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Abstract

In this paper, a mathematical model is proposed to investigate the effects
of variation in salinity level due to pollution on the dynamics of two competing
species system in an aquatic habitat. In the model formulation, growth rates
and the inter-specific competition rates are assumed to be dependent on salt
concentration in water. The stability and bifurcation analysis of the model is
being carried out and numerical simulation is performed to support the ana-
lytical results. From the analysis of the model the criteria for the survival or
extinction of the two populations are derived, depending on the conditions in-
volving parameters such as input rate of pollutants, depletion rate of pollutants
and input rate of salt due to inflow of pollutants in water. From the analysis
it has been also observed that the equilibrium density of one species will be
more than the equilibrium density of the other species provided the level of salt
concentration is favourable to either of the species.
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1. Introduction

Salinity is a measure of the content of salts in water and discharge of waste
water from industries, municipalities and runoff of water containing chemicals
(fertilizers and pesticides) from agricultural land are introducing salt artificially
in water bodies causing increase in its salinity level. Increasing salinity can
affect aquatic ecosystems in many ways. It can cause shifts in biotic communi-
ties, limit biodiversity, exclude less tolerant species, and cause acute or chronic
effects at specific life stages ([2], [10], [23], [26], [24]). Nielsen et al.[15] cited
that freshwater aquatic plants are not tolerant to increasing salinity and the
upper limit of salinity tolerated by most freshwater aquatic plants appears to
be 4000mg/L. They have also observed that at salinities above 1000mg/L, the
growth of aquatic plants are reduced. It is established experimentally that
high salinity is usually toxic or inhibitory to seed germination of most fresh-
water plants[22]. There is an example that the germination of seeds from both
Sagittaria latifolia and Ruppia megacarpa decreases as salinity level increases|7].
There is another example that if salinity increases, then there is general decrease
in abundance and richness of rotifers and microcrustaceans [4]. Barbour[3] stud-
ied the effects of competition and salinity on the growth of a salt marsh plant
species. To investigate the effect of increasing salinity on two competing species
the author considered two species, Jaumea and Lolium and observed that the
growth of both species decreased as salinity increased. The author also observed
that as salinity increased then the inhibiting effect of competition on Jaumea
was declined. Author has shown that the intolerant halophyte is restricted to
the salt marsh because it is a poor competitor with vigorous glycophytes that in-
habit nearly, non-saline soils. Wang et al.[25] investigated the effects of salinity,
sediment type and waterlogging on the performance of two interacting species,
Phragmites australis (native) and Spartina alterniflora (alien), and shown the
competitive dominance of S. alterniflora occurred under the conditions of high
salinity, sandy sediment and full immersion. Further, the authors found that

the species P. australis exhibited competitive dominance under the conditions
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of low salinity and non-immersion. From the analysis carried out in the pa-
per, wang et al. shown that the salinity stress altered the competitive balance
between Spartina and Phragmites and found that the Spartina had the com-
petitive dominance at the highest salinity level whereas Phragmites tended to
dominate over Spartina at the lowest salinity level although Phragmites perfor-
mance was reduced at this salinity level. Authors have shown that Spartina was
more tolerant of salt stress than Phragmites and both the species coexisted at
the salinity level 15%. The growth of Phragmites declined rapidly with increas-
ing salinity, suggesting that Phragmites is relatively more sensitive to salinity
than Spartina.

However, several authors ([11], [12], [13], [17], [18], [19], [27]) have studied the
effects of different environmental and ecological factors on the dynamics of two
competing species system using mathematical models but no one of them has
considered explicitly the role of salinity on the dynamical behaviour of two com-
peting populations in their mathematical models.

Thus, in view of the above, in this paper we have studied the effects of salin-
ity varying due to pollutants on the survival or extinction of two competing

populations.

2. Basic assumptions and mathematical model

Let P denotes the concentration of pollutant in water, .S,, denotes concen-
tration of salt in water, V1 and N5 denote the densities of logistically growing
competing populations.

Keeping in view of the above considerations, the mathematical model describ-
ing the dynamics of the system is governed by the following set of differential
equations:

Mathematical model 1
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dP

a - ¢ ab W
dS,
W = SO dQSw + OfP, (2)
dN-
al—t1 = 71(Sw)N1 — c1N1? — a1 (Syw) N1 Na, (3)
dN.
d_; = 19(8y) N2 — caNo? — ag(S,) N1 N (4)

with the initial conditions as:

N1(0) > 0, N2(0) > 0, P(0) > 0,5,(0) > 0. a1(Sy) and az(S,,) are non-negative
continuous functions in both the cases when either S, < S,, or S, > S,
Various parameters of the model are defined in Table 1.

Case A When S, is greater than threshold level of salt concentration
(S.) then habitat is favourable for N; species The function r;(S,,) is the
specific growth rate coefficient of Ny species and it increases when concentration
of salt in water is greater than the threshold level of salt concentration (S, >

Sp)- It is assumed that
1(Sn) = 110,71 (Sw) >0 for Sy > Sp. (5)

The function aq(S,) is the specific decay rate coefficient of Nj species due
to interspecific competition coefficient with N5 species and it decreases when

Sw > S,. It is assumed that
a1(Sp) = alo,al/(Sw) <0 for Sy, > S, and a1(Sy) < aqp for Sy > S,. (6)

The function ro(S,,) is the specific growth rate coefficient of Ny species and it
decreases when concentration of salt in water is greater than the threshold level

of salt concentration (S, > S,,). It is assumed that
79(Sn) = ra0,72 (Sw) <0 for Sy > Sp. (7)

The function ag(S,,) is the specific decay rate coefficient of Ny species due
to interspecific competition coefficient with N; species and it increases when

Sw > S,. It is assumed that

az(Sp) = ago,ag/(Sw) >0 for S, > S, and as(Sy) > ag for Sy > S,. (8)
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Case B When S, is less than threshold level of salt concentration
then habitat is favourable for N, species The function r1(S,,) is the specific
growth rate coeflicient of N species and it decreases when concentration of salt
in water is less than the threshold level of salt concentration (S, < Sy). It is
assumed that

r1(8,) = 710,71 (Sw) <0 for Sy < Sn. 9)

The function aq(S,,) is the specific decay rate coeflicient of N; species due
to interspecific competition coefficient with Ny species and it increases when

Sw < Sy. It is assumed that
a1(Sp) = alo,al/(Su,) >0 for S, <8, and a1(Sy) > ayp for S, < S,. (10)

The function r9(S,,) is the specific growth rate coefficient of Na species and it
increases when concentration of salt in water is less than the threshold level of

salt concentration (S, < Syp). It is assumed that
ro(Sn) = Tgo,Tgl(Sw) >0 for Sy, <5,. (11)

The function as(S,,) is the specific decay rate coefficient of No species due
to interspecific competition coefficient with N7 species and it decreases when

Sw < Sy. It is assumed that

a2(Sn) = a0, a2/(Sw) < 0 for Sw < Sn and a2(S’(U) < a20 for Su} < S’nw (12)

3. Equilibria of the system and their existence

The equilibrium points of the mathematical model 1 are given by the fol-

lowing set of equations:

Q-diP = 0, (13)

So — dySy + P = 0, (14)

m1(Sw)N1 — c1N1? — a1 (Sw)N1Ny = 0, (15)
79(Sw)Na — caNo? — ag(Sw)N1 Ny = 0. (16)
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Table 1: Description of the parameters for the system (1)-(4)

Parameters

Description

Q

Constant input rate of pollutant.

dq

Combined depletion rate of pollutant due to natural and artificial mechanism.

So

Input of salts in water due to environmental processes.

dy

depletion rate of salts from water.

(07

Input rate of salts associated with pollutants inflow in water on account of

anthropogenic activities.

T1 (Sw)

Specific growth rate of Ny species which depend on concentration of salt in

water

C1

intraspecific competition coefficient of Ny species

al(Sw)

coeflicient of specific decay rate of species N1 due to interspecific competition

coeflicient with No species dependent on S,

Tg(Sw)

Specific growth rate of Ny species which depend on concentration of salt in

water

C2

intraspecific competition coefficient of Ny species

CLQ(Sw)

coefficient of specific decay rate of species N> due to interspecific competition

coeflicient with N7 species dependent on S,
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We derive the equilibrium points of the mathematical model 1 by solving the

equations (13)-(16):

1. Boundary equilibrium point E11(P Sw,Nl,Ng)

2 N Sod
P:%@@_iﬁgiNrmzw_o

2. Boundary equilibrium point EQQ(P S“},Nl,Nz)
Sgd1+a@
p_ Q ¢ _ SoditaQ r(Fag )
P—d—l,Sw— Odid;‘ N170 N2 o
The boundary equilibrium point s exists provided

o (50d1+04Q) > 0.

3. Boundary equilibrium point E33(f’, :w,J\:H,]\:fg):

el SoditaQ N _ MUHEE) S
(e} l1d
=2 6,="5%04Q § -1 1% N, =.

The boundary equilibrium point F33 exists provided

ry(S2dit0Q) 5 g

4. Interior equilibrium point E44(P**, S,,**, N* N;*):
P = dQ1_7 Sw** _ Sodi1+a@

d1d2 ?

. Spd1+a@ Sod1+uQ Sgd1+a@Q

Ny = 2nlCag JoaCan el an )
1 crea—aq (20 1(4{;4@)(1 ( Odi:lL:Q) )

Sgd1+aQ Sgd1+aQ Sgd1+aQ

N** — exra( dydg )s Zi ledz s)d(+ 51612 )

e (3
cica—aq (=22 i s Jaa( Ud}dz )

The equilibrium point F44 exist if either

Sod Sod
o ro(RGEAL) gy (Fadital)
Sod1+aQ > Sodi1+aQ > (17)
al( dids ) Tl( d1ds ) €1
or Sodi+aQ Sodi+0Q
(o7 (o7
“ < r s ) i S (18)
Sod Sod
a1 ( OdijirQaQ) " ( Odin;aQ) el
is satisfied.
Remark 1. 1. aNé > 0, 8N2 < 0 for case A.
2. aNg)* < 0 > 0 for case B.

It is observed that when S, > S, then equilibrium level of N1 species
increases and the equilibrium level of No species decreases with respect
to increase in constant input rate of pollutant. If S, < S, then equilib-
rium level of N1 species decreases and the equilibrium level of Na species

increases with respect to increase in input rate of pollutant.
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aNl >0, 8N2 < 0 for case A.

4. aN <0 DNZ

> 0 for case B.

It is noticed that when Sy, > S, then equilibrium level of N1 species in-
creases and the equilibrium level of No species decreases due to increase in
input rate of salts associated with pollutants inflow in water on account of
anthropogenic activities. If Sy, < S, then equilibrium level of N1 species
decreases and the equilibrium level of No species increases due to increase
in input rate of salts associated with pollutants inflow in water on account

of anthropogenic activities.
ON{™

ONS*
5. Sa— <0, 57 > 0 for case A.
6. A > 0, 85\2;1 < 0 for case B.

8d1
It is observed that when S, > S, then equilibrium level of Ny species

increases and the equilibrium level of Ny species decreases if the depletion
rate of pollutants is increased by artificial mechanisms. If S, < S, then
equilibrium level of N1 species decreases and the equilibrium level of No
species increases due to increase in combined depletion rate of pollutants

on account of artificial mechanisms.

4. Boundedness of the system

In this section, we obtain sufficient conditions for the boundedness of system
(1)-(4). All the solutions of the system given by (1)-(4) for case A will lie in
the region Q1 = {(P, S, N1,N2) € RL : 0< P < 2,0 < 5, < 20428 0 <

ry(S04150Q

dydg
(&

Ny <
(P(O)vsw(0)7Nl(0)N2(0)) € Ri

,0 < Ny < Tf—;’} as t — oo, for all positive initial values

Proof. : From equation (1) of the system, we get

% +diP<Q.
Applying comparison theorem (Hale, 1969 [9]) we obtain

0<P< d% + ¢pe— it
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and we have

limsup P < d% = P**.
t—o0
From equation (2) of the system, we obtain

BB 1 dyS,, < (So + aP**).
Using comparison theorem (Hale, 1969 [9]) we get

0< 8, < Bl oy opemdat

Sodi14+aQ __ S, **
20hrall _ g Fx,

and we have limsup S, < 0

t—o0

Now, from equation (3) of the mathematical model, we get
% < r(Sw )Ny — ¢1N1%. On using comparison theorem (Hale, 1969 [9]) we

have
Bady-taQ
(Sw**) _ m(Zgam)

C1 C1

limsup N; < &2
t—o0
From equation (4) of the system, we obtain

dgz < 199Ny — ca N2, Using comparison theorem (Hale, 1969 [9]) we have

lim sup Ny < r20)

C2
t—o0

This completes the proof of the lemma. O

All the solutions of the system given by (1)-(4) for case B will lie in the

region Q = {(P,Sw, N1, N2) € RL : 0 < P < £,0 < 8, < Sdita€ g <

d1d2
Spdi1+aQ
r2(Zga )
C

Ny < 220 < Ny < } as t — oo, for all positive initial values

(P(0). 5.,(0), N1(0), Na(0)) € RY.

Proof. : The proof is similar to that of lemma (4). |

5. Stability Analysis

Consider the system:

fl_f = f(t’x)7 (19)
) (20)

VOLUME 21 : ISSUE 12 (Dec) - 2022 Page N0:2928



YMER || ISSN : 0044-0477 http://ymerdigital.com

where, f and g are continuous and locally Lipschitz in z in R™ and the solutions
exist for all positive time. Equation 20 is asymptotically autonomous with limit

equation 19 if f(¢,x2) — g(x) as t — oo uniformly for all x in R™.

Lemma 1. ([6], [20], [21]) Suppose e be a locally asymptotically stable equilib-
rium of (20) and w be the w-limit set of a forward bounded solution x(t) of (19).
If w contains a point yo such that the solution of (20) with y(0) = yo converges

to e ast — 0o, then w = e, that is, (t) = e ast — co.

Corollary 1. If the solutions of the system (19) are bounded and equilibrium e
of the limit system (20) is globally asymptotically stable then any solution x(t)
of the system (19) satisfies x(t) — e as t — co.

Since, we have P** <limsup P and S* < limsup S,
t—o0 t—o00
then, after solving the differential equation for P and S, the system (1)-(4) is
reduced to the following equivalent autonomous system:

Mathematical model-2

dNy

P N1 (827 - e — (S5 )V Mo, 1)
dN-
D2 = Na(ral(53) — eaN? — (53,7 N1 N (22)

5.1. Equilibria of the mathematical model-2 and their exristence

The equilibrium points of the mathematical model-2 (21)-(22) are obtained

by solving the following equations:

Nl(rl(SZ;*)) —01N12—a1(S;*)N1N2 ZO, (23)

No(r2(S5*)) — calNo® — az(S;

w

*)N1 N, = 0. (24)

We derive the equilibrium points of the mathematical model by solving the

equations (23)-(24):

1. Trivial equilibrium point F; (]\71,]\72):
Ny =0, N, = 0.
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2. Boundary equilibrium point Ey(Ny, Ny):
Sgd1+aQ)

G o ra(Surr) el
N1 _ 07 N2 _ T2 - — d1da

c2

The boundary equilibrium point E; exists provided

Sod
ro(24F0L) > 0,
3. Boundary equilibrium point E5(Ny, No):
_ . 3 T1(50d1+aQ) _
N; = ri(Sw™™) — dydy No = 0.
1 c1 c1 9 2

The boundary equilibrium point Es5 exists provided

ry(S2teQ) - g

4. Interior equilibrium point FE4(N;, NJ):

Spd1+aQ Spd1+aQ Spd1+aQ
N* = cor1(Sw™")— al(S *)r2(Sw™ ™) _ cari( Odidz )—ai( Odi@ )r2( Odid2 )
L= T e, el ) o (T O
N = c172( Sy ") —as(Syw ™ *)r1(Sy ™) _ e ( OdidQ )— Odidz )r1( Odidz )
2 c1c2—a1(Sw**)az(Suw**) 0162—@1(30;1;:@)) 30311;2(!@) '
The equilibrium point F, exist if either
c T2(Sod1+o¢Q) a2(50d1+aQ)
> > didy 7, didy (25)
a (Sod1+aQ) r (Sod1+aQ) e
1 dids dids
or Sod Sod
c 7.2( 0 1+04Q) as ( 0d 1+O/Q)
2 dids dido 26
Spdiialy ~ . (Sadiialy - (26)
ay (BahtaQy 7 (SoditaQy c1
1 d1d2 d1d2

is satisfied.

5.2. Dynamical behaviour

Theorem 1. The equilibrium point Fy of the mathematical model 2 is unstable

locally if rl(M) >0 and TQ(%) > 0 in both of the cases A and B.
Proof. The Jacobian matrix evaluated at E; is

r(Sy7) 0
0 r2(S5 )

My =

Sod1+aQ )
d1 (12

and Ao = ro(S5*) = 7’2(%). If A1 > 0 and A2 > 0 then equilibrium point
FE; is unstable in both of the cases A and B. O

The eigenvalues corresponding to the matrix My are Ay = r1(S%*) = r1(
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Theorem 2. The equilibrium point Ey of the mathematical model 2 is sad-

dle point in both of the cases A and B provided either rﬂ%) > 0 and

o (W) <0 orr (W) < 0 and 7'2(5021—"_0‘@) > 0 holds good respec-

tively.

Proof. The Jacobian matrix evaluated at Fj is

ri(SE*) 0
My — 1(557)
0 r2(S%")
The eigenvalues corresponding to the matrix M are Ay = r(SE*) =
7”1(%) and Ay = ro(SE*) = 7"2(%) If Ay > 0 and Ay < O then

equilibrium point F; is saddle point in the case A. If A\; < 0 and A\ > 0 then

equilibrium point F; is saddle point in the case B. O

Theorem 3. For the mathematical model 2 given by (21)-(22) we find that E

is asymptotically stable in the case A if 7"2(%) > 0 and W <
2 d1do

ar( Sgd1+aQ )
d,d .
(Saditaa, are satisfied.

dida

Proof. The Jacobian matrix evaluated at Es is

r1(S5%) —ar(S3")N2 0

My = N .
_CLQ(S;Z*)NQ —CQNQ
The eigenvalues corresponding to the matrix My are
* * Sod
A= —ra(S) = —rp(229429) and s ot
o . 0dj o 0dito
Ay = Tl(S;L*) _ai(S 2;"2(5’ ) = (Sgillz;;@) ai( a1 dy 22 d1ds )
In the case A Ay < 0 and Ay <0, if ry(2942€) > 0 and
. a; (2071129 . .
SodTaa oo reg. then Fs is locally asymptotically stable. O
72( dido ) 71 ( dido )

Remark 2. N> species will survive and Ny species will tend to extinction if the
ratio of interspecific competition rate of Ny species to its growth rate is greater

than the ratio of intraspecific competition rate of Ny species to its growth rate.
Theorem 4. For the mathematical model 2 given by (21)-(22) we find that Es is

asymptotically stable in the case B if either rl(%) <0 orif W <

dyda

- (Solreq) e satisfied when rl(%) > 0.
d

VOLUME 21 : ISSUE 12 (Dec) - 2022 Page No0:2931



YMER || ISSN : 0044-0477 http://ymerdigital.com

Proof. The Jacobian matrix evaluated at Fy is

r1(85,%) —ar(Sy" )Nz 0

Mas = . N
_GQ(S:;*)NQ —02N2

The eigenvalues corresponding to the matrix Moo are

)\1 = _TQ(SZ)*) = —7’2(75031132&Q) and
Sod o Sod [
Ao =1 (SE*) — a1 (8 )ra(S5) _ 7"1(5021;0@) _ el OdiL < )ra (20 i+2 <)
w ca 102 C2
In the case B A1 < 0 and Ay < 0, if either Tl(%‘) < 0 orif Ts"?ﬁ <
142

ay(SoFel) Sodi+aQ

(Salrea) in the case B when ri (=0772) > 0, then E» is locally asymptoti-
dida

cally stable. O

Theorem 5. For the mathematical model 2 given by (21)-(22) we find that Es is
asymptotically stable in the case A if either TQ(%Z) <0 orif "'1(—3"?1#7) <

d1dz

Spdi+aQ

a2 (=0 g Sod1+aQ
W when TQ(W) > 0.

dida

Proof. The Jacobian matrix evaluated at Ej3 is
M3 _ —01N1 —al(S:j}*)Nl i
0 ro(Sg*) — a2(SE*) Ny

The eigenvalues corresponding to the matrix Mj; are

A= —r(85%) = —py (B0htaQy 5nd

d1dz
Sgd1+eQ Sgd1t+eQ
% % S S Sodi+ az( )ra( )
Ay — TQ(SU) )_ as(S; 2:1( o) :7“2( OdidgaQ) _ d,dy - Qidy )
For case A A\ < 0 and Ay < 0 if either TQ(M) <0 orif
So st dida
az(ZT) . Sod1+aQ :
- (SO%EQ) < r2(503§j}‘?) in the case A when ro(22Z7%=) > 0 then Ej is
asymptotically stable. O

Remark 3. Nj species will survive and Ny species will tend to extinction if the
ratio of interspecific competition rate of No species to its growth rate is greater

than the ratio of intraspecific competition rate of N1 species to its growth rate.

Theorem 6. For the mathematical model 2 given by (21)-(22) we find that E3
is asymptotically stable in the case B if ri (22829 > 0 gnd

dids2
Sgdi+oQ
a2 (=) .
c1 dydo
T (SariTea, <= (SaniTaa, are satisfied.
dida 2( dpdg
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Proof. The Jacobian matrix evaluated at E3 is

—01N1 —al(S:L*)Nl
0 r2(S3*) — a2(S5 )N

M3z =

The eigenvalues corresponding to the matrix Ms3 are

AL = —r(S5*) = —p (20htaQy apq

w (S* *) (dsl*df) sd a2(5041+aQ) I(Sod1+uQ)
Ay = 7,2(5;)*) _a2(8,, cl"l w ) 1.2( 0d11;l&-204Q) _ dydy - dydy ]
For case B A\; < 0 and Ay < 0 if Tl(—w(";i;a ) > 0 and
Sgd1+aQ
az (2071 ) . .
. ETOIETe) 2 Soiiffa@ then Ej3 is asymptotically stable. ]
1( dydy ) ra( dydy )

Theorem 7. The equilibrium point E4 of mathematical model 2 is always stable
under the existence condition (25) for interior equilibrium point and unstable

under the condition (26).

Proof. The Jacobian matrix evaluated at Ej is

—c1NY —a1 (S, )NY
—ag(S;," )N —calN3

My =

The eigenvalues corresponding to the matrix Mss are given by the following

characteristic equation
A+ AMer Ny 4+ caN3) + (erea — a1 (S5 %)a2(S5*)) = 0. (27)

Using Hurwitz criteria in (27), we find that the two eigenvalues of the matrix
My are negative or have negative real part under the existence condition (25)
for interior equilibrium point.

Hence, proving the lemma.

5.3. Global Stability
Theorem 8. Fquilibrium point Ey s globally asymptotically stable in the posi-

tive quadrant of N1 — Na plane.

Proof. Let

W (N1, N2) = 55
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Fi(N1, Na) = Ni(r1(S,7)) — etNv* — a1 (S, ") N1 N,

f2(N1, N3) = No(r2(S5*)) — caNa® — aa(S},*) N1 No.

Here, W(N1, N3) > 0if N7 > 0 and N2 > 0 in the positive quadrant of N7 — No
plane.

Then, we have

A(N1, N2) = 3= (W) + 555 (W)

A(Ny, No) = — <—CIJ\JI\}$\°}§N2)-

Since, A(Ny, Ny) < 0 for N3 > 0 and Ny > 0 and also it is not identically

zero in the positive quadrant of N; — N5 plane. Therefore, by Bendixson-Dulac
criterion, there will be no periodic orbit in the positive quadrant of N7 — Ny
plane. Hence, Fj is globally asymptotically stable in the positive quadrant of
Ny — N plane. O

5.4. Local Bifurcation Study

Theorem 9 ([1], [8], [14], [16]). As the parameter c1 passes through the value of

o — a1(S* *)a(S5*)
1 — Co

then the limiting system given by mathematical model 2 has
a saddle node bifurcation around the interior equilibrium point E,. However,

the transcritical and pitchfork bifurcation can not occur in this system.

Proof. The Jacobian matrix evaluated at Ey, is given by

a11 a2
Jit =
az1 Q22
Where, a1l = —ClNl*,alg = —al(S:;*)Nl*,agl = —(J,Q(S;*)N;,agg = —CQN;.

It is noticed that as the parameter c; passes through cj then the interior equi-
librium point E4 becomes a nonhyperbolic point and the jacobian matrix of

mathematical model A at this point will be J1* = (a;;)2+2, where a;; as defined

S* *)as(S%* . .
—@8,)aa (8w AL+ 7,* has simple zero eigenvalue A\; = 0,

o
with the other eigenvalue Ay = —(caNo™ + a1(8,,")az (8, )Ny

C2

above with a1 =

Let
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and

be the eigenvectors corresponding to the eigenvalue A\; = 0 for J,* and J4*T7

respectively, then one can calculate

Vi — a3U22
U22
where ugo # 0 and ag = —Z—if.
W, = aqwoz
w22
where woe # 0 and ay = —%ﬁ*. Moreover, by rewrite system (21)-(22) in the
form X’ = F(X), where
x- ™
No
and
Ny, N.
F(X) = f1(N1, Na)
f2(N1, Na)
then it is observed that:
OF —N;?
_— Fcl = R
661 0
_NI*Q . . T *2
Fe,(Ey i) = ,which gives that W1 " F,, (Ey4, ¢}) = —aqwaaN1*" #
0

0. Thus, transcritical and pitchfork bifurcation cannot occur while the first con-
dition of saddle node bifurcation is satisfied. Since the second derivative of F

with respect to X at (Ey4,c}) is

2 2 * 2
7261(13 Ug2™ — 20,1(511, *)a3u22

D2F(E47 CT)(Ula Ul) -
72(32’11,222 - QQQ(SM**)U/QQZ

Therefore, Wi T [D2F(Ey, ¢;)(Ur,U1)] = (—2¢c1a3% — 2a1(Sw™*)as)ugs?aqwas +
(—2¢2 — 2a2(Syw ™)) ue?wag # 0.
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fime

Figure 1: Trajectories of the mathematical model showing the stability behavior of equilibrium

point Es.

Hence, by Sotomayor’s theorem the occurrence of saddle node bifurcation is

proved.

O

Remark 4. The limiting system given by mathematical model 2 does not show

any type of local bifurcation at the equilibrium points E1, Fo and Ej3.

6. Numerical simulation

In this section, numerical simulation is done to support the analytical results

for the system (1)-(4) by considering the following functional forms:

as(Sw) = a20 + a21(Sw — Sn),
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time
Figure 2: Trajectories of the mathematical model showing the stability behavior of equilibrium

point E3.

Time series graph favourable for N, species

fime

Figure 3: Trajectories of the mathematical model showing the stability behavior of equilibrium

point E4 in the case A when Sy > Sp,.
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Time series graph favourable for N2 Species

’ T T T T T T T

Figure 4: Trajectories of the mathematical model showing the stability behavior of equilibrium

point E4 in the case B when Sy, < Sh.

=

Figure 5: Global stability in N1 — N2 plane.
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Case Awhen Sw > Sn‘ favourable for N1 species

_‘N‘ for Q=18
—N,for =18
—N for Q=4.1
_NZ for Q=4.1

Figure 6: Equilibrium densities of N1 and N3 species for different values of @ in the case A

when Sy, > S),.
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Figure 7: Equilibrium densities of N1 and N2

when Sy < Sp,.
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Case Awhen Sw > Sn‘ favourable for N1 species

\ \ \ \ \ ——
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time

Figure 8: Equilibrium densities of N1 and N3 species for different values of d; in the case A

when Sy, > S),.

CaseBwhenS < favourable for N2 species
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Figure 9: Equilibrium densities of N; and N» species for different values of di in the case B

when Sy < Sp,.
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Case A SW > Sn, favourable for N1 species
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Figure 10: Equilibrium densities of N1 and N2 species for different values of « in the case A

when Sy, > S),.
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Figure 11: Equilibrium density of N1 and N2 species for different values of o in the case B

when Sy < Sp,.
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The set of parametric values for the interior equilibrium point F4 (P* Sk Ny = Ng**)

in the case A when S,, > S, is

Q=1.8,d; =0.9,50 = 0.50,dy = 3.0, = 0.1, 719 = 3.0,
11 = 1.20, Sn = 0.08, cl = 0.6, ajp = 0.03, ajl = 0.056,

ro0 = 1.5, 791 = 0.8035, cs = 0.5, asp = 0.025, as; = 0.0002. (29)

For the above mentioned set of functional forms and parametric values, it
is noticed that the conditions for the existence of interior equilibrium point
Eyy (P**, 85", N1*", No*") are satisfied and the equilibrium values are
E44(2.0,0.233,5.217,2.492). From the numerical simulation it is observed that
the conditions for the boundedness and stability of the interior equilibrium point
E44 are satisfied which shows that E44 is asymptotically stable in case A for the
set of parametric values given in (29) (see fig. 3).

Now, we assume following set of parametric values for the interior equilibrium

point Egq (P**,S5*, N1*", N>*") in the case B when S, < S,

w

Q=1.6,d, =0.9,5 = 0.50,ds = 3.0,cc = 0.1, 719 = 2.0,
11 = 1.20, Sn = 0.5, C1 = 0.7,&10 = 0.03, all = 0.056,

oo = 15,791 = 0.8035, co = 0.3, asp = 0.025, az; = 0.0002. (30)

By using (28) and the set of parametric values defined in (30), it is observed that
the conditions for the existence, boundedness and stability of interior equilib-
rium point Egq (P**, 55", N1*", No*") are satisfied and the equilibrium values
are F44 (1.7778,0.2259,2.0267,5.5656) which shows that F44 is asymptotically
stable in case B for the set of parametric values given in (30) (see fig. 4).

Further, numerical simulation is also performed to show the global stability of

interior equilibrium point Ey4 (sece fig.5).

The boundary equilibrium point E95(2,0.2334,0,2.7536) of the mathemat-
ical model is locally asymptotically stable (see fig. 1) for the following set of
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parameters:

Q = 18,dy = 09,5 = 0.50,d2 = 3.0, = 0.1,70 = 1.0,711 = 08,5, =
0.08,¢c1 = 0.9,a19 = 0.8,a11 = 0.01,790 = 1.5,721 = 0.8035,c2 = 0.5,a20 =
0.025, az; = 0.0002

The boundary equilibrium point E33(2.000, 0.2333,7.9596, 0.0000) of the math-

ematical model is locally asymptotically stable (see fig. 2) for the following set

of parametric values:

Q = 1.8,d1 = 0.9,50 = 050,d2 = 3.0,0[ = 0.1,7“1() = 3.0,7“11 = 12,S =
0.08,61 = O.4,CL10 = 0.03,&11 = 0.056,7’20 = 1.5,7"21 = 0.8035,(}2 = 0.52,(120 =
0.3,@21 =0.2.

7. Sensitivity Analysis

Sensitivity index of a variable with respect to parameter is calculated by
normalized forward sensitivity method used by Chitnis et al.[5]. Sensitivity
index of the interior equilibrium points E44 in both the cases A and B are
shown in Table 2 and 3 for the parametric values mentioned in (29) and (30)
respectively. The sensitivity index table indicates that the equilibrium density
of one species is more than the equilibrium density of other species depending

significantly on the parameters @, « and d;.

8. Conclusion

In this paper, we have proposed and analyzed a nonlinecar mathematical
model to investigate mathematically the effects of varying salinity level on the
dynamics of two competing populations. From the stability analysis of boundary
equilibrium point Fs, it is noted that Ns species will survive and Nj species
will tend to extinction if the ratio of interspecific competition rate of N species
to its growth rate is greater than the ratio of intraspecific competition rate of

N species to its growth rate. It is also observed from the stability analysis of
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Parameters(z;) fj** 7%“** yg_l** ’yﬁz**

Q 1 0.285714 0.0293123 -0.046112
di -1 -0.285714 -0.0293123 0.046112
So 0 0.714286 0.0732807 -0.11528
dy 0 -1 -0.102593 0.161392

o 0 0.285714 0.0293123 -0.046112
710 0 0 0.959989 -0.100608
T11 0 0 0.0588793 -0.00617064
Sn 0 0 -0.0351747 0.0553344
c1 0 0 -1.00179 0.104989
a1 0 0 -0.0239266 0.00250755
ail 0 0 0.00684834 | -0.000717716
720 0 0 -0.0205566 1.20582
T21 0 0 0.00168842 -0.0990407
Cco 0 0 0.0170783 -1.00179
a2 0 0 0.00178764 -0.10486
as1 0 0 2.19284*106 | -0.000128629

Table 2: Sensitivity indices of the state variables at the equilibrium point E44 to the param-

eters () of the model in the case A where y=sensitivity index

boundary equilibrium point E3 that N7 species will survive and Ny species will
tend to extinction if the ratio of interspecific competition rate of No species to
its growth rate is greater than the ratio of intraspecific competition rate of Ny
species to its growth rate. Coexistence of both the species is ensured from the
stability of interior equilibrium point if the condition given by (25) is satisfied.
The numerical simulation using hypothetical data is carried out to support
the analytical results and graphs are drawn to show the dynamical behaviour of
species in the underlying system. The figs. (1-4) shows the stability behaviour of
equilibrium points. Now, from fig (6) it is seen that as the input rate of pollutant

(Q) increases in the case A (S,, > Sy,) then the equilibrium density of N; species
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Parameters(z;) 'ygf;** 7533“’** %10\21** ’yﬁz**

Q 1 0.262295 0.0685868 -0.0306089
dq -1 | -0.262295 | -0.0685868 0.0306089
So 0 0.737705 0.1929 -0.0860847
do 0 -1 -0.261487 0.116696
« 0 0.262295 0.0685868 -0.0306089
710 0 0 1.41735 -0.0429177
r11 0 0 -0.233076 0.00705757
Sn 0 0 -0.578701 0.258262
c1 0 0 -1.00542 0.0304442
aio 0 0 -0.118325 0.0035829
ai 0 0 -0.0605356 0.00183303
720 0 0 -0.160686 0.903252
To1 0 0 -0.0235906 0.132608
c2 0 0 0.17886 -1.00542
azo 0 0 0.00542783 -0.0305111
as1 0 0 -0.000011901 | 0.0000668984

Table 3: Sensitivity indices of the state variables at the equilibrium point E44 to the param-

eters () of the model in the case B where y=sensitivity index

increases whereas the equilibrium density of Ns species decreases. From fig.
(7) it is noted in the case B (S, < Sp) that as the input rate of pollutant
(Q) decreases then the equilibrium density of Ny species decreases whereas the
equilibrium density of Ny species increases. In the case A, it is observed that
as the depletion rate of pollutant (d;) decreases then equilibrium density of
N7 species increases but on the other hand equilibrium density of Ns species
decreases (see fig.(8)). While in the case B when the depletion rate of pollutant
(d1) increases then the equilibrium density of Ny species decreases whereas the
equilibrium density of N3 species increases (see fig.(9)). From fig.(10) it is shown

in the case A that as the input rate of salts associated with pollutants inflow
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in water on account of anthropogenic activities increases then the equilibrium
density of N; species increases whereas the equilibrium density of Ny species
decreases. On the other hand in the case B it is seen that as the input rate
of salts associated with pollutants inflow in water on account of anthropogenic
activities decreases then the equilibrium density of Ny species decreases whereas
the equilibrium density of Na species increases(see fig.(11)). Thus, the results
obtained from both analytical and numerical analyses are supported by the
results of experimental study [25] in which the authors have observed that the
salinity stress altered the competitive balance between Spartina and Phragmites
and it is found that the Spartina had the competitive dominance at the higher
salinity level whereas Phragmites tended to dominate over Spartina at lower
salinity level although Phragmites performance was reduced at this salinity level.
Further, the results derived out of analytical and numerical analysis are also
supported by the experimental study conducted by Barbour[3] in which the
author has observed that as salinity increases then the growth rate of both
the species Jaumea and Lolium decrease. The author also observed that the
inhibiting effect of competition by Lolium on Jaumea was reduced as salinity

level increased.
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