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Abstract 
Mobile devices are increasingly vulnerable to malicious programs or apps that threaten 

the privacy of users' data. Malicious apps are more intrusive than necessary, as they 

require fewer overall permissions to operate. The open-source nature of the Android 

platform, its acceptance of third-party app stores, and the range of app vetting make it 

more susceptible to attacks. To address this issue, a malware detection system has been 

developed that analyzes an app's permission requests and categorizes it as either benign 

or malware. The system uses a multi-level-based approach that involves collecting a 

dataset of 10,000 apps and identifying various aspects such as permission, small size, and 

permission rates. The apps are then classified as malware or benign using machine 

learning algorithms. The proposed technique achieved higher accuracy in detecting 

malware compared to existing methods, with accuracies of 91.54 % for Support Vector 

Machine, 92.04 % for Random Forest, and 91.11 % for Naive Bayes models. The proposed 

model showed a great balance between detecting malware and benign applications. The 

methodology also shows promise as a low-cost alternative to existing methods for 

detecting malware in Android apps, especially those that have been repackaged.  

Keywords: Android, Malware Detection, Machine Learning 

 

1. Introduction 
Android has quickly become the dominant smartphone OS, with a current market share 

of around 70.97%. Based on these numbers, it's clear that Android is dominating the 

smartphone app industry. The availability of robust apps for a diverse user base is 

Android's strongest selling point. Regrettably, many cybercriminals throughout the world 

have taken notice due to the Apps' widespread use and accessibility. About 97% of mobile 

malware, according to reports, targets Android handsets. Around, 1.45 million new 

Android malware Apps were discovered in the second quarter of 2021, indicating that new 

malware is being developed every few seconds [1]. Several of these apps are launched 

with many versions with the express purpose of evading detection and reaching the largest 

possible audience. Academia and business have given serious thought to the problem of 

harmful apps on mobile devices. In response to these growing worries, researchers and 
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analysts from across the globe have devised and used a wide range of strategies for the 

creation of effective android malware detection technologies [2]. Both dynamic and static 

analysis is used to identify malicious APKs. The dynamic part of the analysis compares 

the behavior of the program while it runs against predetermined test scenarios. Static 

analysis, on the other hand, involves looking for security flaws in the meta. The dynamic 

technique is a reliable detection method; nevertheless, it is computationally expensive due 

to its emphasis on in-depth application analysis. In addition, unlike the static method, the 

analysis is done after the APKs have already been run [3][4]. This is why it is generally 

agreed that static analysis is superior for quickly gaining an overview of the APKs based 

on their predicted behavior. With an exhaustive range of approaches and methods, the 

static analysis attempts to identify the behavior of software in its runtime state before it is 

executed.  

The goal in a secure environment is to identify and remove obviously harmful or 

repackaged applications before they can be installed and used. Using an authoritative 

estimate of the app's likely runtime behavior, static analysis may identify an app as 

malicious. When it comes to protecting user data or preventing apps from gaining access 

to private data, Android often uses the permission-based security approach [5]. To get 

unauthorized access to sensitive information, hackers often target Android apps by abusing 

the permissions they have been granted. As a result, without being given explicit 

permission, it is next to impossible to conduct a plan of action, making permission 

screening a crucial step for malware identification. In order to utilize an Android app, users 

must first agree to provide the app access to certain parts of the user’s device. Certain 

undesirable actions may be reflected by a combination of many permits [6]. When an app 

requests network authorization in addition to SMS access permission, for instance, it may 

collect the users' SMS information and then broadcast it over the Internet. This indicates 

that permissions are one of the most popular and useful permanent features in Android. 

Cloud computing has also been used in the recent evaluation of a detection method. 

SWORD [7] is a semantic analysis-based method for discovering evasion-aware malicious 

apps by using the Asymptotic Equipartition Property (AEP). 

The primary focus of this research is on the permission-based detection of malware. The 

suggested method's goal is to enhance malware detection APKs' functionality while 

simultaneously decreasing the number of permissions used for categorization. 

Nevertheless, the top classifiers currently in use, such as Random Forest and Naive Bayes, 

were discovered and improved upon using the suggested Permission-based Malicious 

Applications detection technique. The proposed research aims to determine the smallest 

set of permissions necessary to accomplish the desired categorization accuracy, in 

comparison to current approaches. The proposed approach begins with decompiling 

Applications using AndroGuard to extract permissions. In addition, programs from 

VirusShare and the Official Play Store are used to compile a dataset from which the 

permissions may be retrieved. After the permissions are retrieved, they are coupled with 

other features, such as the permission rates and the App size metrics, before being filtered 

using the feature significance approach. When the authorization feature set has been 

generated, many machine learning models are used to identify dangerous apps. These are 

some of the ways in which the suggested strategy helps: 

• Created a lightweight malware detection algorithm. 

• Compiled a dataset of about 10,000 malware and benign APKs. 

• We have optimized the permission feature set (77%) in comparison to current 

methods. 

• Upped detection precision to 97% utilizing common ML methods, including support 

vector machine (SVM), random forest, and Naïve Bayes (NB)-based classifiers. 
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2. Literature Survey 

The literature review section of our work examines various papers that have been 

published on the topic of malware detection using static analysis. One such paper by 

Suarez-Tangil et al. [9] proposes an Android malware detection method that utilizes 

explicit and implicit intentions. By using intentions alone for categorization, the system 

achieves an accuracy of 91%, while combining intent and permission of the program 

results in 95% accuracy. This study suggests that intent, in addition to permissions, can be 

used to identify malware. 

Mary et al. [10] proposed a method for identifying repackaged Android apps by 

comparing the permission lists of the original and repackaged apps. The Random Forest 

classifier was found to have the highest accuracy at 88.53%. Hr Sandeep's [11] study 

utilized an Exploratory Data Analysis technique with deep learning methods to detect 

malicious apps based on their permissions. The proposed framework achieved a 94.6% 

success rate in identifying malware when using RF as a classifier. Srisa-An et al. [12] 

presented a permission-based approach that selected the most relevant permissions from 

the android manifest file to detect malware. Their multi-level data pruning method 

achieved a classification accuracy of over 90% using only 22 permissions. Fukuda et al. 

[13] proposed a method called Multilevel Permission Extraction (MPE), which first 

extracts and identifies the permissions of the android application and then uses that 

information to determine if the app is malicious. Their method achieved a 97.88% 

detection rate of malware. 

Ibrahim et al. [14] proposed a system called APKauditor, it makes use of permissions 

to distinguish between safe and malicious apps. The system consists of a database, which 

stores the permissions or signature of the database, an android app, which is utilized by 

the end user, and a central server, which acts as a go-between between the android app and 

the database. The end-user program simply connects to the server where the analysis is 

stored and retrieves the results. They run 8762 programs through their system and catch 

malware 88% of the time.  

According to the study by Cheng et al. [15], a framework was presented to calculate the 

application permission rate depending on the feature set by using system events, sensitive 

APIs, and authorization from the application. Cheng's methodology is efficient in terms of 

both time and money, correctly detecting malware 88.6 percent of the time. The 

classification model used to distinguish between safe and harmful files is constructed using 

the Rotation Forest method. They only utilize a small dataset, but by experimenting with 

various machine learning classifiers, they may increase their accuracy. Similarly, Lui et 

al. [16], proposed a system that decompiles android apps to get at their dex byte code, 

which is then transformed to java source code to get at their API calls, this approach 

involves many steps. Malware often asks for more permission than is really necessary, so 

they realize the manifest file of the Android program may appear like a rough 

approximation. When they combine Random Forest, SVM, and ANN, their detection 

accuracy rises to 94.98%. 

In Mao et al. [17], singular value decomposition is used for clustering, the K-means 

algorithm is used to construct a classification model, and the KNN algorithm is used to 

categorize malware. The solution utilizes permissions in addition to intent and API 

requests to ensure a 97.87% success rate. Nevertheless, the approach is limited to a dataset 

of just 1738 android apps. Mansour et al. [18] presented a system known as DroidSeive. 

The system classifies malware based on a variety of characteristics, including API calls, 

code structure, permissions, etc. The framework is able to identify malicious software and 

then provide classification to the family to which that software belongs. The system 
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employs over a hundred thousand Android apps, with which it detects malware with 

99.44% accuracy, classifies it with 99.265 accuracies, and experiences no false positives. 

The PUMA (Permission Use to Detect Malware on Android) approach, suggested by 

Carlos et al. [19], makes use of permission in order to identify malicious apps. Using a 

classifier such as RandomForest, RandomTree, NaiveBayes, etc. on 4031 samples of 

android applications, they achieve a detection accuracy of 86.41%. For static analysis, 

Ming-Yang Su et al. [20] suggested a framework to extract native permissions and intent 

priority in addition to permission and sensitive functions. It launches the programme in a 

safe environment called a "sandpit," where its actions may be monitored and recorded. 

Naive Bayes, SVM, KNN, logistic regression, and other classifiers are used to correctly 

categories malware, allowing the system to identify malicious software with a 93% success 

rate. Weng et al. [21] suggested a tool they called Waffle Detector, which requires nothing 

in the way of human involvement. They've used permissions and API requests that need 

special handling to obtain an accuracy of 97.14%. 

Daiki et al. [22] utilized the Androidmanifest.xml file for analysis and extracted six 

pieces of data, including authorization, intent filter (action), and process name. By 

evaluating the manifest file of the program cost-effectively, they achieved a 90% accuracy 

rate in identifying new viruses using a database of 365 Android applications. Many of the 

methods discussed above use permission-based feature sets to differentiate between benign 

and malicious APKs due to their high speed and nearly perfect detection accuracy. 

However, basic permissions are often not utilized to their full potential, and the number of 

inefficient authorization characteristics may increase computational complexity. To 

address these issues, a more efficient and faster detection method is needed. In the 

following section, we will explore the proposed solution to address the limitations of 

current approaches. 

 

3. Related Background 
 

3.1 Feature Selection Method 

Eliminating unnecessary or irrelevant characteristics from a dataset is a frequent use 

case for feature selection, which is then used to determine the ideal feature subset to boost 

the system's performance. It also aids in resolving "the curse of dimensionality." For 

selecting features, we can use either a filter, a wrapper, or a hybrid. The performance of 

chosen features is evaluated by an external classifier in the filter technique. The wrapper 

method "wraps around" the existing classifier in order to evaluate an abridged collection 

of characteristics [23]. The computational overhead of this approach is higher than that of 

the filter method. In order to maximize efficiency with a given classifier, the hybrid 

strategy combines filtering and wrapping. 

3.2 Classification Method 

In this study, we use 3 different classifiers for the detection of malware. When these 

malwares were put through their paces, the primary objective was to evaluate how well 

they identify malware applications when combined with data preparation and feature 

selection strategies. These ML classifiers are as follows: 

3.2.1 SVM 

     SVM is one of the most commonly and widely used classifiers of Machine Learning. 

This classifier's major goal is to build a judgement boundary or ideal line for classifying 

n-dimensional space so that subsequent data points may be rapidly allocated. Hyperplanes 

are optimum decision boundaries [24].  
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3.2.2 Random Forest 

    The random forest algorithm is an ensemble approach comprised of many decision 

trees and bagging processes. Each decision tree is trained on a subset of the whole dataset 

using bagging. Every tree is classified and the categorization is completed by majority 

voting on the finding of the decision trees. The most important parameters are max Depth, 

which says how deep the tree can grow and estimators, which define the number of trees 

in the forest [25] [26]. In our research, the number of trees in the forest was 100. 

3.2.3 Naïve Bayes 

     It is a classifier based on the Bayes theorem. It’s mainly used to solve classification 

problems. It is one of the probabilistic classifiers which uses probability to predict the class 

of the new sample [27]. 

 

4. Proposed Methodology 

In this section of the paper, we discuss our proposed methodology. Our proposed 

framework outweighs all the above-mentioned paper in every aspect such as accuracy, 

runtime, etc. It enhances the performance of malware detection. Above mentioned paper’s 

drawbacks were tackled by our proposed framework. In the proposed framework of 

malware detector, the system extracts only that permission set from the permission list of 

the android which is relevant and significant in the detection of the malware rather than 

dissecting the whole application. Our proposed system mainly focuses on those 

permissions combinations which were commonly found in malware rather than including 

all the permissions in the manifest file. 

The proposed framework design was divided into steps: - 

4.1 Creating Dataset 

This is the first step in designing the framework. In this part of designing, we first collect 

the collection of malwares as well as benign applications from the internet. For the benign 

application, we could go to the official play store and collect the different categories of 

benign applications for our system database. For the malware application sample, we could 

use third-party websites like virus share, Virus Total, etc. These websites contain 

thousands of malwares that are already on the internet and get detected. After the collection 

of both types of samples, we create our dataset by considering a 50:50 ratio of both types 

of samples in the database. By doing this our dataset should be balanced and give less false 

positive rate. After successfully creating a balanced dataset our first step is completed.  

 
Sample Size Malware Benign 

No. of samples used 5000 5000 

  Table 1- No. of Data samples 

 

 
 Figure 1 Ratio of Benign Samples to Malware Samples in the dataset. 

50%50%

No. of samples

Benign Samples

Malware Samples

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1509



 

 

 

4.2  Extracting Permissions 

This is the next step in designing the framework which consists of extracting 

permissions from the collected applications dataset. All the permissions of an android APK 

are written in the android.manifest.xml file. These permission help us to do static analysis 

of the applications. In this file, all the permission requested by the application were written. 

By using software called AndroGuard [28] we can decompile the android application one 

by one and extract their permissions from their manifest.xml file. After extraction of 

permissions from the android.xml file of each APK in the dataset we create a feature for 

each APK in the dataset we create a feature set. This feature set contains the extracted 

permission of the applications. 

4.3    Data Preprocessing on The Feature Dataset 

In this step of the framework, we apply data preprocessing techniques on the feature 

dataset to reduce its size of the feature dataset. This step is the most important step among 

the other steps of designing the framework. In this step, we select only the most significant 

permission which helps the system in the classification of malware and benign application 

[10].  By applying techniques to fill the missing spaces, and removing duplicate permission 

in the feature dataset, we complete the feature dataset first. Then after we select the most 

significant permission out of others which helps the system in faster classification of 

malware and benign application. Selecting the most effective permissions out of the 

extracted permissions is given in the next part. 

4.3.1 Finding the Effective Permissions for the Model 

We exclude the less important permissions from consideration when choosing the 

minimal set of permissions to use for detection. We did this by using the feature 

significance attribute with several permutations of Google's risky permission list [10]. An 

indicator of feature relevance may be used to create less complex and quicker prediction 

models with fewer parameters. To get the necessary authorizations, we use a Random 

Forest-based feature significance approach (Table 2) [29][30]. We have chosen a cutoff 

value of 0.1 to filter out the least important permissions so that we may focus on the most 

consequential ones. Table 3 displays the results of our studies with several feature sets, 

which allow us to choose the permissions list that will have the most impact. 

4.4  Applying Machine Learning Classifiers for classification 

In this final step in designing the framework, we use a supervised ML algorithm for the 

classification of malware and benign application with a low false positive rate. For that 

first, we divide the sample set into 2 parts one is training data and the other one is test data.  

With the help of the training data we train our machine learning model and we use test 

data to check our model accuracy. The dataset used in the system to train and the test 

consists of 10,000 samples of applications both benign and malware both. In the traditional 

spilt model can overfit so to overcome that we use 10-fold cross-validation. 

 

4. Experimental Result  

The approach we have suggested distinguishes the malware application from the benign 

application based on their permissions. In order to demonstrate our work is successful 

we carried out many tests under the below-mentioned environment and the below-

mentioned performance metrics we use to evaluate the performance of our system. 
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S. No. Permissions Feature 

Importance 

1. READ_PHONE_STATE 0.31764 

2. Smali Size 0.23495 

3. Permission Rate 0.21749 

4. WRITE_EXTERNAL_STORAGE 0.06948 

5. ACCESS_COARSE_LOCATION 0.05323 

6. READ_EXTERNAL_STORAGE 0.01588 

7. GET_ACCOUNTS 0.00953 

8. READ_CONTACTS 0.00650 

9. ACCESS_NOTIFICATION_POLICY 0.00337 

10. WRITE_CONTACTS 0.00265 

11. READ_CALL_LOG 0.00200 

12. INSTALL_PACKAGES 0.00151 

13. BODY_SENSORS 0.00080 

14. WRITE_CALL_LOG 0.00069 

15. READ_HISTORY_BOOKMARKS 0.00002 
 
Table 2 List of different dangerous permissions with their importance 

 

Type S. 

No. 

Permission 

Permissions 1. android.permission. ACCESS_COARSE_LOCATION 

2. android.permission.READ_PHONE_STATE 

3. android.permission.WRITE_EXTERNAL_STORAGE 

Matrices 1. Smali Size 

2. Permission Rate 

 
Table 3 Effective permissions for classification 

 
 

4.1 Experiment Environment 

While conducting the experiment, we make use of a computer that has a CPU of intel 

core i5 processor, 8 GB of RAM, and windows 11 as the primary operating system.  

4.2  Evaluation Metrics 

To measure how well our proposed system detects malware we evaluate it on some 

metrics which are as follows, 

• Accuracy- To calculate the accuracy we use, 

    (1) 

• Sensitivity- To calculate how well our system detects the positive(malware) 

instances. 

                                                 (2) 
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• Precision- To calculate precision we use, 

                                                  (3) 

• F-1 Score- For f-1 score we use, 

                                       (4) 

 

4.3 Results and Discussions 

     In this section, we see the results of different classifiers on our model and based on that 

we evaluate the performance of the proposed system. However, many works have been 

done for malware detection. That’s why in our work we did classification two times. For 

the first classification, we divide the dataset into two separate datasets. One is called the 

training set and another one is called the test dataset and the ratio of splitting the main 

dataset is 75:25. We compare the accuracy we got during the first classification with the 

already published systems. 

 

Ref No. Classifier Features Accuracy 

[1] Bayesian Intent & Permission 95.5% 

[2] KNN, SVM, RF Permission 92.94% 

[3] RF Permissions 94.65% 

[4] SVM Permissions  >90% 

[5] SVM, RF Permission 97% 

Our SVM, RF, NB Permission 97.3% 

Table 4 Comparatively analysis of accuracy 

 

 

    Figure 2 Comparing the accuracy of other work with our proposed model 

Now, we perform the second classification based on the 10-fold cross Validation 

technique. The reason why we choose 10-fold cross-validation is that, in the conventional 

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

[1] [2] [3] [4] [5] [6]

A
cc

u
ra

cy

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:1512



 

 

dataset split sometime the model undergoes overfitting which affects the system accuracy. 

Table 5 and Figure 3 shows the result of the different classifier using 10-fold cross-

validation. 
 

 

Figure 3 Comparison of different ML methods 

 

As we can see in the result the random forest algorithm gets the best accuracy which is 

92.04%. The ROC curve is a likelihood plot that illustrates how well a classification model 

performs at various thresholds. Based on the result of 10-fold cross-validation, we draw a 

ROC curve for each fold. We show different ROC curves for different ML classifiers 

Table 5 ML classifier evaluation using 10-fold Cross-validation technique 

 

90.6

90.8

91

91.2

91.4

91.6

91.8

92

92.2

KNN Random Forest Naïve Bayes

Accuracy Precision Recall F-1 Score

Classifiers  Precision Accuracy F-1 

Score  

Recall TPR FPR 

SVM 91.59 91.54 91.53 91.53 0.89 0.051 

Random 

Forest 

92.04 92.04 92.03 92.03 0.963 0.018 

Naïve Bayes 91.12 91.11 91.09 91.09 0.846 0.075 
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(a) 

 

 
(b) 
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(c) 

Figure 4 (a), (b), (c) comparison of ROC curves of SVM, Random Forest and Naïve Bayes. 

 

The AUC is a statistic that is used to summarize the ROC curve. This measure is used to 

determine how well a binary classifier can differentiate between different classes. When 

AUC is equal to one, the classifier is able to make an accurate distinction between all of 

the positive and negative class values. If the AUC has been 0, then all negatives were 

positives and all positives were negatives when making its predictions. When 0.5<AUC<1, 

there is a strong likelihood that the classifier can distinguish positive class values from 

negative class values. Whenever the AUC is higher, it shows that the model is more 

capable of distinguishing between the positive and negative classes. 

• Discussion 

Improving the dataset-gathering method or the chosen characteristics may help malware 

detection systems meet the need for a higher performance measure. The suggested strategy 

relies heavily on the careful selection of crucial permissions, which the research has shown 

to be a critical factor in ensuring excellent performance. Making permissions is the primary 

topic of our research since an App has to get user approval to do the essential operations. 

The relevance of the suggested technique lies in the meticulous selection of the dataset 

samples, which is the other part of assessment performance that it focuses on. Moreover, 

10,000 APKs are used to train and verify the proposed technique. These APKs were 

obtained from legitimate Google Play Store and VirusShare sources. In order to develop a 

low-cost malware detection solution, it is important to determine the minimum amount of 

feature sets that will allow the classifier to achieve high detection accuracies. 

 

5. Conclusion 
The prevalence of mobile malware has become a major security concern in the mobile 

ecosystem, and using machine learning algorithms to address these concerns requires a 

more precise selection of features. In this study, we conducted a statistical analysis of the 

Android ecosystem and found that a higher degree of accuracy can be achieved by 

reducing the number of permissions while maintaining high efficiency and effectiveness. 

We tested Random Forest, Support Vector Machine, and Naive Bayes classifiers on the 

same dataset, and our experimental results showed that all classifiers achieved an accuracy 

of 91% or higher when using the proposed permission dataset. We also found that a smaller 
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set of major permissions was sufficient for achieving an adequate level of detection 

accuracy. In the future, expanding the dataset and testing the proposed method with more 

supervised and unsupervised machine learning classifiers may lead to improved detection 

accuracies. 
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