
Face Mask Detection Using TensorFlow

and OpenCV

Vishal kumar choubey

School of Computer Science and Engineering

Galgotias University

Greater noida, India

vishalkumar2332@gmail.com

Yatin

School of Computer Science and Engineering

Galgotias University

Greater noida, India

Yatin.thakur1703@gmail.com

Dr. Ajay Shanker Singh

School of Computing Science & Engineering

Galgotias University,

Greater Noida, India

ajay.shankersingh@galgotiasuniversity.edu.in

Abstract—During pandemic COVID-19, WHO has made
wearing masks compulsory to protect against this deadly virus. In
this tutorial we will develop a machine learning project – Realtime
Face Mask Detector with Python.We will build a real-time system
to detect whether the person on the webcam is wearing a mask or
not. We will train the face mask detector model using Keras and
OpenCV.We are going to build this project in two parts. In the first
part, we will write a python script using Keras to train face mask
detector model. In the second part, we test the results in a real-time
webcam using OpenCV.

Keywords—Coronavirus, Covid-19, Machine Learning, Face
Mask Detection, Convolutional Neural Network, TensorFlow

I. INTRODUCTION

With the reopening of countries from COVID-19 lock-down,

Government and Public health agencies are recommending

face masks as essential measures to keep us safe when we

venturing into public to curtail the spread of Coronavirus and

thereby contributing to public healthcare. Regardless of

discourse on medical resources and diversities in masks, all

countries are mandating coverings over the nose and mouth in

public. To mandate the use of facemask, it becomes essential

to devise some techniques that enforce individuals to apply a

mask before exposure to public places. This application can

be very useful in public areas such as airports, railway

stations, crowded markets, malls, etc. The proposed method

used here is carried out in two steps. The first step is to train

the face mask detector using transfer learning.

The second step is to use this trained face mask detector on

images or videos of people to identify if they are wearing a

mask. For building this model, I will be using the face mask

dataset provided by Prajna Bhandary. It consists of about

1,376 images with 690 images containing people with face

masks and 686 images containing people without face masks.

I am going to use these images to build a CNN model using

Tensor-Flow to detect if you are wearing a face mask by using

the webcam of your PC. Additionally, you can also use your

phone’s camera to do the same!

LITERATURE SURVEY

All governments around the world are struggling against

COVID-19, which causes serious health crises. Therefore, the

use of face masks regulatory can slow down the high spread

of this virus. Our project deals with face mask detection. In

which we have use visual studio in background for coding.

We have used python as a programming language for coding

purpose. For database purpose we have used Prajna Bhandary

dataset. In that dataset , there is approx. 700+ image file of

peoples who wear mask and some of them not wearing mask.

The proposed method used here is carried out in two steps.

The first step is to train the face mask detector using transfer

learning.

The second step is to use this trained face mask detector on

images or videos of people to identify if they are wearing a

mask. Different performance metrics (accuracy, F1-score,

precision,and recall) are used to judge the performance of the

proposed model.

II. RELATED WORK

In face detection method, a face is detected from an

image that has several attributes in it. According to [21],

research into face detection requires expression recognition,

face tracking, and pose estimation. Given a solitary image,

the challenge is to identify the face from the picture. Face

detection is a difficult errand because the faces change

in size, shape, color, etc and they are not immutable. It

becomes a laborious job for opaque image impeded by some

other thing not confronting camera, and so forth. Authors

in [22] think occlusive face detection comes with two

major challenges: 1) unavailability of sizably voluminous

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:869

mailto:vishalkumar2332@gmail.com
mailto:Yatin.thakur1703@gmail.com
mailto:ajay.shankersingh@galgotiasuniversity.edu.in

datasets containing both masked and unmasked faces, and

2) exclusion of facial expression in the covered area. Utilizing

the locally linear embedding (LLE) algorithm and the

dictionaries trained on an immensely colossal pool of masked

faces, synthesized mundane faces, several mislaid expressions

can be recuperated and the ascendancy of facial cues can be

mitigated to great extent. According to the work reported in

[11], convolutional neural network (CNNs) in computer vision

comes with a strict constraint regarding the size of the input

image. The prevalent practice reconfigures the images before

fitting them into the network to surmount the inhibition.

Here the main challenge of the task is to detect the face

from the image correctly and then identify if it has a mask on

it or not. In order to perform surveillance tasks, the proposed

method should also detect a face along with a mask in motion.

III. DATASET

Two datasets have been used for experimenting the current

method. Dataset 1 [16] consists of 1376 images in which

690 images with people wearing face masks and the rest

686 images with people who do not wear face masks. Fig. 1

mostly contains front face pose with single face in the frame

and with same type of mask having white color only.

Fig. 1. Samples from Dataset 1 including faces without masks and with

masks

Dataset 2 from Kaggle [17] consists of 853 images and

its countenances are clarified either with a mask or without

a mask. In fig. 2 some face collections are head turn, tilt and

slant with multiple faces in the frame and different types of

masks having different colors as well.

Fig. 2. Samples from Dataset 2 including faces without masks and with
masks

IV. INCORPORATED PACKAGES

A. TensorFlow

TensorFlow, an interface for expressing machine learning

algorithms, is utilized for implementing ML systems into fab-

rication over a bunch of areas of computer science, including

sentiment analysis, voice recognition, geographic information

extraction, computer vision, text summarization, information

retrieval, computational drug discovery and flaw detection

to pursue research [18]. In the proposed model, the whole

Sequential CNN architecture (consists of several layers) uses

TensorFlow at backend. It is also used to reshape the data

(image) in the data processing.

B. Keras

Keras gives fundamental reflections and building units for

creation and transportation of ML arrangements with high

iteration velocity. It takes full advantage of the scalability

and cross-platform capabilities of TensorFlow. The core data

structures of Keras are layers and models [19]. All the layers

used in the CNN model are implemented using Keras. Along

with the conversion of the class vector to the binary class

matrix in data processing, it helps to compile the overall

model.

C. OpenCV

OpenCV (Open Source Computer Vision Library), an open-

source computer vision and ML software library, is utilized

to differentiate and recognize faces, recognize objects, group

movements in recordings, trace progressive modules, follow

eye gesture, track camera actions, expel red eyes from pictures

taken utilizing flash, find comparative pictures from an image

database, perceive landscape and set up markers to overlay it

with increased reality and so forth [20]. The proposed method

makes use of these features of OpenCV in resizing and color

conversion of data images.

V. THE PROPOSED METHOD

The proposed method consists of a cascade classifier and a

pre-trained CNN which contains two 2D convolution layers

connected to layers of dense neurons. The algorithm for face

mask detection is as follows:

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:870

A. Data Processing

Data preprocessing involves conversion of data from

a given format to much more user friendly, desired and

meaningful format. It can be in any form like tables, images,

videos, graphs, etc. These organized information fit in

with an information model or composition and captures

relationship between different entities [6]. The proposed

method deals with image and video data using Numpy and

OpenCV.

a) Data Visualization: Data visualization is the pro-

cess of transforming abstract data to meaningful representa-

tions using knowledge communication and insight discovery

through encodings. It is helpful to study a particular pattern

in the dataset [7].

The total number of images in the dataset is visualized in

both categories – ‘with mask’ and ‘without mask’.

The statement categories=os.listdir(data path) categorizes

the list of directories in the specified data path. The variable

categories now looks like: [‘with mask’, ‘without mask’]

Then to find the number of labels, we need to

distinguish those categories using labels=[i for i in

range(len(categories))]. It sets the labels as: [0, 1]

Now, each category is mapped to its respective label using

label dict=dict(zip(categories,labels)) which at first returns

an iterator of tuples in the form of zip object where the

items in each passed iterator is paired together consequently.

The mapped variable label dict looks like: {‘with mask’: 0,

‘without mask’: 1}

b) Conversion of RGB image to Gray image: Modern

descriptor-based image recognition systems regularly work

on grayscale images, without elaborating the method used to

convert from color-to-grayscale. This is because the color- to-

grayscale method is of little consequence when using robust

descriptors. Introducing nonessential information could

increase the size of training data required to achieve good

performance. As grayscale rationalizes the algorithm and

diminishes the computational requisites, it is utilized for

extracting descriptors instead of working on color images

instantaneously [8].

We use the function cv2.cvtColor(input image, flag) for

changing the color space. Here flag determines the type of

conversion [9]. In this case, the flag cv2.COLOR BGR2GRAY

is used for gray conversion.

Deep CNNs require a fixed-size input image. Therefore we

need a fixed common size for all the images in the dataset.

Using cv2.resize() the gray scale image is resized into 100 x

100.

c) Image Reshaping: The input during relegation of an

image is a three-dimensional tensor, where each channel has a

prominent unique pixel. All the images must have identically

tantamount size corresponding to 3D feature tensor. How-

ever, neither images are customarily coextensive nor their

corresponding feature tensors [10]. Most CNNs can only

accept fine-tuned images. This engenders several problems

throughout data collection and implementation of model.

However, reconfiguring the input images before augmenting

them into the network can help to surmount this constraint.

[11].

The images are normalized to converge the pixel range

between 0 and 1. Then they are converted to 4 di-

mensional arrays using data=np.reshape(data,(data.shape[0],

img size,img size,1)) where 1 indicates the Grayscale image.

As, the final layer of the neural network has 2 outputs – with

mask and without mask i.e. it has categorical representation,

the data is converted to categorical labels.

B. Training of Model

a) Building the model using CNN architecture: CNN

has become ascendant in miscellaneous computer vision tasks

[12]. The current method makes use of Sequential CNN.

The First Convolution layer is followed by Rectified Linear

Unit (ReLU) and MaxPooling layers. The Convolution layer

learns from 200 filters. Kernel size is set to 3 x 3 which

specifies the height and width of the 2D convolution window.

As the model should be aware of the shape of the input

expected, the first layer in the model needs to be provided

with information about input shape. Following layers can

perform instinctive shape reckoning [13]. In this case, in-

put shape is specified as data.shape[1:] which returns the

dimensions of the data array from index 1. Default padding

is “valid” where the spatial dimensions are sanctioned to

truncate and the input volume is non-zero padded. The

activation parameter to the Conv2D class is set as “relu”.

It represents an approximately linear function that possesses

all the assets of linear models that can easily be optimized

with gradient-descent methods. Considering the performance

and generalization in deep learning, it is better compared to

other activation functions [14]. Max Pooling is used to reduce

the spatial dimensions of the output volume. Pool size is set

to 3 x 3 and the resulting output has a shape (number of rows

or columns) of: shape of output = (input shape - pool size

+ 1) / strides), where strides has default value (1,1) [15].
As shown in fig, 4, the second Convolution layer has 100

filters and Kernel size is set to 3 x 3. It is followed by ReLu

and MaxPooling layers. To insert the data into CNN, the

long vector of input is passed through a Flatten layer which

transforms matrix of features into a vector that can be fed

into a fully connected neural network classifier. To reduce

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:871

overfitting a Dropout layer with a 50% chance of setting

inputs to zero is added to the model. Then a Dense

layer of 64 neurons with a ReLu activation function is added.

The final layer (Dense) with two outputs for two categories

uses the Softmax activation function.

Fig. 4. Convolutional Neural Network architecture

The learning process needs to be configured first with

the compile method [13]. Here “adam” optimizer is used.

categorical crossentropy which is also known as multiclass

log loss is used as a loss function (the objective that the

model tries to minimize). As the problem is a classification

problem, metrics is set to “accuracy”.

b) Splitting the data and training the CNN model:

After setting the blueprint to analyze the data, the model

needs to be trained using a specific dataset and then to

be tested against a different dataset. A proper model and

optimized train test split help to produce accurate results

while making a prediction. The test size is set to 0.1 i.e.

90% data of the dataset undergoes training and the rest

10%goes for testing purposes. The validation loss is

monitoredusing ModelCheckpoint. Next, the images in the

training set and the test set are fitted to the Sequential

model. Here, 20%of the training data is used as validation

data. The model istrained for 20 epochs (iterations) which

maintains a trade-offbetween accuracy and chances of

overfitting. Fig. 5 depicts visual representation of the

proposed model.

Fig. 5. Overview of the Model

VI. RESULT AND ANALYSIS

The model is trained, validated and tested upon two

datasets. Corresponding to dataset 1, the method attains

accuracy up to 95.77% (shown in fig. 7). Fig. 6 depicts how

this optimized accuracy mitigates the cost of error. Dataset

2 is more versatile than dataset 1 as it has multiple faces in

the frame and different types of masks having different colors

as well. Therefore, the model attains an accuracy of 94.58%

on dataset 2 as shown in Fig. 9. Fig. 8 depicts the contrast

between training and validation loss corresponding to dataset

2. One of the main reasons behind achieving this accuracy

lies in MaxPooling. It provides rudimentary translation

invariance to the internal representation along with the

reduction in the number of parameters the model has to

learn. This sample-based discretization process down- samples

the input representation consisting of image, by reducing its

dimensionality. Number of neurons has the optimized value of

64 which is not too high. A much higher number of neurons

and filters can lead to worse performance. The optimized filter

v alues a nd p ool s ize h elp t o fi lter out the main portion

(face) of the image to detect the existence of mask correctly

without causing over-fitting.

The system can efficiently detect partially occluded faces

either with a mask or hair or hand. It considers the occlusion

degree of four regions – nose, mouth, chin and eye to

differentiate between annotated mask or face covered by

hand. Therefore, a mask covering the face fully including

nose and chin will only be treated as “with mask” by the

model.

Fig. 8. # epochs vs loss corresponding to dataset 2

Fig. 9. # epochs vs accuracy corresponding to dataset 2

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:872

The main challenges faced by the method mainly comprise

of varying angles and lack of clarity. Indistinct moving faces

in the video stream make it more difficult. However, following

the trajectories of several frames of the video helps to create

a better decision – “with mask” or “without mask”.

VII. CONCLUSIONS

In this paper, we briefly explained the motivation of the

work at first. T hen, w e i llustrated t he l earning a nd perfor-

mance task of the model. Using basic ML tools and simplified

techniques the method has achieved reasonably high accuracy.

It can be used for a variety of applications.Wearing a mask

may be obligatory in the near future, considering the Covid-19

crisis. Many public service providers will ask the customers to

wear masks correctly to avail of their services. The deployed

model will contribute immensely to the public health care

system. In future it can be extended to detect if a person is

wearing the mask properly or not. The model can be further

improved to detect if the mask is virus prone or not i.e. the

type of the mask is surgical, N95 or not.

REFERENCES

[1] W.H.O., “Coronavirus disease 2019 (covid-19): situation report, 205”.

2020

[2] “Coronavirus Disease 2019 (COVID-19) – Symptoms”,
Centers for Disease Control and Prevention, 2020. [Online].
Available: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-
testing/symptoms.html. 2020.

[3] “Coronavirus — Human Coronavirus Types — CDC”, Cdc.gov, 2020.
[Online]. Available: https://www.cdc.gov/coronavirus/types.html.
2020.

[4] W.H.O., “Advice on the use of masks in the context of COVID-19:
interim guidance”, 2020.

[5] M. Jiang, X. Fan and H. Yan, “RetinaMask: A Face Mask
detector”,arXiv.org, 2020. [Online]. Available: https://arxiv.org/
abs/2005.03950. 2020.

[6] B. Suvarnamukhi and M. Seshashayee, “Big Data Concepts and
Techniques in Data Processing”, International Journal of Computer
Sciences and Engineering, vol. 6, no. 10, pp. 712-714, 2018.
Available: 10.26438/ijcse/v6i10.712714.

[7] F. Hohman, M. Kahng, R. Pienta and D. H. Chau, “Visual
Analytics in Deep Learning: An Interrogative Survey for the Next
Frontiers,” in IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 8, pp. 2674-2693, 1 Aug. 2019, doi:
10.1109/TVCG.2018.2843369.

[8] C. Kanan and G. Cottrell, “Color-to-Grayscale: Does the Method
Matter in Image Recognition?”, PLoS ONE, vol. 7, no. 1, p. e29740,
2012. Available: 10.1371/journal.pone.0029740.

[9] Opencv-python-tutroals.readthedocs.io. 2020. Changing Colorspaces
— Opencv-Python Tutorials 1 Documentation. [online] Available
at:https://opencv-python-tutroals.readthedocs.io/en/latest/py tutorials/
py imgproc/py colorspaces/py colorspaces.html. 2020.

[10] M. Hashemi, “Enlarging smaller images before inputting into
convolu- tional neural network: zero-padding vs. interpolation”,
Journal of Big Data, vol. 6, no. 1, 2019. Available: 10.1186/s40537-
019-0263-7 . 2020.

[11] S. Ghosh, N. Das and M. Nasipuri, “Reshaping inputs for con-
volutional neural network: Some common and uncommon meth-
ods”, Pattern Recognition, vol. 93, pp. 79-94, 2019. Available:
10.1016/j.patcog.2019.04.009.

[12] R. Yamashita, M. Nishio, R. Do and K. Togashi, “Convolutional
neural networks: an overview and application in radiology”, Insights
into Imaging, vol. 9, no. 4, pp. 611-629, 2018. Available:
10.1007/s13244- 18-0639-9.

YMER || ISSN : 0044-0477

VOLUME 22 : ISSUE 03 (Mar) - 2023

http://ymerdigital.com

Page No:873

http://www.cdc.gov/coronavirus/2019-ncov/symptoms-
http://www.cdc.gov/coronavirus/types.html

