

Comparative Study to Extract Pattern Matching

Approaches using Diverse DNA Sequences

Kavita1 Nidhi Raj Singh2, Adarsh kumar3

Professor,
Kavitasaini_2000@yahoo.com

Undergraduate Student

Galgotias University, Noida, India Galgotias University, Noida, India
 nnidhiraj123@gmail.com
 adarshkumarjjr@gmail.com

Abstract— Exact DNA Sequence Matching is an important

aspect of modern software for controlling and evaluating

biological data. In the realm of biotechnology, the Knuth Morris

Pratt (KMP) Algorithm is commonly used to process DNA

sequences. The KMP method has linear time complexity in

relation to the string pool length, but it also has linear space

complexity in relation to the pattern length. The proposed

methodology in this paper is the Rabin Karp Algorithm which

has a linear time complexity of the summation of the size of the

string pool and the pattern to be matched, that is overall a linear

time complexity, but with this algorithm a constant space

complexity can be achieved maintaining the overall same time

complexity that the existing KMP algorithm has. The Rabin

Karp method, on the other hand, does not perform well when all

pattern and text characters are the same as the hash values of all

substrings. This study compares and contrasts the Naive

Method, KMP Algorithm, and Rabin Karp Algorithm to

discover which algorithm is best suited for DNA Sequence

Check.

Index Terms: DNA Pattern Matching, Rabin Karp Algorithm,

DNA Sequencing, KMP Algorithm, Boyer- Moore Algorithm,

Pattern Matching Algorithm.

I. INTRODUCTION

Bioinformatics is the study, management, and

assessment of biological problems using computer science.
The volume of biological data has grown dramatically as

the computing era has progressed. As a result of these large
volumes of data, the need to review vast amounts of data in

a reasonable amount of time and space has grown. Pattern
matching across species is a tough problem to tackle because

DNA sequences convey fundamental species information.
There are various generic string matching algorithms and

several particular DNA pattern matching tools in the
literature. Fast and space-efficient pattern matching

algorithms that take into account fresh hardware advancements
are still required. In biotechnology, the Knuth Morris Pratt

(KMP) Algorithm is commonly used to process

DNA sequences.

The KMP method has linear time complexity in relation to

the string pool length, but linear space complexity in relation

to the pattern length. The Rabin Karp Algorithm is the

methodology proposed in this paper, which has a linear time

complexity of the summation of the string pool size and the

pattern to be matched, as well as a linear time complexity

overall, but can achieve a constant space complexity while

maintaining the same overall time complexity as the existing

KMP algorithm. When all pattern and text characters are the

same as the hash values of all substrings, the Rabin Karp

method is useless. To identify which algorithm is better for

DNA Sequence Check, this study examines and contrasts the

Naive Method, KMP Method, and Rabin Karp Method.

II. RELATED WORK

This section contains relevant papers on pattern matching.

Brute force (BF) is a prominent approach in the pattern matching

literature that does the text or the pattern. From left to right, BF

one by one. The sliding window is relocated one place to the right

after a match or mismatch, and there the pattern. The fact that

BF takes so long to complete is a major drawback. There are

approaches that combine the dynamic programming paradigm

and DFA and are based on Deterministic Finite Automata (DFA).

These approaches are seldom scalable for extended sequences

due to the usage of finite automata. Furthermore, because of the

use of dynamic programming, the memory needs are significantly

higher.

The KMP technique, created by Knuth et al., compares from

the left side. When a mismatch occurs, KMP slides waiting

the window as also in the to the right, preserving the largest

landing on the overlap between the matched text's suffix and

the pattern's prefix. The performance of this algorithm is

linear. The KMP technique works well when the alphabet size

is large, but it takes a long time to execute when the alphabet

size is not very big or we can say small is small or the pattern

length is short. The Boyer-Moore method and its variations
look for a right-to-left pattern in the text. To put it another

way, this algorithm favors the making of the hallucination

pattern's last of the render machine character. At the end of

the matching phase, it calculates the shift increment. When a

mismatch occurs, two helpful tips are used to limit the number

of comparisons (bad character and good suffix). The

disadvantage rattling feature of the Boyer Moore way of doing

this pattern matching is that it takes a long time to prepare

depending on the patterning version length and size.

Comparisons are the foundation of the DCPM method. At the

start of the DCPM's preprocessing a result, in order to identify

the windows, DCPM runs the text through two cycles and

conducts a certain stage, the text is checked of the pattern's

rightmost character. The discoveries index is found in the

rightmost character table. The text is then re-examined to locate

the pattern's leftmost character. The indices in the leftmost

character table are retained in the event of similarity. The window

limitations are determined by DCPM using these two tables. To

put it another way, the pattern's length is used to probe the

contents of the database. We’ll identify a window when the

distance between the leftmost and rightmost character (extracted

earlier from the two tables) equals the pattern length. As a result,

in order to identify the windows, DCPM runs the text through

two cycles and conducts certain computations. During the

matching stage, the algorithm checks the other characters in the

windows.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 04 (April) - 2023

http://ymerdigital.com

Page No:285

mailto:Kavitasaini_2000@yahoo.com
mailto:nnidhiraj123@gmail.com
mailto:adarshkumarjjr@gmail.com

Perfect sameness is attained when all of the pattern's

characters and text windows match. In this study, the first

technique aids DCPM by recognising windows with only one

text pass.

III. PROBLEM STATEMENT

Even if the amount of biological data has increased

dramatically in recent years, these enormous amounts of data
must nevertheless be analyzed in an acceptable period of time.

This problem arises because amino acid or nucleotide

sequences are commonly used to represent biological

molecules in molecular biology. In order to discover any

inconsistencies or flaws in a DNA sequence, DNA sequence

analysis is frequently necessary. Pattern matching is also

useful in domains like phylogenetics and evolutionary

biology. To understand their relatedness, descent, and origin,

these programmes extract particular DNA subsequences from

the genomic data of organisms of various kinds. As a result, a

descent, and origin pattern matching algorithm in this through
datasets ranging from gigabytes to terabytes in size, as well as

complete genomes, DNA sequences, on the other hand, are

fairly lengthy. As a result, the time spent matching up with the

pattern is the most important.

IV. METHODOLOGIES

Methodologies are divided into several parts, which are

described in the below sub-sections.

1) Naive Pattern Matching

The Naive algorithm is a brute-force strategy. It's a

straightforward method for locating any text string. It iterates

across the text several times, finding the pattern's length by

comparing it to the first few characters. If there is a mismatch,

move the syndrome abderrahmane to the right one step and

compare the following character of text with the first

character of the pattern, compare the text and pattern

characters after that. Carry on the above process as before; if

a match is discovered throughout the whole length of the

pattern, it means the pattern was spotted; as a result, return the

match's position. The time complexity is O(m*n) in both the

worst and best scenarios, where (m) is the length of string and

(n) is the length of pattern.

Function Naive-Algorithm (Text, Pattern) :

Input: Pattern [1. m] Text [1. n]

Output: Position of the substring of text matching Pattern

or -1 if not matched then its returned for j← 0 to n-m do

i← 0

While i<m && Pattern [i]==Text [j+i]

do i←i+1

If i==m return j //match successful Return -1 //

match unsuccessful

2) Knuth Morris Pratt Algorithm

DNA data matching, viral feature matching, data

compression, and so on as the volume and complexity of data

increases dramatically. String pattern matching has gotten a lot

of attention in this industry for a long time [1]. One of the most

fundamental operations in strings is pattern matching. If P is a

given substring and T is a much longer string to be searched, all

substrings in T that match P must be located. The pattern is

denoted by the letter P, whereas the target is denoted by the letter

T. In real-world situations, the initial step is to match the

substring P with the string T using the

brute force approach, starting with the first element in T.

Despite the fact that this method complies to the notion, it is

inefficient and time- consuming [2-3].

The number of letter matching operations necessary to

retrieve P from T is m*(n-m+1) if f (T)=n and f (P)=m, and
“length” is the total number of letters in a string. By

minimizing superfluous letter comparisons, the KMP
approach, an updated string matching strategy developed at
the same time by Knuth, Morris, and Pratt, has become fairly

fast and popular today.

The KMP method traverses a pattern string from start to

finish, looking for the longest common components between

each substring's prefix and suffix, and recording the length of

the common section in a “Failure Table” that should be the

same length as the pattern [4]. Each letter in the pattern

correlates to a number in the Failure Table that must be

calculated. The comparison then begins with the first letter of

P and T, with N1 signifying “the last matched character's

matching number in the Failure Table” and updating with the

comparison process, and N2 denoting ‘the last matched

character's matching number in the Failure Table. If the not-

match situation starts with one of P's letters, P must change

the following numbers to the right: (N1-N2). To get the same

result, use the array next.

Function KMP-Algorithm (Text, Pattern) :

n ← length [Text]

m ← length [Pattern]

pi ← Compute Prefix Table (Pattern) q ← 0

for i := 0 To n-1

while q > 0 and Pattern [q] !=Text [i] do

q ← Pattern[q]

if Pattern [q] = Text [i]

Then q ++ if q = m

Then return i – m + 1

return –1

3) Drawbacks of Knuth Morris Algorithm

Even though this method is rather good, there is still a lot of

room for development. As the pattern progresses, there are still

a few matches that aren't required. More comparisons will be

required when the pattern first appears in the second section of

the text. One of the drawbacks with the KMP Algorithm – data is

that it does not scale well as the alphabets grow in size. As a

result, errors are becoming more prevalent

[5]. Processing large DNA files needs additional resources in
the form of processors, which may be a hurdle to
implementing the KMP Algorithm-data for smaller
enterprises.

4) Rabin-Karp Algorithm

The Rabin-Karp algorithm is a hashing-based search

strategy for finding a substring pattern in a text. Plagiarism

detection is one of the practical uses of the Rabin approach.

The proportion of plagiarism is calculated using a hash

algorithm using Karp's Rabin-Karp. You may adjust the

accuracy level using this function. The hash function is used

to calculate the feature value of a certain syllable fraction.

Each text is converted into a number known as a hash value

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 04 (April) - 2023

http://ymerdigital.com

Page No:286

[6]. The hash value is calculated using the same phrase in the

Rabin-Karp method. In order to determine the hash value, you

must overcome two obstacles. For starters, a single sentence

can include a large number of distinct strings [8]. This

problem may be handled by assigning the same hash value to

several strings. The second problem is that, although if each

string is allocated to the brute- force approach, the string with

the same hash value match does not have to be overcome. To

avoid hash outputs that are identical to various words, Rabin-

Karp requires a big prime integer. The scenario becomes

rather difficult when fraudulent hits appear many times across

all windows.

This is the case because a good hashing algorithm seldom

produces collisions. As a result, comparing two substrings is

rarely necessary if they do not match. In addition, if all we

want to do is observe if the pattern appears, the complexity

will be O(n+k), because we could break after the first time

[7].

Data: s: String for which we want to calculate hash values

prefix: Prefix sum of ASCII codes in s

Function Init(s):
n ← Length(s); prefix[0] ← int(s[0]) for i ← 1 to n-1

do prefix[i] ← prefix[i-1] + int(s[i]); end

end

Function getHash(L,R):

if L = 0 then

return prefix[R];

end

end

return prefix[R] - prefix[L-1];

Rabin-Karp String Matching

Data: P: The Pattern to look for T: The text to look in

hashT, hashP: Hash structures for strings T,

P Result: Returns occurrences of P in T

Answer ← 0; n ← length(T); k ← length(P);

for i ← 0 to n-k do

textHash ← hashT.getHash(i, i+k-1); patternHash ←

hashP.getHash(0, k-1); if textHash = patternHash then

valid ← true;

for j←0 to k-1 do

if T[i+j] != P[j] then

valid ← false;

break;

end

end

end

if valid = true then

answer ← answer + 1;

end end

return answer;

5) Boyer-Moore Algorithm

Like the nave technique, the Boyer-Moore method aligns P

and T consecutively before assessing if P matches T's opposing

characters. After the check is done, P is shifted right relative to

T, just like in the prior step [8-10]. These methods are used to

develop a methodology for analyzing less than m

+ n characters in linear worst-case time (a sublinear-time

method) (with a specific extension) [11].

6) Relevance of Boyer - Moore Algorithm in DNA Pattern

Matching

The bad character rule helps, but has no impact. When

the alphabet is small and the text has numerous substrings that

are similar but not identical, this is a regular occurrence. This

is true of DNA, which has a four-letter alphabet, and even

protein, which has a twenty-letter alphabet and usually has

distinct parts that are quite identical.

{Preprocessing stage}

Given P as a pattern,

Calculate L' I and l'(i) for each I of P's position, and R(x) for

each character x.

{Search stage}

k := n;

while k ≤ m do

begin i := n;

h := k;

while i > 0 and P(i) = T(h) do

begin

i := i − 1; h

:= h − 1;

end; if i = 0 then

begin

P in T ending at position k should be reported.

k := k + n − l` (2);

end

else

end;

Where, the maximum amount defined by the (extended) bad

character rule and the good suffix rule is used to shift P (raise

k).

7) Finding Best Suited Algorithms for DNA Pattern

Matching By Comparative Analysis

From the above facts we can clearly derive that the size of

a human DNA is of order 10^6. On implementation we have

developed an artificial string of human genome or the same

order and performed time analysis on the algorithms

discussed above[12, 13, 14]. Figure 1 shows the algorithm

time graphs of all the four algorithms that we have discussed

for pattern size ranging from 10^1 to 10^5 characters. Fig. 1

shows the algorithm time graphs of all the four algorithms that

we have discussed for pattern size ranging from 10^1 to 10^5

characters.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 04 (April) - 2023

http://ymerdigital.com

Page No:287

Fig. 1 Algorithm-Time horizontal histogram graph for pattern size

(m~10
1
-10

5
)

Fig. 2. Algorithm-Time Line graph for pattern size (m ~ 10
1
-10

5
)

Algorith

Time in

Time in

Time in

Time in sec

Time in

m sec m ~ sec m ~ sec m ~ m ~ 10^4 sec m ~
 10^1 10^2 10^3 10^5

Naive 0.082317 0.06511270 0.06160882 0.063417745 0.06263312

7 7

KMP 0.10962623 0.10745550 0.11644943 0.091818921 0.09560388

4 7 6 4

Rabin-Kar 0.06172313 0.05773003 0.05459529 0.054593009 0.05886148

p 9 3 5

Boyer-Mo 0.02706968 0.02504137 0.02116718 0.021548849 0.02434038

ore 8 9 1 4

V. CONCLUSION AND FUTURE WORK

We need to make sure that the algorithms we're employing

presently are as efficient as possible. This is only achievable

if you focus on keeping complexity and execution time to a

minimum. The Advance Rabin Karp method enhances the

performance of the Rabin Karp algorithm by reducing its

execution time, resulting in a better result in less time. As our

hypothesis, the DNA pattern is comparatively so small in size

hence all the algorithms are tending to linear time
complexities. We can see that asymptotically all the

algorithms are performing in linear time. Among all the

algorithms Boyer-Moore performed outstandingly well. That

is because Boyer-Moore performs better in case of small

alphabet size. In DNA sequences the alphabet size is 4. Hence

we can conclude that the best algorithm for DNA pattern

matching is Boyer-Moore Algorithm. In Future, we can

perform analysis in space and according to theoretical

analysis the Rabin-Karp would perform quite well in that

case.

REFERENCES

[1] Knuth, D.E., Morris, J.H., Pratt, V.R. (1977) Fast pattern matching in

strings. SIAM Journal on Computing, 6(2) 323-350.

[2] Chang, C., Wang H., (2012). Comparison of two-dimensional string

matching algorithms. In: 2012 International Conference on Computer

Science and Electronics Engineering. IEEE. pp. 608-611.

[3] Song Y.U., Zheng J., Hu W.X. (2009) Improved KMP algorithm,

Journal of East China Normal University, 32(4): 92-97.

[4] Morris Jr, J.H., Pratt, V.R. (1970) A linear pattern-matching

algorithm, University of California, Berkeley.

[5] Knuth, D.E., Pratt, V.R. Automata theory can be useful, unpublished

manuscripts.

[6] Altschul, Stephen F., Gish, Warren, Miller, Webb, Myers, Eugene W.

and Lipman, David J. 1990. Basic Local Alignment Search Tool.

Journal of Molecular Biology 215(3), pp. 403-410.

[7] Jason Coit, Stuart Staniford and Joseph McAlerney, “Towards Faster

String Matching for Intrusion Detection or Exceeding the Speed of

Snort”.

[8] Kurtz. S, Approximate string searching under weighted edit distance.

In proceedings of the 3rd South American workshop on string

processing. Carleton Univ Press, pp. 156-170, 1996.

[9] A. P. Gope and R. N. Behera, “A Novel Pattern Matching Algorithm in

Genome,” International Journal of Computer Science and Information

Technologies, vol. 5, no. 4, pp. 5450-5457, 2014.
[10] A. P. U. Siahaan, Mesran, R. Rahim and D. Siregar, “K-Gram As A

Determinant Of Plagiarism Level In Rabin-Karp Algorithm,” International

Journal of Scientific & Technology Research, vol. 6, no. 7,

pp. 350-353, 2017.
[11] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol.20, Session10, Oct.1977, pp.761– 772.

© 2013 Global Journals Inc. (US) 47Year 013 2 Global Journal of

Computer Science and Technology Volume XIII Issue I Version I ()

A Analysis of Parallel Boyer-Moore String Search Algorithm.

[12] P. J. C, and K. S. Panicker, “Single Pattern Search Implementations in

a Cluster Computing Environment”, in 4th IEEE International

Conference on Digital Ecosystems and Technologies, 2010.

[13] Holland MM, Parsons TJ. Mitochondrial DNA sequence analysis –

validation and use for forensic casework. Forensic Sci Rev 1999;

11:21-50.

[14] Budowle B, Wilson MR, DiZinno JA, Stauffer C, Fasano MA, Holland

MM, et al. Mitochondrial DNA regions HVI and HVII population data.

Forensic Sci Int 1999; 103:23-35.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 04 (April) - 2023

http://ymerdigital.com

Page No:288

