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Abstract— Exact DNA Sequence Matching is an important 

aspect of modern software for controlling and evaluating 

biological data. In the realm of biotechnology, the Knuth Morris 

Pratt (KMP) Algorithm is commonly used to process DNA 

sequences. The KMP method has linear time complexity in 

relation to the string pool length, but it also has linear space 

complexity in relation to the pattern length. The proposed 

methodology in this paper is the Rabin Karp Algorithm which 

has a linear time complexity of the summation of the size of the 

string pool and the pattern to be matched, that is overall a linear 

time complexity, but with this algorithm a constant space 

complexity can be achieved maintaining the overall same time 

complexity that the existing KMP algorithm has. The Rabin 

Karp method, on the other hand, does not perform well when all 

pattern and text characters are the same as the hash values of all 

substrings. This study compares and contrasts the Naive 

Method, KMP Algorithm, and Rabin Karp Algorithm to 

discover which algorithm is best suited for DNA Sequence 

Check. 

Index Terms: DNA Pattern Matching, Rabin Karp Algorithm, 

DNA Sequencing, KMP Algorithm, Boyer- Moore Algorithm, 

Pattern Matching Algorithm. 

 

I. INTRODUCTION 

Bioinformatics   is   the   study,   management,   and 

assessment of biological problems using computer science. 
The volume of biological data   has grown dramatically as 

the computing era has progressed. As a result of these large 
volumes of data, the need to review vast amounts of data in 

a reasonable amount of time and space has grown. Pattern 
matching across species is a tough problem to tackle because 

DNA sequences convey fundamental species information. 
There are various generic string matching algorithms and 

several particular DNA pattern matching tools in the 
literature. Fast and space-efficient pattern matching 

algorithms that take into account fresh hardware advancements 
are still required. In biotechnology, the Knuth Morris Pratt 

(KMP) Algorithm is commonly used to process 

DNA sequences. 

The KMP method has linear time complexity in relation to 

the string pool length, but linear space complexity in relation 

to the pattern length. The Rabin Karp Algorithm is the 

methodology proposed in this paper, which has a linear time 

complexity of the summation of the string pool size and the 

pattern to be matched, as well as a linear time complexity 

overall, but can achieve a constant space complexity while 

maintaining the same overall time complexity as the existing 

KMP algorithm. When all pattern and text characters are the 

same as the hash values of all substrings, the Rabin Karp 

method is useless. To identify which algorithm is better for 

DNA Sequence Check, this study examines and contrasts the 

Naive Method, KMP Method, and Rabin Karp Method. 

 
II. RELATED WORK 

This section contains relevant papers on pattern matching. 

Brute force (BF) is a prominent approach in the pattern matching 

literature that does the text or the pattern. From left to right, BF 

one by one. The sliding window is relocated one place to the right 

after a match or mismatch, and there the pattern. The fact that 

BF takes so long to complete is a major drawback. There are 

approaches that combine the dynamic programming paradigm 

and DFA and are based on Deterministic Finite Automata (DFA). 

These approaches are seldom scalable for extended sequences 

due to the usage of finite automata. Furthermore, because of the 

use of dynamic programming, the memory needs are significantly 

higher. 

The KMP technique, created by Knuth et al., compares from 

the left side. When a mismatch occurs, KMP slides waiting 

the window as also in the to the right, preserving the largest 

landing on the overlap between the matched text's suffix and 

the pattern's prefix. The performance of this algorithm is 

linear. The KMP technique works well when the alphabet size 

is large, but it takes a long time to execute when the alphabet 

size is not very big or we can say small is small or the pattern 

length is short. The Boyer-Moore method and its variations 
look for a right-to-left pattern in the text. To put it another 

way, this algorithm favors the making of the hallucination 

pattern's last of the render machine character. At the end of 

the matching phase, it calculates the shift increment. When a 

mismatch occurs, two helpful tips are used to limit the number 

of comparisons (bad character and good suffix). The 

disadvantage rattling feature of the Boyer Moore way of doing 

this pattern matching is that it takes a long time to prepare 

depending on the patterning version length and size. 

Comparisons are the foundation of the DCPM method. At the 

start of the DCPM's preprocessing a result, in order to identify 

the windows, DCPM runs the text through two cycles and 

conducts a certain stage, the text is checked of the pattern's 

rightmost character. The discoveries index is found in the 

rightmost character table. The text is then re-examined to locate 

the pattern's leftmost character. The indices in the leftmost 

character table are retained in the event of similarity. The window 

limitations are determined by DCPM using these two tables. To 

put it another way, the pattern's length is used to probe the 

contents of the database. We’ll identify a window when the 

distance between the leftmost and rightmost character (extracted 

earlier from the two tables) equals the pattern length. As a result, 

in order to identify the windows, DCPM runs the text through 

two cycles and conducts certain computations. During the 

matching stage, the algorithm checks the other characters in the 

windows. 

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 04 (April) - 2023

http://ymerdigital.com

Page No:285

mailto:Kavitasaini_2000@yahoo.com
mailto:nnidhiraj123@gmail.com
mailto:adarshkumarjjr@gmail.com


  

Perfect sameness is attained when all of the pattern's 

characters and text windows match. In this study, the first 

technique aids DCPM by recognising windows with only one 

text pass. 
 

III. PROBLEM STATEMENT 

Even if the amount of biological data has increased 

dramatically in recent years, these enormous amounts of data 
must nevertheless be analyzed in an acceptable period of time. 

This problem arises because amino acid or nucleotide 

sequences are commonly used to represent biological 

molecules in molecular biology. In order to discover any 

inconsistencies or flaws in a DNA sequence, DNA sequence 

analysis is frequently necessary. Pattern matching is also 

useful in domains like phylogenetics and evolutionary 

biology. To understand their relatedness, descent, and origin, 

these programmes extract particular DNA subsequences from 

the genomic data of organisms of various kinds. As a result, a 

descent, and origin pattern matching algorithm in this through 
datasets ranging from gigabytes to terabytes in size, as well as 

complete genomes, DNA sequences, on the other hand, are 

fairly lengthy. As a result, the time spent matching up with the 

pattern is the most important. 

 
IV. METHODOLOGIES 

Methodologies are divided into several parts, which are 

described in the below sub-sections. 

1) Naive Pattern Matching 

The Naive algorithm is a brute-force strategy. It's a 

straightforward method for locating any text string. It iterates 

across the text several times, finding the pattern's length by 

comparing it to the first few characters. If there is a mismatch, 

move the syndrome abderrahmane to the right one step and 

compare the following character of text with the first 

character of the pattern, compare the text and pattern 

characters after that. Carry on the above process as before; if 

a match is discovered throughout the whole length of the 

pattern, it means the pattern was spotted; as a result, return the 

match's position. The time complexity is O(m*n) in both the 

worst and best scenarios, where (m) is the length of string and 

(n) is the length of pattern. 

Function Naive-Algorithm (Text, Pattern) : 

Input: Pattern [1. m] Text [1. n] 

Output: Position of the substring of text matching Pattern 

or -1 if not matched then its returned for j← 0 to n-m do 

i← 0 

While i<m && Pattern [i]==Text [j+i] 

do i←i+1 

If i==m return j //match successful Return -1 // 

match unsuccessful 

2) Knuth Morris Pratt Algorithm 

DNA data matching, viral feature matching, data 

compression, and so on as the volume and complexity of data 

increases dramatically. String pattern matching has gotten a lot 

of attention in this industry for a long time [1]. One of the most 

fundamental operations in strings is pattern matching. If P is a 

given substring and T is a much longer string to be searched, all 

substrings in T that match P must be located. The pattern is 

denoted by the letter P, whereas the target is denoted by the letter 

T. In real-world situations, the initial step is to match the 

substring P with the string T using the 

brute force approach, starting with the first element in T. 

Despite the fact that this method complies to the notion, it is 

inefficient and time- consuming [2-3]. 

The number of letter matching operations necessary to 

retrieve P from T is m*(n-m+1) if f (T)=n and f (P)=m, and 
“length” is the total number of letters in a string. By 

minimizing superfluous letter comparisons, the KMP 
approach, an updated string matching strategy developed at 
the same time by Knuth, Morris, and Pratt, has become fairly 

fast and popular today. 

The KMP method traverses a pattern string from start to 

finish, looking for the longest common components between 

each substring's prefix and suffix, and recording the length of 

the common section in a “Failure Table” that should be the 

same length as the pattern [4]. Each letter in the pattern 

correlates to a number in the Failure Table that must be 

calculated. The comparison then begins with the first letter of 

P and T, with N1 signifying “the last matched character's 

matching number in the Failure Table” and updating with the 

comparison process, and N2 denoting ‘the last matched 

character's matching number in the Failure Table. If the not- 

match situation starts with one of P's letters, P must change 

the following numbers to the right: (N1-N2). To get the same 

result, use the array next. 

Function KMP-Algorithm (Text, Pattern) : 

n ← length [Text] 

m ← length [Pattern] 

pi ← Compute Prefix Table (Pattern) q ← 0 

for i := 0 To n-1 

while q > 0 and Pattern [q] !=Text [i] do 

q ← Pattern[q] 

if Pattern [q] = Text [i] 

Then q ++ if q = m 

Then return i – m + 1 

return –1 

3) Drawbacks of Knuth Morris Algorithm 

Even though this method is rather good, there is still a lot of 

room for development. As the pattern progresses, there are still 

a few matches that aren't required. More comparisons will be 

required when the pattern first appears in the second section of 

the text. One of the drawbacks with the KMP Algorithm – data is 

that it does not scale well as the alphabets grow in size. As a 

result, errors are becoming more prevalent 

[5]. Processing large DNA files needs additional resources in 
the form of processors, which may be a hurdle to 
implementing the KMP Algorithm-data for smaller 
enterprises. 

4) Rabin-Karp Algorithm 

The Rabin-Karp algorithm is a hashing-based search 

strategy for finding a substring pattern in a text. Plagiarism 

detection is one of the practical uses of the Rabin approach. 

The proportion of plagiarism is calculated using a hash 

algorithm using Karp's Rabin-Karp. You may adjust the 

accuracy level using this function. The hash function is used 

to calculate the feature value of a certain syllable fraction. 

Each text is converted into a number known as a hash value 
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[6]. The hash value is calculated using the same phrase in the 

Rabin-Karp method. In order to determine the hash value, you 

must overcome two obstacles. For starters, a single sentence 

can include a large number of distinct strings [8]. This 

problem may be handled by assigning the same hash value to 

several strings. The second problem is that, although if each 

string is allocated to the brute- force approach, the string with 

the same hash value match does not have to be overcome. To 

avoid hash outputs that are identical to various words, Rabin-

Karp requires a big prime integer. The scenario becomes 

rather difficult when fraudulent hits appear many times across 

all windows. 

This is the case because a good hashing algorithm seldom 

produces collisions. As a result, comparing two substrings is 

rarely necessary if they do not match. In addition, if all we 

want to do is observe if the pattern appears, the complexity 

will be O(n+k), because we could break after the first time 

[7]. 

Data: s: String for which we want to calculate hash values 

prefix: Prefix sum of ASCII codes in s 

Function Init(s): 
n ← Length(s); prefix[0] ← int(s[0]) for i ← 1 to n-1 

do prefix[i] ← prefix[i-1] + int(s[i]); end 

 

end 

Function getHash(L,R): 

if L = 0 then 

return prefix[R]; 
 

end 

 

end 

return prefix[R] - prefix[L-1]; 

Rabin-Karp String Matching 

Data: P: The Pattern to look for T: The text to look in 

hashT, hashP: Hash structures for strings T, 

P Result: Returns occurrences of P in T 

Answer ← 0; n ← length(T); k ← length(P); 

for i ← 0 to n-k do 

textHash ← hashT.getHash(i, i+k-1); patternHash ← 

hashP.getHash(0, k-1); if textHash = patternHash then 

valid ← true; 

for j←0 to k-1 do 

if T[i+j] != P[j] then 

valid ← false; 

break; 

end 

end 

 

end 

 

if valid = true then 

answer ← answer + 1; 

end end 

return answer; 

5) Boyer-Moore Algorithm 

Like the nave technique, the Boyer-Moore method aligns P 

and T consecutively before assessing if P matches T's opposing 

characters. After the check is done, P is shifted right relative to 

T, just like in the prior step [8-10]. These methods are used to 

develop a methodology for analyzing less than m 

+ n characters in linear worst-case time (a sublinear-time 

method) (with a specific extension) [11]. 

6) Relevance of Boyer - Moore Algorithm in DNA Pattern 

Matching 

The bad character rule helps, but has no impact. When 

the alphabet is small and the text has numerous substrings that 

are similar but not identical, this is a regular occurrence. This 

is true of DNA, which has a four-letter alphabet, and even 

protein, which has a twenty-letter alphabet and usually has 

distinct parts that are quite identical. 

{Preprocessing stage} 

Given P as a pattern, 

Calculate L' I and l'(i) for each I of P's position, and R(x) for 

each character x. 

{Search stage} 

k := n; 

while k ≤ m do 

begin i := n; 

h := k; 

while i > 0 and P(i) = T(h) do 

begin 

i := i − 1; h 

:= h − 1; 

end; if i = 0 then 

begin 

P in T ending at position k should be reported. 

k := k + n − l` (2); 

end 

else 

end; 

Where, the maximum amount defined by the (extended) bad 

character rule and the good suffix rule is used to shift P (raise 

k). 

7) Finding Best Suited Algorithms for DNA Pattern 

Matching By Comparative Analysis 

From the above facts we can clearly derive that the size of 

a human DNA is of order 10^6. On implementation we have 

developed an artificial string of human genome or the same 

order and performed time analysis on the algorithms 

discussed above[12, 13, 14]. Figure 1 shows the algorithm 

time graphs of all the four algorithms that we have discussed 

for pattern size ranging from 10^1 to 10^5 characters. Fig. 1 

shows the algorithm time graphs of all the four algorithms that 

we have discussed for pattern size ranging from 10^1 to 10^5 

characters. 
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Fig. 1 Algorithm-Time horizontal histogram graph for pattern   size 
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Time in 

m sec m ~ sec m ~ sec m ~ m ~ 10^4 sec m ~ 
 10^1 10^2 10^3  10^5 

Naive 0.082317 0.06511270 0.06160882 0.063417745 0.06263312 

7 7 

KMP 0.10962623 0.10745550 0.11644943 0.091818921 0.09560388 

4 7 6 4 

Rabin-Kar 0.06172313 0.05773003 0.05459529 0.054593009 0.05886148 

p 9 3 5 

Boyer-Mo 0.02706968 0.02504137 0.02116718 0.021548849 0.02434038 

ore 8 9 1 4 

 
 

V. CONCLUSION AND FUTURE WORK 

We need to make sure that the algorithms we're employing 

presently are as efficient as possible. This is only achievable 

if you focus on keeping complexity and execution time to a 

minimum. The Advance Rabin Karp method enhances the 

performance of the Rabin Karp algorithm by reducing its 

execution time, resulting in a better result in less time. As our 

hypothesis, the DNA pattern is comparatively so small in size 

hence all the algorithms are tending to linear time 
complexities. We can see that asymptotically all the 

algorithms are performing in linear time. Among all the 

algorithms Boyer-Moore performed outstandingly well. That 

is because Boyer-Moore performs better in case of small 

alphabet size. In DNA sequences the alphabet size is 4. Hence 

we can conclude that the best algorithm for DNA pattern 

matching is Boyer-Moore Algorithm. In Future, we can 

perform analysis in space and according to theoretical 

analysis the Rabin-Karp would perform quite well in that 

case. 
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