android Malware Detection Using TCN with

Bytecode Image. Symmetry”, 13, 1107, 2021.

[5] Wang, W.; Zhao, M.; Gao, Z.; Xu, G.; Xian, H.; Li, Y.; Zhang, X., “Constructing Features

for Detecting Android Malicious Applications: Issues”, Taxonomy and Directions. IEEE

Access, 7, 67602–67631, 2019.

[6] Jannath Nisha, O.S.; Mary Saira Bhanu, S., “Detection of malicious Android applications

using Ontology-based intelligent model in mobile cloud environment”. J. Inf. Secur. Appl.,

58, 102751, 2021.

[7] Bhandari, S.; Panihar, R.; Naval, S.; Laxmi, V.; Zemmari, A.; Gaur, M.S. Sword: Semantic

aware android malware detector. J. Inf. Secur. Appl., 42, 46–56, 2018.

[8] VirusShare.com. Available at: http://virusshare.com/ (Accessed: September 24, 2022).

[9] Feizollah, Ali, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and Steven

Furnell. "Androdialysis: Analysis of android intent effectiveness in malware detection."

computers & security 65 (2017): 121-134.

[10] Nisha, OS Jannath, and S. Mary Saira Bhanu. "Detection of repackaged Android

applications based on Apps Permissions." In 2018 4th International Conference on Recent

Advances in Information Technology (RAIT), pp. 1-8. IEEE, 2018.

[11] Sandeep, H.R. Static analysis of android malware detection using deep learning. In

Proceedings of the 2019 International Conference on Intelligent Computing and Control

Systems (ICCS), Secunderabad, India, 15–17 May 2019; pp. 841–845.

[12] Li, Jin, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. "Significant

permission identification for machine-learning-based android malware detection." IEEE

Transactions on Industrial Informatics 14, no. 7 (2018): 3216-3225.

[13] Wang, Zhen, Kai Li, Yan Hu, Akira Fukuda, and Weiqiang Kong. "Multilevel permission

extraction in android applications for malware detection." In 2019 International

Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1-5.

IEEE, 2019.

[14] Talha, Kabakus Abdullah, Dogru Ibrahim Alper, and Cetin Aydin. "APK Auditor:

Permission-based Android malware detection system." Digital Investigation 13 (2015): 1-

14.

[15] Zhu, H.-J.; You, Z.-H.; Zhu, Z.-X.; Shi, W.-L.; Chen, X.; Cheng, L. DroidDet: Effective

and robust detection of android malware using static analysis along with rotation forest

model. Neurocomputing 2018, 272, 638–646.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1516

https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/

[16] Qiao, Mengyu, Andrew H. Sung, and Qingzhong Liu. "Merging permission and api

features for android malware detection." In 2016 5th IIAI international congress on

advanced applied informatics (IIAI-AAI), pp. 566-571. IEEE, 2016.

[17] Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.

"Droidmat: Android malware detection through manifest and api calls tracing." In 2012

Seventh Asia joint conference on information security, pp. 62-69. IEEE, 2012.

[18] Suarez-Tangil, Guillermo, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder,

Giorgio Giacinto, and Lorenzo Cavallaro. "Droidsieve: Fast and accurate classification

of obfuscated android malware." In Proceedings of the seventh ACM on conference on

data and application security and privacy, pp. 309-320. 2017.

[19] Borja Sanz et al.,2019, PUMA: Permission Usage to Detect Malware in Android. Springer

Berlin.

[20] Su, Ming-Yang, and Kek-Tung Fung. "Detection of android malware by static analysis

on permissions and sensitive functions." In 2016 Eighth International Conference on

Ubiquitous and Future Networks (ICUFN), pp. 873-875. IEEE, 2016.

[21] Sun, Yuxia, Yunlong Xie, Zhi Qiu, Yuchang Pan, Jian Weng, and Song Guo. "Detecting

android malware based on extreme learning machine." In 2017 IEEE 15th Intl Conf on

Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence

and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science

and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 47-53. IEEE,

2017.

[22] Sato, Ryo, Daiki Chiba, and Shigeki Goto. "Detecting android malware by analyzing

manifest files." Proceedings of the Asia-Pacific Advanced Network 36, no. 23-31 (2013):

17.

[23] Kohavi, R., and G. H. John. "Wrappers for feature subset selection, Artificial Intelligence,

vol. 97, no. 1-2." (1997): 273324.

[24] Sckit learn. Support Vector Machines, by sci-kit learning. Available: https://sckit-

learn.org/stable/modules/svm.html.

[25] J. Saxe and H. Sanders, Malware data science: attack detection and attribution.

[26] F. A Narudin, A.Feizollah, N. B. Anuar, and A. Gani, 2016, “Evaluation of machine

learning classifiers for mobile malware detection”, Soft comput, vol.20, no.1, doi:

10.1007/s00500-014-1511-6.

[27] H. Zhang, 2004, “The optimality of Naïve Bayes," in Proceedings of The Seventeenth

International Florida Artificial Intelligence Research Society Conference, pp. 17{19,

Miami Beach}.

[28] Androguard: Reverse Engineering, Malware Analysis of Android Applications. Available

online: https://github.com/androguard.

[29] Sotiroudis, S.P.; Goudos, S.K.; Siakavara, K. 2020, Feature Importances: A Tool to

Explain Radio Propagation and Reduce Model Complexity. Telecom, 1, 114–125.

[30] Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T., 2022, Feature engineering and

deep learning-based intrusion detection framework for securing edge IoT. J.

Supercomput., 78, 1–15.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1517

